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ON THE L∞-BIALGEBRA STRUCTURE OF THE RATIONAL HOMOTOPY

GROUPS π∗(ΩΣY )⊗Q

SAMSON SANEBLIDZE

Dedicated to the memory of Academician Nodar Berikashvili

Abstract. The notion of an L∞-bialgebra structure on a vector space is introduced. It is shown
that the rational homotopy groups π∗(ΩΣY )⊗Q admit such a structure for the loop space ΩΣY of

a suspension ΣY that characterizes Y up to the rational homotopy equivalence.

1. Introduction

The homotopy groups π∗(ΩX) of the loops ΩX on a topological space X have no non-zero co-
product. Nevertheless, it may have non-trivial higher order cooperations that form an L∞-coalgebra
structure on π∗(ΩX). The Samelson product is compatible with this structure in a sense that leads
to the notion of an L∞-bialgebra. Let H∗(X) denote the homology with rational coefficients Q. It
admits an A∞-coalgebra structure, more precisely, a C∞-coalgebra structure, dual to the A∞-algebra
and C∞-algebra structures on the cohomology H∗(X) (cf. [4]). In [7], the notion of an A∞-bialgbera
is introduced on a vector space V and it is proved that the loop homology H∗(ΩX) admits such
a structure for a simply connected space X. The motivation of the paper is Theorem 12.2 in [7]

asserting that the Bott–Samelson bialgebra isomorphism T aH̃∗(Y ) ≈ H∗(ΩΣY ) extends to an iso-
morphism of A∞-bialgebras, where the A∞-bialgebra structure on the left-hand side consists of the
tensor multiplication and of the A∞-coalgebra structural cooperations extended from H∗(Y ). There
is the (anti)symmetrization functor from the category of A∞-algebras to the category of L∞-algebras
(cf. [2,5,6]), and dually from the category of A∞-coalgebras to the category of L∞-coalgebras. Here, we
have to modify the above extension rule for the A∞-coalgebra structure of H∗(Y ) so that the obtained

A∞-coalgebra structural cooperations of T aH̃∗(Y ) preserve the primitives PT aH̃∗(Y ) ⊂ T aH̃∗(Y ),
i.e., the rational homotopy groups π∗(ΩΣY )⊗Q. Then the L∞-bialgebra structure on π∗(ΩΣY )⊗Q
is obtained by the symmetrization of the A∞-coalgebra structure.

Furthermore, the L∞-bialgebra structure on π∗(ΩΣY ) ⊗ Q characterizes Y up to the rational
homotopy equivalence.

The rational homotopy groups admit L∞-algebra structures, but for π∗(ΩΣY )⊗Q, these structures
are degenerated and consist only of the Samelson binary product, since π∗(ΩΣY ) ⊗ Q is a free Lie
algebra for an arbitrary Y. In general, it may make sense to establish a compatibility relation between
an L∞-algebra and an L∞-coalgebra structures on a vector space V by using the symmetrization of
the aforementioned A∞-bialgebra structure on V.

2. A∞-coalgebras

A differential graded coalgebra (dgc) (C∗, d,∆ : C∗ → C∗ ⊗ C∗) is non-negatively graded. It is

connected if C0 = Q. A dgc may or may not be coassociative. The reduced coalgebra C̃∗ is defined by
C̃∗ = C>0, and PC ⊂ C denotes the vector subspace of the primitives, PC = {c ∈ C | ∆(c) =
1⊗ c+ c⊗ 1} for 1 ∈ C0. We assume dgc’s are connected and of finite types unless otherwise is stated
explicitly. The cellular chains (C∗(Kn), d,∆K) of the associahedron Kn, n ≥ 2, is a non-connected,
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non-coassociative dgc with the coproduct

