ON THE L_{∞} -BIALGEBRA STRUCTURE OF THE RATIONAL HOMOTOPY GROUPS $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$

SAMSON SANEBLIDZE

Dedicated to the memory of Academician Nodar Berikashvili

Abstract. The notion of an L_{∞} -bialgebra structure on a vector space is introduced. It is shown that the rational homotopy groups $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ admit such a structure for the loop space $\Omega \Sigma Y$ of a suspension ΣY that characterizes Y up to the rational homotopy equivalence.

1. INTRODUCTION

The homotopy groups $\pi_*(\Omega X)$ of the loops ΩX on a topological space X have no non-zero coproduct. Nevertheless, it may have non-trivial higher order cooperations that form an L_{∞} -coalgebra structure on $\pi_*(\Omega X)$. The Samelson product is compatible with this structure in a sense that leads to the notion of an L_{∞} -bialgebra. Let $H_*(X)$ denote the homology with rational coefficients Q. It admits an A_{∞} -coalgebra structure, more precisely, a C_{∞} -coalgebra structure, dual to the A_{∞} -algebra and C_{∞} -algebra structures on the cohomology $H^*(X)$ (cf. [4]). In [7], the notion of an A_{∞} -bialgebra is introduced on a vector space V and it is proved that the loop homology $H_*(\Omega X)$ admits such a structure for a simply connected space X. The motivation of the paper is Theorem 12.2 in [7]asserting that the Bott-Samelson bialgebra isomorphism $T^a \dot{H}_*(Y) \approx H_*(\Omega \Sigma Y)$ extends to an isomorphism of A_{∞} -bialgebras, where the A_{∞} -bialgebra structure on the left-hand side consists of the tensor multiplication and of the A_{∞} -coalgebra structural cooperations extended from $H_*(Y)$. There is the (anti)symmetrization functor from the category of A_{∞} -algebras to the category of L_{∞} -algebras (cf. [2,5,6]), and dually from the category of A_{∞} -coalgebras to the category of L_{∞} -coalgebras. Here, we have to modify the above extension rule for the A_{∞} -coalgebra structure of $H_*(Y)$ so that the obtained A_{∞} -coalgebra structural cooperations of $T^{a}\tilde{H}_{*}(Y)$ preserve the primitives $PT^{a}\tilde{H}_{*}(Y) \subset T^{a}\tilde{H}_{*}(Y)$, i.e., the rational homotopy groups $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$. Then the L_{∞} -bialgebra structure on $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ is obtained by the symmetrization of the A_{∞} -coalgebra structure.

Furthermore, the L_{∞} -bialgebra structure on $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ characterizes Y up to the rational homotopy equivalence.

The rational homotopy groups admit L_{∞} -algebra structures, but for $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$, these structures are degenerated and consist only of the Samelson binary product, since $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ is a free Lie algebra for an arbitrary Y. In general, it may make sense to establish a compatibility relation between an L_{∞} -algebra and an L_{∞} -coalgebra structures on a vector space V by using the symmetrization of the aforementioned A_{∞} -bialgebra structure on V.

2. A_{∞} -coalgebras

A differential graded coalgebra (dgc) $(C_*, d, \Delta : C_* \to C_* \otimes C_*)$ is non-negatively graded. It is connected if $C_0 = \mathbb{Q}$. A dgc may or may not be coassociative. The reduced coalgebra \tilde{C}_* is defined by $\tilde{C}_* = C_{>0}$, and $PC \subset C$ denotes the vector subspace of the primitives, $PC = \{c \in C \mid \Delta(c) = 1 \otimes c + c \otimes 1\}$ for $1 \in C_0$. We assume dgc's are connected and of finite types unless otherwise is stated explicitly. The cellular chains $(C_*(K_n), d, \Delta_K)$ of the associahedron K_n , $n \geq 2$, is a non-connected,

²⁰²⁰ Mathematics Subject Classification. Primary 55P35, Secondary 55S05.

