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BERIKASHVILI’S FUNCTOR D FOR HOMOTOPY G-ALGEBRAS AND

DEFORMATION OF ASSOCIATIVE ALGEBRAS

TORNIKE KADEISHVILI

Dedicated to the memory of Nodar Berikashvili

Abstract. In [16], we described a generalization of Berikashvili’s equivalence of Edgar Brown twist-

ing cochains da = a ⌣ a and the corresponding functor D for A∞-algebras.
In the present work dedicated to the memory of Nodar Berikashvili, we are going to present

a similar generalization, but now for a different type of algebra, namely, for hGa, the homotopy

Gerstenhaber algebra. We use this version to describe the Gerstenhaber deformations of associative
algebras.

1. Brown’s Twisting Cochains and Berikashvili’s Functor D

Let (A∗, d : A∗ → A∗+1, · : A∗ ⊗ A∗ → A∗) be a dg-algebra with differential d and multiplication
a · b. A twisting element (Ed. Brown [5]) is defined as a ∈ A1, da = a · a.

Later, N. Berikashvili [4] introduced the notion of perturbation of twisting elements for an invertible
element g ∈ A0, the combination a′ = g · a · g−1 + dg · g−1 is likewise a twisting element. Actually,
this is an action of the group of units G = {g ∈ A0, ∃g−1} on the set of all twisting elements of A.
So, this action g ∗ a = g · a · g−1 + dg · g−1 induces the equivalence relation a′ ∼ a on the set of all
twisting elements Tw(A). The factor set Tw(A)/ ∼ is Berikashvili’s functor D : DGAlg→ Sets.

The possibility of perturbing twisting elements has various applications in different directions.
Suppose (M,dM : M → M,A ⊗M → M) is a differential graded A-module. Any twisting element
a ∈ A induces the perturbed differential da : M → M , da(m) = dM (m) + a ·m: Brown’s condition
da = a·a guarantees that dada = 0, and this twisted dg-module (M,da) is used for various calculations.
If a′ ∼ a, then fg : (M,da) → (M,da′), given by fg(m) = g ·m, is an isomorphism of dg-A-modules:
Berikashvili’s condition a′ = g · a · g−1 + dg · g−1 guarantees that fg is a chain map which is an
isomorphism since g ∈ A0 is invertible.

These notions have many applications in the homology theory of fibrations, as well as in differential
geometry and physics. Let us briefly touch upon this subject-matter. A connection a ∈ A1 determines
the curvature Ω = da − a · a, so a twisting element is a flat (Ω = 0) connection. Take an invertible
g ∈ A0 and perturb the connection a as a′ = g · a · g−1 + dg · g−1 (the gauge transformation). Then it
is easy to see that Ω′ = g · Ω · g−1.

In the non-geometrical (d = 0) situation, a twisting element is nilpotent a · a = 0 and the pertur-
bation means a similarity a′ = g · a · g−1.

As we have mentioned above, in the previous article [16], we generalized the notions of the Brown
twisting elements and Berikashvili perturbations from the case of dg-algebras to the case of Stasheff
A∞-algebras.

In this article, our aim is to modify the notions of twisting element and perturbation for the
Steenrod ⌣1 product instead of a · b = a ⌣ b. It is easy to formulate the notion of ⌣1-twisting
element, this is, a ∈ A2, da = a ⌣1 a. But since ⌣1 is not associative and has some more sophisti-
cated properties than ⌣, the concept of perturbing such twisting elements requires some additional
structure, namely, the structure of a homotopy G-algebra which is, in fact, a dg-algebra with “good”
a ⌣1 b product and also some subsequent higher operations a ⌣1 {b1, . . . , bn}.
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The generalization of the notion of a twisting element to the case of ⌣1 product is aimed at some
particular problems, namely, ⌣1-twisting elements control Stasheff’s minimal A(∞)-algebras, on the
one hand (see, [15]), and Gerstenhaber’s deformations of algebras, on the other hand (see, below).

2. Homotopy G-algebras

A homotopy G-algebra (hGa, in short) is a dg-algebra with a “good” ⌣1 product. The general
notion was introduced by Gerstenhaber and Voronov in [20] (see also [19]).

