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ON THE L.-BIALGEBRA STRUCTURE OF THE RATIONAL HOMOTOPY
GROUPS 7,(QSY) ®Q

SAMSON SANEBLIDZE

Dedicated to the memory of Academician Nodar Berikashuvili

Abstract. The notion of an Lo-bialgebra structure on a vector space is introduced. It is shown
that the rational homotopy groups 7+ (Q2XY) ® Q admit such a structure for the loop space QXY of
a suspension XY that characterizes Y up to the rational homotopy equivalence.

1. INTRODUCTION

The homotopy groups m.(Q2X) of the loops X on a topological space X have no non-zero co-
product. Nevertheless, it may have non-trivial higher order cooperations that form an L..-coalgebra
structure on 7, (2X). The Samelson product is compatible with this structure in a sense that leads
to the notion of an L..-bialgebra. Let H.(X) denote the homology with rational coefficients Q. It
admits an A.-coalgebra structure, more precisely, a C-coalgebra structure, dual to the A, -algebra
and Cuo-algebra structures on the cohomology H*(X) (cf. [4]). In [7], the notion of an A-bialgbera
is introduced on a vector space V and it is proved that the loop homology H,.(2X) admits such
a structure for a simply connected space X. The motivation of the paper is Theorem 12.2 in [7]
asserting that the Bott-Samelson bialgebra isomorphism T®H,(Y) ~ H,(QXY) extends to an iso-
morphism of A,.-bialgebras, where the A..-bialgebra structure on the left-hand side consists of the
tensor multiplication and of the A..-coalgebra structural cooperations extended from H,(Y'). There
is the (anti)symmetrization functor from the category of A.-algebras to the category of L.-algebras
(cf. [2,5,6]), and dually from the category of A..-coalgebras to the category of Lo.-coalgebras. Here, we
have to modify the above extension rule for the A..-coalgebra structure of H,.(Y") so that the obtained
Aqo-coalgebra structural cooperations of T H,(Y) preserve the primitives PT*H,(Y) C T*H,.(Y),
i.e., the rational homotopy groups 7.(Q2XY) ® Q. Then the L-bialgebra structure on 7, (2XY) @ Q
is obtained by the symmetrization of the A -coalgebra structure.

Furthermore, the L..-bialgebra structure on m,(QXY) ® Q characterizes Y up to the rational
homotopy equivalence.

The rational homotopy groups admit L.-algebra structures, but for 7, (QXY) ® Q, these structures
are degenerated and consist only of the Samelson binary product, since m,(QXY) ® Q is a free Lie
algebra for an arbitrary Y. In general, it may make sense to establish a compatibility relation between
an L..-algebra and an L..-coalgebra structures on a vector space V by using the symmetrization of
the aforementioned A..-bialgebra structure on V.

2. Aoo-COALGEBRAS

A differential graded coalgebra (dgc) (Ci,d, A : C. — C. ® C,) is non-negatively graded. It is
connected if Cy = Q. A dge may or may not be coassociative. The reduced coalgebra C, is defined by
C. = Csg, and PC C C denotes the vector subspace of the primitives, PC = {ce C| Ale) =
1®c+c®1} for 1 € Cy. We assume dge’s are connected and of finite types unless otherwise is stated
explicitly. The cellular chains (C.(K,),d, Ak) of the associahedron K,,, n > 2, is a non-connected,
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non-coassociative dgc with the coproduct
Ak : Cu(Ky) = Cu(Ky) ® Cu(Ky) (2.1)

defined as follows (cf. [8]). Recall the partial (Tamari) ordering on the vertices of K, defined by u < v
if there exists an oriented edge-path from u to v in K,,. Denote the minimal and maximal vertices of
a cell a of K,, by mina and max a respectively, and extend the partial ordering on the cells of K,, by
a < bif maxa < minb. Then

Ak (e) = Z sgn(a,b)a®b, axbCexe,
la|+[b]=le|
a<b

where e C K, is a cell of K,, in which the top cell is denoted by "2 for n > 2.
Given a dg vector space (C,d), an A-coalgebra structure

(Cyd,{tpp,: C = C®"},52) on C
is defined by a chain (operadic) map
¥ Cy(K,) — Hom(C,C®") with (e""2) =1,, a map of degree n — 2.