Key words and phrases. Loop space; Homotopy groups; L_{∞} -bialgebra.

non-coassociative dgc with the coproduct

$$\Delta_K : C_*(K_n) \to C_*(K_n) \otimes C_*(K_n) \tag{2.1}$$

defined as follows (cf. [8]). Recall the partial (Tamari) ordering on the vertices of K_n defined by $u \leq v$ if there exists an oriented edge-path from u to v in K_n . Denote the minimal and maximal vertices of a cell a of K_n by min a and max a respectively, and extend the partial ordering on the cells of K_n by $a \leq b$ if max $a \leq \min b$. Then

$$\Delta_K(e) = \sum_{\substack{|a|+|b|=|e|\\a \le b}} \operatorname{sgn}(a,b) \, a \otimes b, \quad a \times b \subset e \times e,$$

where $e \subset K_n$ is a cell of K_n in which the top cell is denoted by e^{n-2} for $n \ge 2$.

Given a dg vector space (C, d), an A_{∞} -coalgebra structure

$$(C, d, \{\psi_n : C \to C^{\otimes n}\}_{n \ge 2})$$
 on C

is defined by a chain (operadic) map

$$\psi: C_*(K_n) \to \operatorname{Hom}(C, C^{\otimes n})$$
 with $\psi(e^{n-2}) = \psi_n$, a map of degree $n-2$.

In particular, $(C, d, \Delta := \psi_2)$ is a dgc. Denoting $\psi_1 := d$, for each $n \ge 1$, the cooperations ψ_n satisfy the following quadratic relations in $\operatorname{Hom}(C, C^{\otimes n})$:

$$\sum_{\substack{0 \le k \le n-1\\0 \le i \le n-k-1}} (-1)^{k(n+i+1)} \left(id^{\otimes i} \otimes \psi_{k+1} \otimes id^{\otimes n-k-1-i} \right) \circ \psi_{n-k} = 0.$$
(2.2)

A C_{∞} -coalgebra $(C, d, \{\psi_r\}_{r\geq 2})$ consists of the data similar to those of an A_{∞} -coalgebra, but specified by the condition that each dual operation $\psi_r^* : (C^*)^{\otimes r} \to C^*$ vanishes on the decomposables under the shuffle product on $TC^* = \bigoplus_{k\geq 1} (C^*)^{\otimes k}$.

Given two A_{∞} -coalgebras $(A, d, \{\psi_r^{\overline{A}}\}_{r\geq 2})$ and $(B, d, \{\psi_r^B\}_{r\geq 2})$, the definition of their tensor product $(A \otimes B, d_{\otimes}, \{\Psi_r\}_{r\geq 2})$ relies on the coproduct (2.1) as follows. Let the map

$$\chi: \operatorname{Hom}(A, A^{\otimes r}) \otimes \operatorname{Hom}(B, B^{\otimes r}) \to \operatorname{Hom}(A \otimes B, (A \otimes B)^{\otimes r})$$

be defined by the composition $\chi := \sigma_{r,2}^* \circ \iota$, where

$$\iota: \operatorname{Hom}(A, A^{\otimes r}) \otimes \operatorname{Hom}(B, B^{\otimes r}) \to \operatorname{Hom}(A \otimes B, A^{\otimes r} \otimes B^{\otimes r})$$

is the standard map and

$$\sigma_{r,2}^* : \operatorname{Hom}(A \otimes B, A^{\otimes r} \otimes B^{\otimes r}) \to \operatorname{Hom}(A \otimes B, (A \otimes B)^{\otimes r})$$

is induced by the standard permutation $\sigma_{r,2}: A^{\otimes r} \otimes B^{\otimes r} \to (A \otimes B)^{\otimes r}$. For each $r \geq 2$, the tensor cooperation

$$\Psi_r: A \otimes B \to (A \otimes B)^{\otimes r}$$

satisfying (2.2) is given by

$$\Psi_r = \chi \circ (\psi^A \otimes \psi^B) \circ \Delta_K(e^{r-2}).$$

Let now C be a dg algebra (C, d, μ) and an A_{∞} -coalgebra $(C, d, \{\psi_r\}_{r\geq 2})$ simultaneously, and $(C \otimes C, d_{\otimes}, \{\Psi_r\}_{r\geq 2})$ be the tensor A_{∞} -coalgebra. Then $(C, d, \mu, \{\psi_r\}_{r\geq 2})$ is an A_{∞} -bialgebra if the following diagram

$$\begin{array}{ccc} C \otimes C & \xrightarrow{\Psi_r} & (C \otimes C)^{\otimes r} \\ \mu \downarrow & & \downarrow \mu^{\otimes r} \\ C & \xrightarrow{\psi_r} & C^{\otimes r} \end{array}$$

commutes, i.e., the following equation:

$$\psi_r \circ \mu = \mu^{\otimes r} \circ \Psi_r, \quad r \ge 2, \tag{2.3}$$

holds. In small dimensions, equality (2.3) reads as

$$\begin{split} \psi_2 \circ \mu &= (\mu \otimes \mu) \circ \chi \circ (\psi_2 \otimes \psi_2) \\ \psi_3 \circ \mu &= \mu^{\otimes 3} \circ \chi \circ ((\psi_2 \otimes 1)\psi_2 \otimes \psi_3 + \psi_3 \otimes (1 \otimes \psi_2)\psi_2) \\ \psi_4 \circ \mu &= \mu^{\otimes 4} \circ \chi \circ \\ & ((\psi_2 \otimes 1 \otimes 1)(\psi_2 \otimes 1)\psi_2 \otimes \psi_4 + \psi_4 \otimes (1 \otimes 1 \otimes \psi_2)(1 \otimes \psi_2)\psi_2 \\ & + (\psi_3 \otimes 1)\psi_2 \otimes ((1 \otimes \psi_2 \otimes 1)\psi_3 + (1 \otimes \psi_3)\psi_2) \\ & + (1 \otimes \psi_2 \otimes 1)\psi_3 \otimes (1 \otimes \psi_3)\psi_2 \\ & - (\psi_2 \otimes 1 \otimes 1)\psi_3 \otimes (1 \otimes 1 \otimes \psi_2)\psi_3). \end{split}$$

We rewrite equation (2.3) as follows. Denote $xy := \mu(x, y)$ and

$$(x_1 \otimes \cdots \otimes x_r) \cdot (y_1 \otimes \cdots \otimes y_r) := x_1 y_1 \otimes \cdots \otimes x_r y_r,$$

and for cells a, b of K_r and for $x, y \in C$,

$$\psi_r(xy) = \sum_{\substack{|a|+|b|=r-2\\a\le b}} \operatorname{sgn}(a,b)\,\psi(a)(x)\cdot\psi(b)(y).$$
(2.4)

In particular, (C, d, μ, ψ_2) is a bialgebra (Hopf algebra). Furthermore, given an A_{∞} -coalgebra $(C, d, \{\Delta_r : C \to C^{\otimes r}\}_{r\geq 2})$, consider the tensor algebra $(T^a(\tilde{C}), d, \mu)$. Use the freeness of $T^a(\tilde{C})$, and by induction on the tensor wordlength apply to formula (2.4) to extend each cooperation Δ_r to the cooperation $\psi_r : T^a(\tilde{C}) \to T^a(\tilde{C})^{\otimes r}$, and, hence, to obtain the A_{∞} -bialgebra $(T^a(\tilde{C}), d, \mu, \{\psi_r\}_{r\geq 2})$.

Remark 2.1. The coproduct Δ_K in (2.1) is not coassociative, so we fix the left most association by iterative application of (2.4).

The homology $H_*(\Omega X)$ admits an A_{∞} -bialgebra structure [7]. However, for a suspension $X = \Sigma Y$, this structure is specified by the fact that the Bott–Samelson isomorphism $T^a \tilde{H}_*(Y) \approx H_*(\Omega \Sigma Y)$ induced by the inclusion $Y \hookrightarrow \Omega \Sigma Y$ extends to that of the A_{∞} -bialgebras. In particular, the A_{∞} -algebra substructure on $H_*(\Omega \Sigma Y)$ reduces to the loop (Pontryiagin) multiplication because $H_*(\Omega \Sigma Y)$ is a free algebra.

However, ψ_r given by (2.4) does not preserve the primitives $PT^a(\tilde{C}) \subset T^a(\tilde{C})$, so we have to modify (2.4) as follows. Given a dg coalgebra (C, d, Δ) , bearing in mind the primitive subcoalgebra (PC, d, Δ) as a degenerated A_{∞} -coalgebra, we consider two tensor A_{∞} -coalgebras:

$$\left(A \otimes B, \{{}^{P}\Psi_{r}\}_{r \geq 2}\right) = \left(PA, d_{A}, \Delta\right) \otimes \left(B, \{\psi_{r}^{B}\}_{r \geq 2}\right)$$

and

$$\left(A \otimes B, \{\Psi_r^P\}_{r \ge 2}\right) = \left(A, \{\psi_r^A\}_{r \ge 2}\right) \otimes \left(PB, d_B, \Delta\right).$$