Specific objects appeared earlier, in particular, the hGa structure appeared on the cochain complex
of 1-reduced simplicial set C∗(X) ( [2]). This hGa structure is a consequence of the dualization of the
diagonal constructed on the cobar construction ΩC∗(X) by Baues in [2]. The starting operation E1,1

is the classical Steenrod ⌣1 product.
The second example is the complex of Hochschild cochains C∗(U,U) of the associative algebra U .

The operations E1,k here were defined in [12] with the purpose to describe A(∞)-algebras in terms of
the Hochschild cochains, although the properties of those operations which were used as defining ones
for the notion of homotopy G-algebra in [20] did not appear there. These operations were defined also
in [9]. Again, the starting operation E1,1 is the classical Gerstenhaber circle product which is a sort
of the ⌣1-product.

These examples will be presented in this section later.
Note that here and in the sequel, for the sake of simplicity, we ignore the signs (work in Z2!).

Definition 2.1. A homotopy G-algebra (hGa, in short) is defined as a dg-algebra (A, d, ·) with the
given sequence of operations

E1,k : A⊗ (A⊗k)→ A, k = 0, 1, 2, 3, . . .

(the value of the operation E1,k on a⊗ b1⊗· · ·⊗ bk ∈ A⊗ (A⊗· · ·⊗A) we write as E1,k(a; b1, . . . , bk))
which satisfies the conditions degE1,k = k, E1,0 = id and

dE1,k(a; b1, . . . , bk) + E1,k(da; b1, . . . , bk) +
∑
i

E1,k(a; b1, . . . , dbi, . . . , bk)

= b1 · E1,k−1(a; b2, . . . , bk) + E1,k−1(a; b1, . . . , bk−1) · bk

+
∑
i

E1,k−1(a; b1, . . . , bi · bi+1, . . . , bk), (2.1)

E1,k(a1 · a2; b1, . . . , bk) = a1 · E1,k(a2; b1, . . . , bk) + E1,k(a1; b1, . . . , bk) · a2

+

k−1∑
p=1

E1,p(a1; b1, . . . , bp) · E1,m−p(a2; bp+1, . . . , bk), (2.2)

E1,n(E1,m(a; b1, . . . , bm); c1, . . . , cn)

=
∑

0≤i1≤j1≤···≤im≤jm≤n

E1,n−(j1+···+jm)+(i1+···+im)+m(a; c1, . . . , ci1 , E1,j1−i1(b1; ci1+1, . . . , cj1),

cj1+1, . . . , ci2 , E1,j2−i2(b2; ci2+1, . . . , cj2), cj2+1, . . . ,

cim , E1,jm−im(bm; cim+1, . . . , cjm), cjm+1, . . . , cn). (2.3)

The meanings of these conditions will be explained later. Here, we present these conditions in low
dimensions.

Condition (2.1) for k = 1 looks as

dE1,1(a; b) + E1,1(da; b) + E1,1(a; db) = a · b− b · a.

So, the operation E1,1 is a sort of the Steenrod ⌣1 product: it is the chain homotopy which measures
the noncommutativity of A, the above condition coincides with the classical d(a ⌣1 b)+da ⌣1 b+a ⌣1

db = a · b− b · a. Below, we denote a ⌣1 b = E1,1(a; b). The higher operations E1,k in [12] are denoted



BERIKASHVILI’S FUNCTOR D FOR HOMOTOPY G-ALGEBRAS AND DEFORMATIONS 479

as E1,k(a; b1, . . . , bk) = a ⌣1 {b1, . . . , bk} and in [9] as E1,k(a; b1, . . . , bk) = a{b1, . . . , bk}. Likely, that
is why the hGa operations E1,k are sometimes called the Getzler-Kadeishvili brace operations.

Condition (2.2) for k = 1 looks as

(a · b)⌣1 c+ a · (b ⌣1 c) + (a ⌣1 c) · b = 0, (2.4)

which implies that the operation E1,1 =⌣1 satisfies the left Hirsch formula.
Condition (2.1) for k = 2 has the form

a ⌣1 (b · c) + (a ⌣1 b) · c+ b · (a ⌣1 c)

= dE1,2(a; b, c) + E1,2(da; b, c) + E1,2(a; db, c) + E1,2(a; b, dc), (2.5)

implying that this ⌣1 satisfies the right Hirsch formula just up to the homotopy, and an appropriate
chain homotopy is the operation E1,2.