In particular, (C,d, A := 1) is a dgc. Denoting 1 := d, for each n > 1, the cooperations v, satisfy
the following quadratic relations in Hom(C, C®™) :

> (DT (S @ gy @ id ORI 04h, g = 0. (2.2)

0<k<n—1
0<i<n—k—1

A C-coalgebra (C,d, {¢,},>2) consists of the data similar to those of an A.-coalgebra, but spec-
ified by the condition that each dual operation v} : (C*)®" — C* vanishes on the decomposables

under the shuffle product on TC* = @ (C*)®*.
k>1

Given two A.-coalgebras (A, d, {1)7'},>2) and (B, d, {1#)B},>2), the definition of their tensor prod-
uct (A® B,dg,{¥,},>2) relies on the coproduct (2.1) as follows. Let the map
x : Hom(A4, A®") @ Hom(B, B®*") — Hom(A ® B, (A ® B)®")
be defined by the composition x := o7 5 o ¢, where
¢ : Hom(A, A®") @ Hom(B, B®") — Hom(A ® B, A®" @ B®")
is the standard map and
oy Hom(A® B, A®" @ B®") — Hom(A® B, (A ® B)*")

is induced by the standard permutation o, 2 : A®” ® B®" — (A ® B)®". For each r > 2, the tensor
cooperation

U, :A® B — (A® B)*"
satisfying (2.2) is given by
U, =xo (P @9P)oAg(e"?).
Let now C be a dg algebra (C,d,u) and an A.-coalgebra (C,d, {¢,}r>2) simultaneously, and
(C®C,dg,{¥,}r>2) be the tensor A-coalgebra. Then (C,d, i, {1, },>2) is an A,.-bialgebra if the

following diagram
v,

CeC -4 (CeO)®r
nd b u®r
c I cer

commutes, i.e., the following equation:

Yrop= :U'®r ov,, r>2, (23)
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holds. In small dimensions, equality (2.3) reads as
Yaop=(n®p)oxo (P @)
P30 p=p®ox o ((ha®@ 1)ty @13+ 13 ® (1 © Ya)ta)
a0 p=p®"0xo
(Y2 @1 1)(¢h2 © 1)thy @ ¢ha + ¢4 © (1@ 1@ ¢h) (1 @ ¢ha) 1)
+ (W3 @) ® (1@ Y2 @ 1)ths + (1 @ h3)1)a)
+ (1® 12 @ 1)1 @ (1 ® h3)tho
— (P2@10 )Y ® (10 1@ P)Ps).
2.3)

We rewrite equation ( as follows. Denote zy := u(x,y) and

(1@ @) (1@ BYr) == 2191 @+ @ Ty,
and for cells a, b of K, and for =,y € C,

Uo(ry) = Y sen(a,b)g(a)(x) - ¥(b)(y)- (2.4)
lal+|b|=r—2
a<b
In particular, (C,d, u, 1) is a bialgebra (Hopf algebra).~ Furthermore, given an As-coalgebra

(C,d,{A, : C — C®"},>3), consider the tensor algebra (T'*(C'),d, ). Use the freeness of T%(C), and
by induction on the tensor wordlength apply to formula (2.4) to extend each cooperation A, to the

cooperation 1, : T*(C) — T*(C)®", and, hence, to obtain the A..-bialgebra (T%(C),d, i1, {{) }r>2).
Remark 2.1. The coproduct Ak in (2.1) is not coassociative, so we fix the left most association by
iterative application of (2.4).

The homology H,(2X) admits an A.-bialgebra structure [7]. However, for a suspension X = XY,

this structure is specified by the fact that the Bott—Samelson isomorphism T*H.(Y) ~ H,(QXY)
induced by the inclusion ¥ — QXY extends to that of the A..-bialgebras. In particular, the
Aso-algebra substructure on H,(QXY) reduces to the loop (Pontryiagin) multiplication because
H,.(QXY) is a free algebra.

However, ¢, given by (2.4) does not preserve the primitives PT%(C) € T%(C), so we have to modify
(2.4) as follows. Given a dg coalgebra (C,d, A), bearing in mind the primitive subcoalgebra (PC,d, A)
as a degenerated A..-coalgebra, we consider two tensor A..-coalgebras:

(A ® B, {P\Pr}r22) = (PA, da, A) ® (B7 {¢§}r22)
and

(A® B, {¥},52) = (A, {¢ };22) ® (PB,dp, A).
In fact, U, and WX, referred to as primitive tensor cooperations, are of the form

Ar, =AY @4p, and U =4 @ AUTY,
respectively, where A"~ : PC' — PC®" denotes the (r — 1)-iteration of A = A! for r > 2.
Given an A.,-coalgebra (C,d, {A,},>2), for each r > 2, define the cooperation
o, : TYC) — T%(C)®"
with o.|c = A, as follows. Set C = A = B above, and form the sum
or|cez = Py, + \Iff on C®C. (2.5)

Then set A = C ® C with 2 = PV, |ce2 and form the sum

@T|C®3 = P\IJ,- + \I/;D on C®3,

and so on. Obviously, the cooperations g, are related to the product on T%(C) by the following
formula:
or@y)= > N® QIR QY+ Q- QTYD - Dy, (2.6)

1<i<r
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where g,() == 21 ® - - - @ z, (the Sweedler type notation). The following proposition is immediate.