∆K : C∗(Kn) → C∗(Kn)⊗ C∗(Kn) (2.1)

defined as follows (cf. [8]). Recall the partial (Tamari) ordering on the vertices of Kn defined by u ≤ v
if there exists an oriented edge-path from u to v in Kn. Denote the minimal and maximal vertices of
a cell a of Kn by min a and max a respectively, and extend the partial ordering on the cells of Kn by
a ≤ b if max a ≤ min b. Then

∆K (e) =
∑

|a|+|b|=|e|
a≤b

sgn(a, b) a⊗ b, a× b ⊂ e× e,

where e ⊂ Kn is a cell of Kn in which the top cell is denoted by en−2 for n ≥ 2.
Given a dg vector space (C, d), an A∞-coalgebra structure

(C, d, {ψn : C → C⊗n}n≥2) on C

is defined by a chain (operadic) map

ψ : C∗(Kn) → Hom(C,C⊗n) with ψ(en−2) = ψn, a map of degree n− 2.

In particular, (C, d,∆ := ψ2) is a dgc. Denoting ψ1 := d, for each n ≥ 1, the cooperations ψn satisfy
the following quadratic relations in Hom(C,C⊗n) :∑

0≤k≤n−1
0≤i≤n−k−1

(−1)k(n+i+1)
(
id⊗i ⊗ ψk+1 ⊗ id⊗n−k−1−i) ◦ ψn−k = 0. (2.2)

A C∞-coalgebra (C, d, {ψr}r≥2) consists of the data similar to those of an A∞-coalgebra, but spec-
ified by the condition that each dual operation ψ∗

r : (C∗)⊗r → C∗ vanishes on the decomposables
under the shuffle product on TC∗ =

⊕
k≥1

(C∗)⊗k.

Given two A∞-coalgebras (A, d, {ψAr }r≥2) and (B, d, {ψBr }r≥2), the definition of their tensor prod-
uct (A⊗B, d⊗, {Ψr}r≥2) relies on the coproduct (2.1) as follows. Let the map

χ : Hom(A,A⊗r)⊗Hom(B,B⊗r) → Hom(A⊗B, (A⊗B)⊗r)

be defined by the composition χ := σ∗
r,2 ◦ ι, where

ι : Hom(A,A⊗r)⊗Hom(B,B⊗r) → Hom(A⊗B,A⊗r ⊗B⊗r)

is the standard map and

σ∗
r,2 : Hom(A⊗B,A⊗r ⊗B⊗r) → Hom(A⊗B, (A⊗B)⊗r)

is induced by the standard permutation σr,2 : A⊗r ⊗ B⊗r → (A ⊗ B)⊗r. For each r ≥ 2, the tensor
cooperation

Ψr : A⊗B → (A⊗B)⊗r

satisfying (2.2) is given by

Ψr = χ ◦ (ψA ⊗ ψB) ◦∆K(er−2).

Let now C be a dg algebra (C, d, µ) and an A∞-coalgebra (C, d, {ψr}r≥2) simultaneously, and
(C⊗C, d⊗, {Ψr}r≥2) be the tensor A∞-coalgebra. Then (C, d, µ, {ψr}r≥2) is an A∞-bialgebra if the
following diagram

C ⊗ C
Ψr−−→ (C ⊗ C)⊗r

µ ↓ ↓ µ⊗r

C
ψr−−→ C⊗r

commutes, i.e., the following equation:

ψr ◦ µ = µ⊗r ◦Ψr, r ≥ 2, (2.3)
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holds. In small dimensions, equality (2.3) reads as

ψ2 ◦ µ =(µ⊗ µ) ◦ χ ◦ (ψ2 ⊗ ψ2)

ψ3 ◦ µ =µ⊗3 ◦ χ ◦ ((ψ2 ⊗ 1)ψ2 ⊗ ψ3 + ψ3 ⊗ (1⊗ ψ2)ψ2)

ψ4 ◦ µ =µ⊗4 ◦ χ◦
((ψ2 ⊗ 1⊗ 1)(ψ2 ⊗ 1)ψ2 ⊗ ψ4 + ψ4 ⊗ (1⊗ 1⊗ ψ2)(1⊗ ψ2)ψ2

+ (ψ3 ⊗ 1)ψ2 ⊗ ((1⊗ ψ2 ⊗ 1)ψ3 + (1⊗ ψ3)ψ2)

+ (1⊗ ψ2 ⊗ 1)ψ3 ⊗ (1⊗ ψ3)ψ2

− (ψ2 ⊗ 1⊗ 1)ψ3 ⊗ (1⊗ 1⊗ ψ2)ψ3).