In fact, ${}^{P}\Psi_{r}$ and Ψ_{r}^{P} , referred to as *primitive tensor cooperations*, are of the form

$${}^{P}\Psi_{r} = \Delta^{(r-1)} \otimes \psi_{r} \quad \text{and} \quad \Psi_{r}^{P} = \psi_{r} \otimes \Delta^{(r-1)},$$

respectively, where $\Delta^{(r-1)} : PC \to PC^{\otimes r}$ denotes the (r-1)-iteration of $\Delta = \Delta^1$ for $r \ge 2$. Given an A_{∞} -coalgebra $(C, d, \{\Delta_r\}_{r\ge 2})$, for each $r \ge 2$, define the cooperation

$$(\mathfrak{C},\mathfrak{a},\{\Delta_r\}_{r\geq 2}), \text{ for each } r \geq 2, \text{ define one}$$

 $\varrho_r: T^a(\tilde{C}) \to T^a(\tilde{C})^{\otimes r}$

with
$$\varrho_r|_C = \Delta_r$$
 as follows. Set $C = A = B$ above, and form the sum

$$\varrho_r|_{C^{\otimes 2}} := {}^{P} \Psi_r + \Psi_r^P \quad \text{on} \quad C \otimes C.$$

$$(2.5)$$

Then set $A=C\otimes C$ with $\psi^A_r=P\Psi_r|_{C^{\otimes 2}}$ and form the sum

$$\varrho_r|_{C^{\otimes 3}} := {}^P \Psi_r + \Psi_r^P \quad \text{on} \quad C^{\otimes 3},$$

and so on. Obviously, the cooperations ρ_r are related to the product on $T^a(\tilde{C})$ by the following formula:

$$\varrho_r(xy) = \sum_{1 \le i \le r} y_1 \otimes \cdots \otimes xy_i \otimes \cdots \otimes y_r + x_1 \otimes \cdots \otimes x_i y \otimes \cdots \otimes x_r,$$
(2.6)

where $\varrho_r(x) := x_1 \otimes \cdots \otimes x_r$ (the Sweedler type notation). The following proposition is immediate. **Proposition 2.1.** The cooperations ϱ_r given by (2.6) preserve the vector subspace $PT(\tilde{C}) \subset T^a(\tilde{C})$

$$\varrho_r: PT(\tilde{C}) \to PT(\tilde{C})^{\otimes r}$$

Definition 2.1. An A_{∞} -coalgebra $(C, d, \{\Delta_r\}_{r \geq 2})$ is **primitive** if the cooperations

$$\varrho_r: T^a(\tilde{C}) \to T^a(\tilde{C})^{\otimes r}, \quad r \ge 2,$$

satisfy (2.2) and, hence, form an A_{∞} -coalgebra structure on $(T^{a}(\tilde{C}), d)$.

Denoting $[x, y] = xy - (-1)^{|x||y|} yx$ and taking into account (2.6), we immediately obtain

Proposition 2.2. A primitive A_{∞} -coalgebra $(C, d, \{\Delta_r\}_{r\geq 2})$ induces the A_{∞} -coalgebra structure on $(PT^a(\tilde{C}), d)$ satisfying the equality

$$\varrho_r[x,y] = \sum_{1 \le i \le r} y_1 \otimes \cdots \otimes [x,y_i] \otimes \cdots \otimes y_r + x_1 \otimes \cdots \otimes [x_i,y] \otimes \cdots \otimes x_r.$$
(2.7)

When $(C = PC, d, \Delta_2)$ is a primitive dgc, compare the two induced A_{∞} -coalgebra structures

$$(T^a(\tilde{C}), d, \{\psi_r\}_{r\geq 2})$$
 and $(T^a(\tilde{C}), d, \{\varrho_r\}_{r\geq 2})$ on $T^a(\tilde{C})$

to deduce

$$2\psi_2 = \varrho_2 \quad \text{and} \quad \psi_3 = \varrho_3, \tag{2.8}$$

while on the decomposables

$$\psi_r = \varrho_r + \bar{\psi}_r \quad \text{for} \quad r \ge 4,$$

where $\overline{\psi}_r$ is the non-primitive summand component of ψ_r in (2.4). In particular, (2.8) implies **Proposition 2.3.** An A_{∞} -coalgebra of the form $(C = PC, d, \{\Delta_2, \Delta_3, 0, \ldots\})$ is primitive.