Proposition 2.1. The cooperations g, given by (2.6) preserve the vector subspace PT(C) C T*(C)
o : PT(C) — PT(C)®".
Definition 2.1. An A..-coalgebra (C,d, {A,},>2) is primitive if the cooperations
0r : TYC) = TUC)®", r>2,

satisfy (2.2) and, hence, form an A.-coalgebra structure on (T%(C'),d).
Denoting [z,y] = zy — (—1)1*I¥ly2 and taking into account (2.6), we immediately obtain

Proposition 2.2. A primitive As-coalgebra (C,d,{A,},>2) induces the Ax-coalgebra structure on

(PT*(C),d) satisfying the equality
oyl = D n®-@E Yo Oyt 0,y e . (2.7)
1<i<r

When (C = PC,d, As) is a primitive dgc, compare the two induced A..-coalgebra structures

(Ta(é)’ d, {¢7’}T22) and (Ta(c)> d, {QT}TZQ) on Ta(c)
to deduce
299 = 02 and 3 = g, (2.8)
while on the decomposables B
Yr =or + ¢ for r>4,
where 1),. is the non-primitive summand component of 1, in (2.4). In particular, (2.8) implies

Proposition 2.3. An A -coalgebra of the form (C = PC,d,{Aq, A3,0,...}) is primitive.

3. L,,-COALGEBRAS

The notion of an L.-coalgebra is dual to that of an Lo.-algebra [5,6]. Let
S(n): C®™ — C®"
be a map defined for a1 ® - - - ® a,, € C®" by
S)ar® @ an) = 3 sen()e(0)agn) ©© g,

where sgn(o) is the standard sign of a permutation o, and (o) is determined by the Koszul sign rule.
Let S; ,—; C S, denote the subset of (i,n —i)-shuffles with S, o =1 € S,,, and let S(i,n—1i) : C®" —
C®" be a map defined for a; ® --- ® a,, € C®" by
S(i,n—10)(a1 ®--Ra,) = . E _sgn(a)s(a) Ug(1) @ @ Gg(n)-
An L,,-coalgebra is a dg vector space (L, d) together with the linear maps
{¢": L — L®},>; of degree r—2 with (' :=d

such that
(i) r=S@r)ol", r>1;
(i) 3 (=1)""=9S(i,n —i)o (£ @ 19"~ o f1Hn—7 =,
1<i<n
In particular, (L, ¢?) is a (graded) Lie coalgebra, when d = 0, or (L,d,¢?) is a dg Lie coalgebra,
when ¢35 = 0. Denote {"(z) := 21 ® - - @ z, (the Sweedler type notation), and ¢2(x,y) := [z, y].

Definition 3.1. Let L be a dg Lie algebra (L, d, {2) and an L-coalgebra (L, d, {¢"},>2) simultane-
ously. Then (L,d, l2,{{"}r>2) is an L..-bialgebra if for each r > 2,

Clayl= > 1@ @yl @ +518- 0 @,y @ ®a,. (3.1)
1<i<r

In particular, (L, fo,£?) is a (graded) Lie bialgebra, when d = 0, or (L, d, {2, £?) is a dg Lie bialgebra,
when /3 = 0 in a sense [1]. A motivated example of an L.,-bialgebra is given by Theorem 3.1 below.
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3.1. Symmetrization. Given an A-coalgebra (C,d,{¢, : C — C®"},>5), there is the associated
Loo-coalgebra (L,d,{¢" : L — L®"},>2), where (L,d) = (C,d), and for each r > 2, the structural
cooperation ¢" : L — L®" is obtained by the symmetrization

0r =¥ for ¥ = S(r) oy

Theorem 3.1. If the structural cooperations of an A -coalgebra (C,d, {A,},>2) restrict to A, : PC —
PC®" for all v and form a primitive A -coalgebra structure on PC, then the free Lie algebra
(L(PC),t3) admits a canonical L, -bialgebra structure (L(PC'),d, la, {{"},>2) with ¢* = 0.