We rewrite equation (2.3) as follows. Denote xy := µ(x, y) and

(x1 ⊗ · · · ⊗ xr) · (y1 ⊗ · · · ⊗ yr) := x1y1 ⊗ · · · ⊗ xryr,

and for cells a, b of Kr and for x, y ∈ C,

ψr(xy) =
∑

|a|+|b|=r−2
a≤b

sgn(a, b)ψ(a)(x) · ψ(b)(y). (2.4)

In particular, (C, d, µ, ψ2) is a bialgebra (Hopf algebra). Furthermore, given an A∞-coalgebra

(C, d, {∆r : C → C⊗r}r≥2), consider the tensor algebra (T a(C̃), d, µ). Use the freeness of T a(C̃), and
by induction on the tensor wordlength apply to formula (2.4) to extend each cooperation ∆r to the

cooperation ψr : T
a(C̃) → T a(C̃)⊗r, and, hence, to obtain the A∞-bialgebra (T a(C̃), d, µ, {ψr}r≥2).

Remark 2.1. The coproduct ∆K in (2.1) is not coassociative, so we fix the left most association by
iterative application of (2.4).

The homology H∗(ΩX) admits an A∞-bialgebra structure [7]. However, for a suspension X = ΣY,

this structure is specified by the fact that the Bott–Samelson isomorphism T aH̃∗(Y ) ≈ H∗(ΩΣY )
induced by the inclusion Y ↪→ ΩΣY extends to that of the A∞-bialgebras. In particular, the
A∞-algebra substructure on H∗(ΩΣY ) reduces to the loop (Pontryiagin) multiplication because
H∗(ΩΣY ) is a free algebra.

However, ψr given by (2.4) does not preserve the primitives PT a(C̃) ⊂ T a(C̃), so we have to modify
(2.4) as follows. Given a dg coalgebra (C, d,∆), bearing in mind the primitive subcoalgebra (PC, d,∆)
as a degenerated A∞-coalgebra, we consider two tensor A∞-coalgebras:(

A⊗B, {PΨr}r≥2

)
= (PA, dA,∆)⊗ (B, {ψBr }r≥2)

and (
A⊗B, {ΨPr }r≥2

)
= (A, {ψAr }r≥2)⊗ (PB, dB ,∆).

In fact, PΨr and ΨPr , referred to as primitive tensor cooperations, are of the form

PΨr = ∆(r−1) ⊗ ψr and ΨPr = ψr ⊗∆(r−1),

respectively, where ∆(r−1) : PC → PC⊗r denotes the (r − 1)-iteration of ∆ = ∆1 for r ≥ 2.
Given an A∞-coalgebra (C, d, {∆r}r≥2), for each r ≥ 2, define the cooperation

ϱr : T
a(C̃) → T a(C̃)⊗r

with ϱr|C = ∆r as follows. Set C = A = B above, and form the sum

ϱr|C⊗2 := PΨr +ΨPr on C ⊗ C. (2.5)

Then set A = C ⊗ C with ψAr = PΨr|C⊗2 and form the sum

ϱr|C⊗3 := PΨr +ΨPr on C⊗3,

and so on. Obviously, the cooperations ϱr are related to the product on T a(C̃) by the following
formula:

ϱr(xy) =
∑

1≤i≤r

y1 ⊗ · · · ⊗ xyi ⊗ · · · ⊗ yr + x1 ⊗ · · · ⊗ xiy ⊗ · · · ⊗ xr, (2.6)
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where ϱr(x) := x1 ⊗ · · · ⊗ xr (the Sweedler type notation). The following proposition is immediate.