3. L_{∞} -Coalgebras

The notion of an L_{∞} -coalgebra is dual to that of an L_{∞} -algebra [5,6]. Let

$$S(n): C^{\otimes n} \to C^{\otimes n}$$

be a map defined for $a_1 \otimes \cdots \otimes a_n \in C^{\otimes n}$ by

$$S(n)(a_1 \otimes \cdots \otimes a_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \varepsilon(\sigma) a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(n)},$$

where $\operatorname{sgn}(\sigma)$ is the standard sign of a permutation σ , and $\varepsilon(\sigma)$ is determined by the Koszul sign rule. Let $S_{i,n-i} \subset S_n$ denote the subset of (i, n-i)-shuffles with $S_{n,0} = 1 \in S_n$, and let $S(i, n-i) : C^{\otimes n} \to C^{\otimes n}$ be a map defined for $a_1 \otimes \cdots \otimes a_n \in C^{\otimes n}$ by

$$S(i, n-i)(a_1 \otimes \cdots \otimes a_n) = \sum_{\sigma \in S_{i, n-i}} \operatorname{sgn}(\sigma) \varepsilon(\sigma) a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(n)}$$

An L_{∞} -coalgebra is a dg vector space (L, d) together with the linear maps

$$\{\ell^r: L \to L^{\otimes r}\}_{r>1}$$
 of degree $r-2$ with $\ell^1:=d$

such that

 $\begin{array}{ll} (\mathrm{i}) & \ell^r = S(r) \circ \ell^r, \, r \geq 1; \\ (\mathrm{ii}) & \sum\limits_{1 \leq i \leq n} (-1)^{i(n-i)} S(i,n-i) \circ (\ell^i \otimes 1^{\otimes n-i}) \circ \ell^{1+n-i} = 0. \end{array}$

In particular, (L, ℓ^2) is a (graded) Lie coalgebra, when d = 0, or (L, d, ℓ^2) is a dg Lie coalgebra, when $\ell_3 = 0$. Denote $\ell^r(x) := x_1 \otimes \cdots \otimes x_r$ (the Sweedler type notation), and $\ell_2(x, y) := [x, y]$.

Definition 3.1. Let *L* be a dg Lie algebra (L, d, ℓ_2) and an L_{∞} -coalgebra $(L, d, \{\ell^r\}_{r\geq 2})$ simultaneously. Then $(L, d, \ell_2, \{\ell^r\}_{r\geq 2})$ is an L_{∞} -bialgebra if for each $r \geq 2$,

$$\ell^{r}[x,y] = \sum_{1 \le i \le r} y_{1} \otimes \cdots \otimes [x,y_{i}] \otimes \cdots \otimes y_{r} + x_{1} \otimes \cdots \otimes [x_{i},y] \otimes \cdots \otimes x_{r}.$$
(3.1)

In particular, (L, ℓ_2, ℓ^2) is a (graded) Lie bialgebra, when d = 0, or (L, d, ℓ_2, ℓ^2) is a dg Lie bialgebra, when $\ell_3 = 0$ in a sense [1]. A motivated example of an L_{∞} -bialgebra is given by Theorem 3.1 below.

3.1. Symmetrization. Given an A_{∞} -coalgebra $(C, d, \{\psi_r : C \to C^{\otimes r}\}_{r \geq 2})$, there is the associated L_{∞} -coalgebra $(L, d, \{\ell^r : L \to L^{\otimes r}\}_{r \geq 2})$, where (L, d) = (C, d), and for each $r \geq 2$, the structural cooperation $\ell^r : L \to L^{\otimes r}$ is obtained by the symmetrization

$$\ell^r = \psi_r^{sym}$$
 for $\psi_r^{sym} := S(r) \circ \psi_r$.

Theorem 3.1. If the structural cooperations of an A_{∞} -coalgebra $(C, d, \{\Delta_r\}_{r\geq 2})$ restrict to $\Delta_r : PC \to PC^{\otimes r}$ for all r and form a primitive A_{∞} -coalgebra structure on PC, then the free Lie algebra $(L(PC), \ell_2)$ admits a canonical L_{∞} -bialgebra structure $(L(PC), d, \ell_2, \{\ell^r\}_{r\geq 2})$ with $\ell^2 = 0$.