Condition (2.3) for n = m = 2 is written as

(a ⌣1 b)⌣1 c+ a ⌣1 (b ⌣1 c) = E1,2(a; b, c) + E1,2(a; c, b), (2.6)

this means that the same operation E1,2 measures also the deviation from the associativity of the
operation E1,1 =⌣1.

From this condition follows

(a ⌣1 b)⌣1 c+ a ⌣1 (b ⌣1 c) = (a ⌣1 c)⌣1 b+ a ⌣1 (c ⌣1 b), (2.7)

which is the pre-Lie condition ensuring that the commutator [a, b] = a ⌣1 b − b ⌣1 a satisfies the
Jacobi identity, so produces a Lie algebra even if the ⌣1 is not strictly associative. That is why
condition (2.7), introduced by Gerstenhaber, is called a pre-Lie condition.

2.1. Three Aspects of hGa. 1. hGa Structure and Multiplication in the Bar Construction.
For a dga (A, d, ·), its bar construction BA is a dg-coalgebra cogenerated by its desuspension BA =
T c(A) =

∑∞
i=0A ⊗ · · · (i − times) · · · ⊗ A with grading dim(a1 ⊗ · · · ⊗ an) =

∑
i dim ai − n. This

is a cofree object in the category of graded coalgebras, and this implies that a multiplication µE :
BA⊗BA→ BA, which first of all must be a coalgebra map, is induced by a homomorphism E∗,∗,

A ←− T c(A)
↖ E∗,∗ ↑ µE

T c(A)⊗ T c(A),

consisting, in fact, of the components E01 = id, E10 = id and

E11

E12 E21

E13 E22 E31

14 E23 E32 E41

. . . . . . . . . . . . . . . . . . . . . ,

(2.8)

where Epq : A⊗p ⊗ A⊗p → A. In order µE to have unit, be associative and be a chain map, this
collection must satisfy certain conditions, such objects (A, d, ·, {Epq}) is a particular case of the so-
called B∞ algebra of Getzler [9].

But for the hGa (A, d, ·, {E1,k}), it turns out that Ep,q>1 = 0, so the above triangle (2.8) is
degenerated into the line of operations

E11

E12 0
E13 0 0

E14 0 0 0
. . . . . . . . . . . . . . . . . . . . . ,

(2.9)

and the defining conditions of hGa [2.1] and [2.2] guarantee that E∗,∗ : BA ⊗ BA → A is a classical
twisting cochain, which in turn guarantees that µE∗,∗ : BA⊗BA→ BA is a chain map, and condition
[2.3] induces that µE∗,∗ is associative.
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Thus the hGa structure {E1,k} defines on the bar a construction BA of a dga (A, d, ·) is a multi-
plication µE∗,∗ turning the bar construction BA into a dg-bialgebra (BA, dBA,∆BA, µE∗,∗). In fact,
this means that the hGa is a B∞-algebra in the sense of Getzler [9].

Note that if (A, d, ·) is a commutative dga, then its bar construction BA is a dg-bialgebra with
respect to the shuffle product. This situation corresponds to the hGa structure (A, d, ·, {E1,k}) with
all E1,k = 0 for all k ≥ 1.

2. Gerstenhaber Algebra Structure in Homology of the hGa.
A Gerstenhaber algebra is defined as a graded commutative algebra (H, ·) equipped additionally

with a Lie bracket of degree -1 [ , ] : Hp ⊗ Hq → Hp+q−1 satisfying the Leibniz rule [a, b · c] =
b · [a, c] + [a, b] · c.

For the hGa (A, d, ·, {E1,k}), the operation E1,1 =⌣1 is not associative, but as is mentioned above,
from condition (2.6) follows the so-called “pre-Lie condition” (2.7) which guarantees that the commu-
tator [a, b] = a ⌣1 b− b ⌣1 a satisfies the Jacobi identity. Thus on the desuspension s−1A, it forms
a structure of the dg-Lie algebra. So, it induces the Lie bracket on the homology H(A). Besides,
conditions (2.4) and (2.7) guarantee that the Lie bracket induced on H(A) satisfies the Leibniz rule.
Thus H(A) is a Gerstenhaber algebra.