Proposition 2.1. The cooperations ϱr given by (2.6) preserve the vector subspace PT (C̃) ⊂ T a(C̃)

ϱr : PT (C̃) → PT (C̃)⊗r.

Definition 2.1. An A∞-coalgebra (C, d, {∆r}r≥2) is primitive if the cooperations

ϱr : T
a(C̃) → T a(C̃)⊗r, r ≥ 2,

satisfy (2.2) and, hence, form an A∞-coalgebra structure on (T a(C̃), d).

Denoting [x, y] = xy − (−1)|x||y|yx and taking into account (2.6), we immediately obtain

Proposition 2.2. A primitive A∞-coalgebra (C, d, {∆r}r≥2) induces the A∞-coalgebra structure on

(PT a(C̃), d) satisfying the equality

ϱr[x, y] =
∑

1≤i≤r

y1 ⊗ · · · ⊗ [x, yi]⊗ · · · ⊗ yr + x1 ⊗ · · · ⊗ [xi, y]⊗ · · · ⊗ xr. (2.7)

When (C = PC, d,∆2) is a primitive dgc, compare the two induced A∞-coalgebra structures

(T a(C̃), d, {ψr}r≥2) and (T a(C̃), d, {ϱr}r≥2) on T a(C̃)

to deduce
2ψ2 = ϱ2 and ψ3 = ϱ3, (2.8)

while on the decomposables
ψr = ϱr + ψ̄r for r ≥ 4,

where ψ̄r is the non-primitive summand component of ψr in (2.4). In particular, (2.8) implies

Proposition 2.3. An A∞-coalgebra of the form (C = PC, d, {∆2,∆3, 0, . . .}) is primitive.

3. L∞-coalgebras

The notion of an L∞-coalgebra is dual to that of an L∞-algebra [5, 6]. Let

S(n) : C⊗n → C⊗n

be a map defined for a1 ⊗ · · · ⊗ an ∈ C⊗n by

S(n)(a1 ⊗ · · · ⊗ an) = Σ
σ∈Sn

sgn(σ)ε(σ) aσ(1) ⊗ · · · ⊗ aσ(n),

where sgn(σ) is the standard sign of a permutation σ, and ε(σ) is determined by the Koszul sign rule.
Let Si,n−i ⊂ Sn denote the subset of (i, n− i)-shuffles with Sn,0 = 1 ∈ Sn, and let S(i, n− i) : C⊗n →
C⊗n be a map defined for a1 ⊗ · · · ⊗ an ∈ C⊗n by

S(i, n− i)(a1 ⊗ · · · ⊗ an) = Σ
σ∈Si,n−i

sgn(σ)ε(σ) aσ(1) ⊗ · · · ⊗ aσ(n).

An L∞-coalgebra is a dg vector space (L, d) together with the linear maps

{ℓr : L→ L⊗r}r≥1 of degree r − 2 with ℓ1 := d

such that
(i) ℓr = S(r) ◦ ℓr, r ≥ 1;
(ii)

∑
1≤i≤n

(−1)i(n−i)S(i, n− i) ◦ (ℓi ⊗ 1⊗n−i) ◦ ℓ1+n−i = 0.

In particular, (L, ℓ2) is a (graded) Lie coalgebra, when d = 0, or (L, d, ℓ2) is a dg Lie coalgebra,
when ℓ3 = 0. Denote ℓr(x) := x1 ⊗ · · · ⊗ xr (the Sweedler type notation), and ℓ2(x, y) := [x, y].