Proof. First, recall that $PT^{a}(\tilde{C}) = L(PC)$ and the free Lie algebra is generated by PC. Applying to Proposition 2.2, we obtain $\ell^{r} : L(PC) \to L(PC)^{\otimes r}$ as $\ell^{r} = \varrho_{r}^{sym}$ on L(PC). Then (2.7) implies (3.1). Since $\Delta_{2} : PC \to PC \otimes PC$ is cocommutative, $\ell^{2} = 0$.

Denoting L := L(PC), equality (3.1) is equivalent to the following commutative diagram:

$$\begin{array}{ccc} L \otimes L & \xrightarrow{\Phi_r^{sym}} & (L \otimes L)^{\otimes r} \\ \ell_2 \downarrow & & \downarrow \overline{\ell_2} \\ L & \xrightarrow{\ell^r} & L^{\otimes r}, \end{array}$$

where $\Phi_r := {}^{P} \Psi_r + \Psi_r^P$ in which the right-hand side is defined by (2.5) for C = L, $\psi_r = \varrho_r$, and $\bar{\ell}_2 := \sum_{1 \leq i \leq r} \mu^{\otimes i-1} \otimes \ell_2 \otimes \mu^{\otimes r-i-1}$. In fact, $\bar{\ell}_2$ consists of only one non-trivial monomial because of [1, -] = [-, 1] = 0 for $1 \in T^a(\tilde{C})$.

Let $C = H_*(Y)$. Then $H_*(Y)$ admits an A_∞ -coalgebra structure, or more precisely, a C_∞ -coalgebra structure [4]. Taking into account the Milnor-Moore theorem, we have

$$\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q} = PH_*(\Omega \Sigma Y) = PT^a(\tilde{H}_*(Y)) = L(PH_*(Y)),$$

and then Theorem 3.1 implies

Theorem 3.2. If the cooperations $\Delta_r : H_*(Y) \to H_*(Y)^{\otimes r}$ for $r \geq 3$ preserve the primitives $PH_*(Y)$ and form a primitive A_∞ -coalgebra structure on $PH_*(Y)$, then the rational homotopy groups $(\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}, \ell_2)$, being the Lie algebra with the Samelson product ℓ_2 , admit a canonical L_∞ -bialgebra structure $(\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}, \ell_2, \{\ell^r\}_{r>2})$ with $\ell^2 = 0$.

Corollary 3.1. For $PH_*(Y) = H_*(Y)$ and $(H_*(Y), \{\Delta_r\}_{r\geq 2})$ to be primitive, the rational homotopy groups $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ admit a canonical L_{∞} -bialgebra structure.

In general, the rational homotopy groups admit an L_{∞} -algebra structure with the higher order operations ℓ_r rather than ℓ_2 (cf. [2]), but in the case of $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$, it reduces to the Samelson bracket ℓ_2 because $(\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}, \ell_2)$ is a free Lie algebra. Furthermore, note that although the Lie coalgebra structure of $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ is *abelian*, the higher order cooperations ℓ^r , $r \geq 3$, on $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ may be non-trivial (cf. Example 3.1 below).

Theorem 3.3. If there is an isomorphism $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q} \approx \pi_*(\Omega \Sigma Y') \otimes \mathbb{Q}$ of the L_{∞} -bialgebras, then Y and Y' are equivalent in a rational homotopy category.

Proof. The isomorphism of the L_{∞} -bialgebras of the theorem implies the isomorphism

$$(H_*(Y), \{\Delta_r\}) \approx (H_*(Y'), \{\Delta'_r\})$$

of C_{∞} -coalgebras. On the other hand, the C_{∞} -coalgebra structure of $H_*(Y)$ uniquely characterizes Y in the rational homotopy category [4], so the proof of the theorem follows.

Example 3.1. 1. Let a space $Y = S^2 \vee S^2 \vee S^2 \cup_f e^5$ be obtained from the wedge of three 2-spheres by attaching the 5-cell e^5 via a map $f : S^4 \to S^2 \vee S^2 \vee S^2$, being a representative of the element $[i_1, [i_2, i_3]] \in \pi_4(S^2 \vee S^2 \vee S^2)$, the iterated Whitehead product, where $i_j : S^2 \to S^2 \vee S^2 \vee S^2$ denotes the standard inclusion at the j^{th} -component j = 1, 2, 3. Then for $H := H_*(Y)$, we have $H_0 = \mathbb{Q}$, $H_2 = \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q}$ and $H_5 = \mathbb{Q}$. Although PH = H, the C_∞ -coalgebra structure on H is non-trivial: namely, there is a representative $\Delta_3 : H \to H \otimes H \otimes H$ with $\Delta_3(w_5) = x_2 \otimes y_2 \otimes z_2$ for $(x_2, y_2, z_2) \in H_2$ and $w_5 \in H_5$ (compare [3, Example 6.6]). In particular, the C_{∞} -coalgebra (H, Δ_3) is primitive. We have $H_*(Y) \subset \pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ with identifications $H_2(Y) = \pi_2(\Omega \Sigma Y) \otimes \mathbb{Q}$ and $H_5(Y) = \pi_5(\Omega \Sigma Y) \otimes \mathbb{Q}$. Consequently, for $\ell^3 = \Delta_3^{sym}$ on H, the cooperation