3. hGa as a “Strong Homotopy Commutative” dga. There is the third aspect of the
hGa [13]: it measures the noncommutativity of A. The Steenrod ⌣1 product is the classical tool
which measures the noncommutativity of the dg-algebra: d(a ⌣1 b)−da ⌣1 b−a ⌣1 db = a · b− b ·a.
The existence of ⌣1 in a dga (A, d, ·) guarantees the commutativity of H(A), but a ⌣1 product
satisfying just this condition is too poor for the most of applications, whereas a ⌣1 product, which is
a starting operation of some hGa structure, is much more powerful: it satisfies the left Hirsch formula
(2.4) up to the homotopy right Hirsch formula (2.5), pre-Lie condition (2.7), etc.

2.2. Three Examples of hGa. Here, we present three main examples of homotopy G-algebras.
1. Cochain complex of 1-reduced simplicial set C∗(X). In [2] (1981), Baues constructed

a diagonal on the cobar construction ΩC∗(X). Dualization of this structure gives multiplication µE

on the bar construction BC∗(X) and this multiplication is induced not by triangle (2.8), but by a
line (2.9) of operations, that is, by a certain hGa structure (C∗(X), δ,⌣, {E1,k}), so there appears
the corresponding dg-bialgebra (BC∗(X), dB ,∆B , µE). The starting operation E1,1 is the classical
Steenrod ⌣1 product.

This multiplication has the following application: Homologies of just bar construction BC∗(X) give
cohomology modules of the loop space H∗(ΩX), but this additional hGa structure {E1,k} produces
the multiplication µE that describes the multiplicative structure on the cohomology of loop space
H∗(ΩX) = H((BC∗(X), dB ,∆B , µE)). So, it allows to produce the second bar construction BBC∗(X)
which determines cohomology modules of the second loop space H∗(Ω2X).
2. Hochschild Cochain Complex as the hGa. Let A be an algebra and M be a two-sided
module on A. The Hochschild cochain complex C∗(A;M) is defined as Cn(A;M) = Hom(A⊗n

,M)
with differential δ : Cn−1(A;M)→ Cn(A;M) given by

δf(a1 ⊗ · · · ⊗ an) =a1 · f(a2 ⊗ · · · ⊗ an) + f(a1 ⊗ · · · ⊗ an−1) · an

+

n−1∑
k=1

f(a1 ⊗ · · · ⊗ ak−1 ⊗ ak · ak+1 ⊗ · · · ⊗ an).

We focus on the caseM = A. The Hochschild complex C∗(A;A) becomes a dg-algebra with respect
to the ⌣ product defined in [7] by

f ⌣ g(a1 ⊗ · · · ⊗ an+m) = f(a1 ⊗ · · · ⊗ an) · g(an+1 ⊗ · · · ⊗ an+m).

In [12] (see also [9, 20]), the operations

E1,i : C
n(A;A)⊗ Cn1(A;A)⊗ · · · ⊗ Cni(A;A)→ Cn+n1+···+ni−i(A;A)
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given by

E1,i(f ; g1, . . . , gi)(a1 ⊗ · · · ⊗ an+n1+···+ni−i)

=
∑

k1,...,ki

f(a1 ⊗ · · · ⊗ ak1
⊗ g1(ak1+1 ⊗ · · · ⊗ ak1+n1

)⊗ ak1+n1+1

⊗ · · · ⊗ ak2 ⊗ g2(ak2+1 ⊗ · · · ⊗ ak2+n2)⊗ ak2+n2+1

⊗ · · · ⊗ aki
⊗ gi(aki+1 ⊗ · · · ⊗ aki+ni

)⊗ aki+ni+1 ⊗ · · · ⊗ an+n1+···+ni−i)

are defined. The straightforward verification shows that the collection {E1,k} satisfies conditions (2.1),
(2.2) and (2.3) (in fact, it seems that the properties of these operations served as a source of these
conditions), thus it forms on the Hochschild complex C∗(A;A) a structure of homotopy G-algebra.

We remark here that for any f ∈ Cn(A,A), we have

E1,k(f ; g1, . . . , gk) = 0 for k > n,

since there will be no space to substitute in f more than n g-s.
We note that the operation E1,1 coincides with the circle product defined by Gerstenhaber in [7],

and the the operation E1,2 satisfying (2.5) and (2.6) is also defined therein.
One of the interesting applications of this hGa structure on the Hochschild complex is Deligne’s

Conjecture which states that the little square operad acts on the Hochschild cochain complex C∗(A,A)
of an associative algebra.