Definition 3.1. Let L be a dg Lie algebra (L, d, ℓ2) and an L∞-coalgebra (L, d, {ℓr}r≥2) simultane-
ously. Then (L, d, ℓ2, {ℓr}r≥2) is an L∞-bialgebra if for each r ≥ 2,

ℓr[x, y] =
∑

1≤i≤r

y1 ⊗ · · · ⊗ [x, yi]⊗ · · · ⊗ yr + x1 ⊗ · · · ⊗ [xi, y]⊗ · · · ⊗ xr. (3.1)

In particular, (L, ℓ2, ℓ
2) is a (graded) Lie bialgebra, when d = 0, or (L, d, ℓ2, ℓ

2) is a dg Lie bialgebra,
when ℓ3 = 0 in a sense [1]. A motivated example of an L∞-bialgebra is given by Theorem 3.1 below.
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3.1. Symmetrization. Given an A∞-coalgebra (C, d, {ψr : C → C⊗r}r≥2) , there is the associated
L∞-coalgebra (L, d, {ℓr : L → L⊗r}r≥2), where (L, d) = (C, d), and for each r ≥ 2, the structural
cooperation ℓr : L→ L⊗r is obtained by the symmetrization

ℓr = ψsymr for ψsymr := S(r) ◦ ψr.

Theorem 3.1. If the structural cooperations of an A∞-coalgebra (C, d, {∆r}r≥2) restrict to ∆r : PC →
PC⊗r for all r and form a primitive A∞-coalgebra structure on PC, then the free Lie algebra
(L(PC), ℓ2) admits a canonical L∞-bialgebra structure (L(PC), d, ℓ2, {ℓr}r≥2) with ℓ

2 = 0.

Proof. First, recall that PT a(C̃)=L(PC) and the free Lie algebra is generated by PC. Applying to
Proposition 2.2, we obtain ℓr : L(PC) → L(PC)⊗r as ℓr = ϱsymr on L(PC). Then (2.7) implies (3.1).
Since ∆2 : PC → PC ⊗ PC is cocommutative, ℓ2 = 0. □

Denoting L := L(PC), equality (3.1) is equivalent to the following commutative diagram:

L⊗ L
Φsym

r−−−→ (L⊗ L)⊗r

ℓ2 ↓ ↓ ℓ̄2
L

ℓr−→ L⊗r,

where Φr := PΨr + ΨPr in which the right-hand side is defined by (2.5) for C = L, ψr = ϱr, and
ℓ̄2 :=

∑
1≤i≤r

µ⊗i−1 ⊗ ℓ2 ⊗ µ⊗r−i−1. In fact, ℓ̄2 consists of only one non-trivial monomial because of

[1,−] = [− , 1] = 0 for 1 ∈ T a(C̃).
Let C = H∗(Y ). Then H∗(Y ) admits an A∞-coalgebra structure, or more precisely, a C∞-coalgebra

structure [4]. Taking into account the Milnor–Moore theorem, we have

π∗(ΩΣY )⊗Q = PH∗(ΩΣY ) = PT a(H̃∗(Y )) = L(PH∗(Y )),

and then Theorem 3.1 implies

Theorem 3.2. If the cooperations ∆r : H∗(Y ) → H∗(Y )⊗r for r ≥ 3 preserve the primitives
PH∗(Y ) and form a primitive A∞-coalgebra structure on PH∗(Y ), then the rational homotopy groups
(π∗(ΩΣY )⊗Q, ℓ2), being the Lie algebra with the Samelson product ℓ2, admit a canonical L∞-bialgebra
structure (π∗(ΩΣY )⊗Q, ℓ2, {ℓr}r≥2) with ℓ

2 = 0.

Corollary 3.1. For PH∗(Y ) = H∗(Y ) and (H∗(Y ), {∆r}r≥2) to be primitive, the rational homotopy
groups π∗(ΩΣY )⊗Q admit a canonical L∞-bialgebra structure.