$$\ell^3: \pi_5(\Omega\Sigma Y) \otimes \mathbb{Q} \to (\pi_2(\Omega\Sigma Y) \otimes \mathbb{Q}) \otimes (\pi_2(\Omega\Sigma Y) \otimes \mathbb{Q}) \otimes (\pi_2(\Omega\Sigma Y) \otimes \mathbb{Q})$$

defined for $w_5 \in \pi_5(\Omega \Sigma Y) \otimes \mathbb{Q}$ by

 $\ell^{3}(w_{5}) = x_{2} \otimes y_{2} \otimes z_{2} - y_{2} \otimes x_{2} \otimes z_{2} + y_{2} \otimes z_{2} \otimes x_{2} - x_{2} \otimes z_{2} \otimes y_{2} + z_{2} \otimes x_{2} \otimes y_{2} - z_{2} \otimes y_{2} \otimes x_{2},$ is non-trivial.

2. Let $Y' = S^2 \vee S^2 \vee S^2 \vee S^5$. Since Y' is a suspension, the C_{∞} -coalgebra structure on $H_*(Y')$ is degenerated. Hence $H_*(Y)$ and $H_*(Y')$ are isomorphic as coalgebras, but not as C_{∞} -coalgebras. Consequently, $\pi_*(\Omega \Sigma Y) \otimes \mathbb{Q}$ and $\pi_*(\Omega \Sigma Y') \otimes \mathbb{Q}$ are isomorphic as Lie algebras, but not as L_{∞} -bialgebras. In fact, there are only two rational homotopy types determined by these spaces in question.

Finally, remark that the above method applies to introduce an L_{∞} -bialgebra structure on the homotopy groups $\pi_*(\Omega \Sigma Y)$ whenever the Hurewitz homomorphism $\pi_*(\Omega \Sigma Y) \to H_*(\Omega \Sigma Y; \mathbb{Z})$ is an inclusion.

References

- 1. P. Etingof, O. Schiffmann, *Lectures on Quantum Groups*. Second edition. Lectures in Mathematical Physics. International Press, Somerville, MA, 2002.
- 2. J. M. M. Fernández, The Milnor-Moore theorem for L_{∞} -algebras in rational homotopy theory. Math. Z. 300 (2022), 2147–2165.
- 3. S. Halperin, J. Stasheff, Obstructions to homotopy equivalences. Adv. in Math. 32 (1979), no. 3, 233–279.
- 4. T. Kadeishvili, Cohomology C_∞-algebra and rational homotopy type. In: Algebraic topology-old and new, pp. 225–240, Banach Center Publ., 85, Polish Acad. Sci. Inst. Math., Warsaw, 2009.
- 5. T. Lada, M. Markl, Strongly homotopy Lie algebras. Comm. Algebra 23 (1995), no. 6, 2147–2161.
- T. Lada, J. Stasheff, Introduction to SH Lie algebras for physicists. Internat. J. Theoret. Phys. 32 (1993), no. 7, 1087–1103.
 S. Sanablidas, P. Uzukla, Franced matrices and A. histophysic, Adv. Stud. Franc. Thil. Math. J. 15 (2022), no. 4.
- 7. S. Saneblidze, R. Umble, Framed matrices and A_{∞} -bialgebras. Adv. Stud. Euro-Tbil. Math. J. 15 (2022), no. 4, 41–140.
- S. Saneblidze, R. Umble, Comparing diagonals on the associahedra. Homology Homotopy Appl. 26 (2024), no. 1, 141–149.

(Received 04.01.2024)

A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 2 MERAB ALEKSIDZE II LANE, TBILISI 0193, GEORGIA

Email address: sane@rmi.ge