This hGa structure on C∗(A,A) constructed in [12] and [9] was used for proving Deligne’s conjecture
in [17]. The elements of surjection operad E1,k = (1, 2, 1, . . . , 1, k + 1, 1) together with the element
(1, 2) generate the suboperad F2χ which is equivalent to the little square operad [3,17]. Some authors
call these hGa operations on the Hochschild complex as the Getzler-Kadeishvili’s braces.
3. The cobar construction of adg bialgebra ([14]). By definition, the cobar construction ΩC
of a dg coalgebra (C, d : C → C,∆ : C → C ⊗ C) is a dga. If C is additionally equipped with a
multiplication µ : C ⊗ C → C turning it into a dg-bialgebra, there arises the question: how this
structure reflects on the cobar construction ΩC? In [14], it is shown that µ gives rise to the hGa
structure on ΩC. And again, the starting operation E1,1 is classical: this is Adams’s ⌣1-product
defined for ΩC in [1] by using the multiplication of C.

3. Berikashvili’s Functor D for hGa

In this section, we present an analogue of the notion of Brown’s twisting element (see Section 1)
in a homotopy G-algebra replacing in the defining equation da = a · a the dot product by the ⌣1

product, i.e., da = a ⌣1 a. An appropriate notion of the equivalence and the corresponding functor
D will be introduced, as well.

We need a version of the bigraded homotopy G-algebra (C∗,∗, d, ·, {E1,k}), that is, a bigraded alge-
bra (C∗,∗, ·), Cm,n · Cp,q ⊂ Cm+p,n+q with the differential (derivation) d(Cm,n) ⊂ Cm+1,n equipped
with a sequence of operations

E1,k : Cm,n ⊗ Cp1,q1 ⊗ · · · ⊗ Cpk,qk → Cm+p1+···+pk−k,n+q1+···+qk ,

so, the total complex (the total degree of Cp,q is p+ q) is the hGa.
Bellow, we introduce two versions of the notion of twisting element in a bigraded homotopy

G-algebra. Although it is possible to reduce them to each other by changing gradings, we prefer
to consider them separately in order to emphasize different areas of their applications. The first
one controls Stasheff’s A∞-deformation of graded algebras and the second controls Gerstenhaber’s
deformation of associative algebras (see the next sections).

3.1. Twisting Elements and Functor D in a Bigraded Homotopy G-algebra (Version 1).
This version was used for classification of minimal A∞ algebras (see [12]).

A twisting element in C∗,∗ we define as

m = m3 +m4 + · · ·+mp + · · · , mp ∈ Cp,2−p
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satisfying the condition dm = E1,1(m;m), or changing the notation, dm = m ⌣1 m. This condition
can be rewritten in terms of the components components as

dmp =

p−1∑
i=3

mi ⌣1 mp−i+2. (3.1)

Particularly,

dm3 = 0, dm4 = m3 ⌣1 m3, dm5 = m3 ⌣1 m4 +m4 ⌣1 m3, . . . .

The set of all twisting elements we denote as Tw(C∗,∗).
Consider the set G = {g = g2 + g3 + · · ·+ gp + · · · ; gp ∈ Cp,1−p} and introduce on G the following

operation:

g ∗ g = g + g +

∞∑
k=1

E1,k(g; g, . . . , g),

particularly,

(g ∗ g)2 =g2 + g2;

(g ∗ g)3 =g3 + g3 + g2 ⌣1 g2;

(g ∗ g)4 =g4 + g4 + g2 ⌣1 g3 + g3 ⌣1 g2 + E1,2(g
2; g2, g2).

Using the defining conditions of the hGa (2.1), (2.2), (2.3), it is possible to check that the above
operation is associative, has the unit e = 0 + 0 + · · · and the opposite g−1 can be solved inductively
from the equation g ∗ g−1 = e. Thus G is a group.

This G acts on the set Tw(C∗,∗) by the rule g ∗m = m, where

m = m+ dg + g · g + E1,1(g;m) +

∞∑
k=1

E1,k(m; g, . . . , g), (3.2)

particularly,

m3 =m3 + dg2;

m4 =m4 + dg3 + g2 · g2 + g2 ⌣1 m3 +m3 ⌣1 g2;

m5 =m5 + dg4 + g2 · g3 + g3 · g2 + g2 ⌣1 m4 + g3 ⌣1 m3+

m3 ⌣1 g3 +m4 ⌣1 g2 + E1,2(m3; g2, g2).