In general, the rational homotopy groups admit an L∞-algebra structure with the higher order
operations ℓr rather than ℓ2 (cf. [2]), but in the case of π∗(ΩΣY ) ⊗ Q, it reduces to the Samelson
bracket ℓ2 because (π∗(ΩΣY )⊗Q, ℓ2) is a free Lie algebra. Furthermore, note that although the Lie
coalgebra structure of π∗(ΩΣY )⊗Q is abelian, the higher order cooperations ℓr, r ≥ 3, on π∗(ΩΣY )⊗Q
may be non-trivial (cf. Example 3.1 below).

Theorem 3.3. If there is an isomorphism π∗(ΩΣY )⊗Q ≈ π∗(ΩΣY
′)⊗Q of the L∞-bialgebras, then

Y and Y ′ are equivalent in a rational homotopy category.

Proof. The isomorphism of the L∞-bialgebras of the theorem implies the isomorphism

(H∗(Y ), {∆r}) ≈ (H∗(Y
′), {∆′

r})
of C∞-coalgebras. On the other hand, the C∞-coalgebra structure of H∗(Y ) uniquely characterizes Y
in the rational homotopy category [4], so the proof of the theorem follows. □

Example 3.1. 1. Let a space Y = S2 ∨ S2 ∨ S2 ∪f e5 be obtained from the wedge of three 2-spheres
by attaching the 5-cell e5 via a map f : S4 → S2 ∨ S2 ∨ S2, being a representative of the element[
i1, [i2, i3]

]
∈ π4(S

2 ∨S2 ∨S2), the iterated Whitehead product, where ij : S
2 → S2 ∨S2 ∨S2 denotes

the standard inclusion at the jth-component j = 1, 2, 3. Then for H := H∗(Y ), we have H0 = Q,
H2 = Q ⊕ Q ⊕ Q and H5 = Q. Although PH = H, the C∞-coalgebra structure on H is non-trivial:
namely, there is a representative ∆3 : H → H⊗H⊗H with ∆3(w5) = x2⊗y2⊗z2 for (x2, y2, z2) ∈ H2
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and w5 ∈ H5 (compare [3, Example 6.6]). In particular, the C∞-coalgebra (H,∆3) is primitive. We
have H∗(Y ) ⊂ π∗(ΩΣY )⊗Q with identifications H2(Y ) = π2(ΩΣY )⊗Q and H5(Y ) = π5(ΩΣY )⊗Q.
Consequently, for ℓ3 = ∆sym

3 on H, the cooperation

ℓ3 : π5(ΩΣY )⊗Q → (π2(ΩΣY )⊗Q)⊗ (π2(ΩΣY )⊗Q)⊗ (π2(ΩΣY )⊗Q)

defined for w5 ∈ π5(ΩΣY )⊗Q by

ℓ3(w5) = x2 ⊗ y2 ⊗ z2 − y2 ⊗ x2 ⊗ z2 + y2 ⊗ z2 ⊗ x2 − x2 ⊗ z2 ⊗ y2 + z2 ⊗ x2 ⊗ y2 − z2 ⊗ y2 ⊗ x2,

is non-trivial.
2. Let Y ′ = S2 ∨ S2 ∨ S2 ∨ S5. Since Y ′ is a suspension, the C∞-coalgebra structure on H∗(Y

′)
is degenerated. Hence H∗(Y ) and H∗(Y

′) are isomorphic as coalgebras, but not as C∞-coalgebras.
Consequently, π∗(ΩΣY ) ⊗ Q and π∗(ΩΣY

′) ⊗ Q are isomorphic as Lie algebras, but not as L∞-
bialgebras. In fact, there are only two rational homotopy types determined by these spaces in question.

Finally, remark that the above method applies to introduce an L∞-bialgebra structure on the
homotopy groups π∗(ΩΣY ) whenever the Hurewitz homomorphism π∗(ΩΣY ) → H∗(ΩΣY ;Z) is an
inclusion.
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