Proof. First, recall that PT*(C)= L(PC) and the free Lie algebra is generated by PC. Applying to
Proposition 2.2, we obtain ¢" : L(PC) — L(PC)®" as {" = g¥™ on L(PC). Then (2.7) implies (3.1).
Since A, : PC — PC ® PC is cocommutative, £2 = 0. O

Denoting L := L(PC), equality (3.1) is equivalent to the following commutative diagram:

sym

Lol 25 (LeL)®r

L] ‘ N2
L 5 Ler,
where @, = Py, + UL in which the right-hand side is defined by (2.5) for C = L, ¢, = ¢,, and
by = > ¥l @0y @ u® ==L In fact, ¢ consists of only one non-trivial monomial because of
1<i<r
[1,-]=[-,1]=0for 1 € T*(C).

Let C = H,(Y). Then H,(Y) admits an A.-coalgebra structure, or more precisely, a Coo-coalgebra
structure [4]. Taking into account the Milnor-Moore theorem, we have

m(QXY)®@ Q = PH,.(QXY) = PT*(H.(Y)) = L(PH.(Y)),
and then Theorem 3.1 implies

Theorem 3.2. If the cooperations A, : H.(Y) — H.(Y)®" for r > 3 preserve the primitives
PH.(Y) and form a primitive Ao -coalgebra structure on PH,(Y'), then the rational homotopy groups
(. (XY RQ, £5), being the Lie algebra with the Samelson product €, admit a canonical Lo, -bialgebra
structure (. (QXY) @ Q, la, {0"}r>2) with 2 =0.

Corollary 3.1. For PH.(Y) = H.(Y) and (H.(Y),{A,},>2) to be primitive, the rational homotopy
groups T (QXY) @ Q admit a canonical Lo,-bialgebra structure.

In general, the rational homotopy groups admit an L.,-algebra structure with the higher order
operations ¢, rather than ¢ (cf. [2]), but in the case of 7. (QXY) ® Q, it reduces to the Samelson
bracket ¢o because (7, (Q2XY) ® Q,¥2) is a free Lie algebra. Furthermore, note that although the Lie
coalgebra structure of 7, (QXY)®Q is abelian, the higher order cooperations ", r > 3, on 7, (QXY)RQ
may be non-trivial (cf. Example 3.1 below).

Theorem 3.3. If there is an isomorphism m,(QXY) @ Q ~ . (QXY') ® Q of the Loo-bialgebras, then
Y and Y’ are equivalent in a rational homotopy category.

Proof. The isomorphism of the L..-bialgebras of the theorem implies the isomorphism
(H.(Y), {Ar}) = (H.(Y'), {AL})

of Co-coalgebras. On the other hand, the C',-coalgebra structure of H,(Y) uniquely characterizes Y’
in the rational homotopy category [4], so the proof of the theorem follows. O

Example 3.1. 1. Let a space Y = S? V S? V 52 Uy €° be obtained from the wedge of three 2-spheres
by attaching the 5-cell € via a map f : S* — S? vV S? vV S2, being a representative of the element
i1, [i2,i3]] € ma(S?V 5?2V S§?), the iterated Whitehead product, where i; : 52 — S% Vv 2V 52 denotes
the standard inclusion at the j"-component j = 1,2,3. Then for H := H,(Y), we have Hy = Q,
H, =09 Q& Q and H; = Q. Although PH = H, the C,,-coalgebra structure on H is non-trivial:
namely, there is a representative Az : H — H® H ® H with Az(ws) = 22 @y2 ® 29 for (22, ya, 22) € Ha
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and ws € Hy (compare [3, Example 6.6]). In particular, the C-coalgebra (H, As) is primitive. We
have H,(Y) C 7,.(2XY) ® Q with identifications H3(Y) = m(QEY)®@Q and H5(Y) = m5(Q2Y) @ Q.
Consequently, for 2 = AY™ on H, the cooperation

£rms(QXY)@Q = (m(QZY) ® Q) ® (m2(2XY) ® Q) @ (m2(QTY) ® Q)
defined for ws € m5(QXY) @ Q by
Cws) =12 @Y ®20 — Y2 T2 D22+ Y2 D 20 QT —Ta ® 22 D Yo + 20 @ T @ Yo — 22 @ Yo @ T2,

is non-trivial.

2. Let Y/ = S?2 Vv S2 Vv S2V S5 Since Y/ is a suspension, the Cy-coalgebra structure on H,(Y”)
is degenerated. Hence H.(Y) and H,.(Y”’) are isomorphic as coalgebras, but not as Cuo-coalgebras.
Consequently, m,(QXY) ® Q and 7. (QXY’) ® Q are isomorphic as Lie algebras, but not as Leo-
bialgebras. In fact, there are only two rational homotopy types determined by these spaces in question.

Finally, remark that the above method applies to introduce an L..-bialgebra structure on the
homotopy groups m,(Q2XY) whenever the Hurewitz homomorphism 7.(QXY) — H.(QXY;Z) is an
inclusion.
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