Despite the fact that in the right-hand side of formula (3.2) participates m, but of less dimension
than in the left-hand side m, this action is well defined: the components of m can be solved from this
equation inductively. It is possible to check that the resulting m is a twisting element. By D(C∗,∗)
we denote the set of orbits Tw(C∗,∗)/G.
Perturbation.This action allows us to perturb twisting elements in the following sense. Let gn ∈
Cn,1−n be an arbitrary element, then for g = 0+ · · ·+0+ gn+0+ · · · the twisting element m = g ∗m
has the form

m = m3 + · · ·+mn + (mn+1 + dgn) +mn+2 +mn+3 + · · · ,
so the components m3, . . . ,mn remain unchanged and mn+1 = mn+1 + dgn.

The perturbations allow us to consider the following two problems: integrability and rigidity
(Gerstenhaber’s terminology and the following two theorems are analogous to his results from the
theory of deformations (see the next section)).
Integrability. Let us first mention that for a twisting element m =

∑∞
k=3mk, the first component

m3 ∈ C3,−1 is a cycle and any perturbation does not change its homology class [m3] ∈ H3,−1(C∗,∗).
Thus we have the correct map ϕ : D(C∗,∗)→ H3,−1(C∗,∗).

An integation of a homology class α ∈ H3,−1(C∗,∗) is defined as a twisting element m = m3 +
m4 + · · · such that [m3] = α. Thus α is integrable if it belongs to the image of ϕ. The obstructions
for integrability lay in the homologies Hk,3−k(C∗,∗), k ≥ 5.

Theorem 3.1. If Hk,3−k(C∗,∗) = 0 for k ≥ 5, then each α ∈ H3,−1(C∗,∗) is integrable.
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Proof. Let m3 ∈ C3,−1 be a cycle from α. Using the defining conditions of hGa, it is easy to see that
m3 ⌣1 m3 is a cycle in C5,−2 and, since H5,−2(C∗,∗) = 0, there existsm4 such that dm4 = m3 ⌣1 m3.
Again, using the property (2.6), it is possible to see that m3 ⌣1 m4 +m4 ⌣1 m3 is a cycle in C6,−1

and, since H6,−1(C∗,∗) = 0, there exists m5 such that dm5 = m3 ⌣1 m4 +m4 ⌣1 m3. Continuation
of this inductive process completes the proof. □

Rigidity. A twisting element m = m3 +m4 + · · ·+mp + · · · is called trivial if it is equivalent to 0.
A bigraded hGa C∗,∗ is rigid if each twisting element is trivial, i.e., if D(C∗,∗) = {0}. The obstructions
to triviality of a twisting element lay in the homologies Hk,2−k(C∗,∗), k ≥ 3.

Theorem 3.2. If Hk,2−k(C∗,∗) = 0 for k ≥ 3, then each m = m3 +m4 + · · · is trivial, thus the hGa
C∗,∗ is rigid.

Proof. For a twisting element m = m3 +m4 + · · · +mp + · · · , the first component m3 ∈ C3,−1 is a
cycle and since H3,−1(C∗,∗) = 0, we can choose g2 ∈ C2,−1 such that dg2 = m3. Perturbing m by
g = g2 + 0 + 0 + · · · , we kill the first component m3, i.e., we get the twisting element m ∼ m, which
looks as m = 0 +m4 +m5 + · · · . Now, owing to (3.1), the component m4 becomes a cycle, and its
homology class is the second obstruction, which is also zero as H4,−2(C∗,∗) = 0, we can kill m4 as
well, and so, we obtain m = 0+0+m5+ · · · . Now, m5 becomes a cycle, this completes the proof. □

Application: Classification of minimal A∞ algebras. This application is described in [15]. For
a graded algebra (H,µ), let us take the hGa from subsection (2.2), the Hochschild cochain complex of
(H,µ) which in this case is a bigraded hGa. For each⌣1-twisting element, m = m3+m4+, · · · ,m2 =
µ, dm = m ⌣1 m, the object (H, {m1 = 0,m2 = µ,m3,m4, · · · }) is a minimal A∞ algebra extending
(A∞ deformation of ) (H,µ). Besides, for an equivalent twisting elementm′ = g⋆m, the corresponding
A∞ algebras are isomorphic.

So, we obtain the following

Theorem 3.3. The set of isomorphism classes of all A(∞) deformations of a graded algebra (H,µ)
is bijective to the set of equivalence classes of twisting elements D(C∗,∗(H,µ)).

Moreover, from the rigidity Theorem 3.2, we get the following

Theorem 3.4. If for a graded algebra (H,µ) its Hochschild cohomology modules HHn,2−n(H,H) are
trivial for n ≥ 3, then (H,µ) is intrinsically formal.

3.2. Twisting Elements in a Bigraded Homotopy G-algebra (Version 2). This version will
be used for the Gerstenhaber deformations of associative algebras (see bellow). It can be obtained

from the previous Version 1 by changing grading: take new bigraded module C
p,q

= Cp+q−2,2−q. The

same operations turn C
∗,∗

into the bigraded hGa.
A twisting element from version 1, m = m3 + m4 + · · · , mn ∈ Cn,2−n, in this case looks as

b = b1 + b2 + · · · + bn + · · · bn ∈ C
2,n

, where bk is the analogue of mk+2 and satisfies the condition

db = b ⌣1 b, or equivalently, dbn =
∑n−1

i=2 bi ⌣1 bn−i.
Particularly, db1 = 0, db2 = b1 ⌣1 b1, db3 = b1 ⌣1 b2 + b2 ⌣1 b1, . . . . The set of all twisting

elements we denote by Tw(C
∗,∗

).

Here, we have the group G′ = {g = g1 + g2 + · · · + gp + · · · ; gp ∈ C
1,p} with the operation

g′ ∗ g = g′ + g +
∑∞

k=1E1,k(g
′; g, . . . , g).

This group acts on the set Tw(C
∗,∗

) by the rule g ∗ b = b′, where

b′ = b+ δg + g ⌣ g + g ⌣1 b+ E1,1(b
′; g) +

∞∑
k=1

E1,k(b
′; g, . . . , g). (3.3)

Here, we are going to work with the hGa structure of Hochschil cochain complex of an associative
algebra (A, ·) described above in Subsection 2.2:

(C∗(A,A), δ,⌣, {E1,k}), Cn(A,A) = Hom(A⊗n

, A).
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We remark here that for any f ∈ Cn(A,A), we have

E1,k(f ; g1, . . . , gk) = 0 for k > n, (3.4)

since there will be no space to substitute in f more than n g′-s.
For one more step to work with our Version 2 we need a bigraded gHa. For our (A, ·) algebra over

a field k, let k[[t]] be the algebra of formal power series in variable t and A[[t]] = A ⊗ k[[t]] be the
algebra of formal power series with coefficients from A.

As the Hochschild complex C∗(A,A) is the hGa, then the tensor product C
∗,∗

= C∗(A,A)⊗ k[[t]]
is a bigraded hGa with the following structure:

C
p,q

= Cp(A,A) · tq, δ(f · tq) = δf · tq,
f · tp ⌣ g · tq = (f ⌣ g) · tp+q,

E1,k(f · tp; g1 · tq1 , . . . , gk · tqk) = E1,k(f ; g1, . . . , gk) · tp+q1+···+qk ,

here we use the notation f ⊗ tp = f · tp.
Now, since g ∈ C1,∗

(A,A) and b′ ∈ C2,∗
(A,A)), we have E1,k(b

′; g, . . . , g) = 0 for k ≥ 3 (see 3.4).
So, the defining equation of action (3.3) looks as

b′ = b+ δg + g ⌣ g + g ⌣1 b+ E1,1(b
′; g) + E1,2(b

′; g, g). (3.5)

Particularly, 
b′1 = b1 + dg1;

b′2 = b2 + dg2 + g1 · g1 + g1 ⌣1 b1 + b′1 ⌣1 g1;

b′3 = b3 + dg3 + g1 · g2 + g2 · g1 + g1 ⌣1 b2 + g2 ⌣1 b1+

b′1 ⌣1 g3 + b′2 ⌣1 g2 + E1,2(b
′
1; g1, g1).

Note that as in Version 1, the components of b′ can be solved from this equation inductively. It is

possible to check that the resulting b′ is a twisting element. By D(C
∗,∗

) we denote the set of orbits

Tw(C
∗,∗

)/G.

This group action allows us to perturb twisting elements in the following sense. Let gn ∈ C
1,n

be
an arbitrary element, then for g = 0 + · · ·+ 0 + gn + 0 + · · · , the twisting element b′ = g ∗ b looks as

b′ = b1 + · · ·+ bn + (bn+1 + dgn) + b′n+2 + b′n+3 + · · · , (3.6)

so, the components b1, . . . , bn remain unchanged and b′n+1 = bn+1 + dgn.
As in Version 1, the perturbations allow us to consider the following two problems, integrability

and rigidity (Gerstenhaber’s terminology from deformations of algebras) in this Vertion 2, as well.

Integrability. The first component b1 ∈ C
2,1

of a twisting element b =
∑
bi is a cycle and any

perturbation does not change its homology class α = [b1] ∈ H2,1(C
∗,∗

). Thus we have a correct map

ψ : D′(C
∗,∗

)→ H2,1(C
∗,∗

).

An integration of a homology class α ∈ H2,1(C
∗,∗

) is defined as a twisting element b = b1+ b2+ · · ·
such that [b1] = α. Thus α is integrable if α ∈ Im ψ.

The argument similar to above from Version 1 shows that the obstructions to the integrability lay

in homologies H2,n(C
∗,∗

), n ≥ 2, and we have the following analogue of Theorem 3.1:

Theorem 3.5. If H3,n(C
∗,∗

) = 0 for n ≥ 2, then each α ∈ H2,1(C
∗,∗

) is integrable.

Proof. Let b1 ∈ C
2,1

be a cycle from α. Using the defining conditions of hGa, it is easy to see that

b1 ⌣1 b1 is a cycle in C
3,2

, and since H3,2(C
∗,∗

) = 0, there exists b2 such that db2 = b1 ⌣1 b1. Again,

using the property (2.6), it is possible to see that b1 ⌣1 b2 + b2 ⌣1 b1 is a cycle in C
3,3

, and since

H3,3(C
∗,∗

) = 0, there exists b3 such that db3 = b1 ⌣1 b2 + b2 ⌣1 b1. Continuation of this inductive
process completes the proof. □

Rigidity. A twisting element b = b1 + b2 + · · · is called trivial if it is equivalent to 0. A bigraded

hGa C
∗,∗

is rigid if each twisting element is trivial, i.e., if D′(C
∗,∗

) = {0}. The obstructions to the
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triviality of a twisting element lay in the homologies H2,n(C
∗,∗

), n ≥ 1. So, we have the following
analogue of Theorem 3.2 also in Version 2:

Theorem 3.6. If for a bigraded hGa C
∗,∗

we have H2,n(C
∗,∗

) = 0, n ≥ 1, then D′(C
∗,∗

) = 0, thus

C
∗,∗

is rigid.

Proof. For a twisting element b = b1 + b2 + · · ·+ bp + · · · , the first component b1 ∈ C
2,1

is a cycle and

since H2,1(C
∗,∗

) = 0, we can choose g1 ∈ C
1,1

such that dg1 = b1. Perturbing b in the sense of (3.6)
by g = g1 + 0 + 0 + · · · , we kill the first component b1, i.e., we get the twisting element b ∼ b, which

looks as b = 0+ b2 + b3 + · · · . Now, owing to (3.1), the component b2 ∈ C
2,2

becomes a cycle and its

homology class is the second obstruction, which also is zero since H2,2(C
∗,∗

) = 0, so killing likewise

b2, we obtain b = 0 + 0 + b3 + b4 + · · · . Now, b3 becomes a cycle, etc. This completes the proof. □

4. Interpretation of Deformations in Terms of Twisting Elements in hGa

Here, we present the interpretation of Gerstenhaber’s deformations of associative algebras in terms
of twisting elements of Version 2 type in the hGa of Hochschild cochains.
Deformation of Algebras. Let (A, ·) be an algebra over a field k, k[[t]] be the algebra of formal
power series in variable t and A[[t]] = A⊗ k[[t]] be the algebra of formal power series with coefficients
from A.

Gerstenhaber’s deformation of an algebra (A, ·) is defined as a sequence of homomorphisms

Bi : A⊗A→ A, i = 0, 1, 2, . . . ; B0(a⊗ b) = a · b

satisfying the associativity condition: for an arbitrary n ≥ 0,

n∑
i=0

Bi(a⊗Bn−i(b⊗ c)) =
n∑

i=0

Bi(Bn−i(a⊗ b)⊗ c). (4.1)

Let us denote B =
∑

i≥0Bi.
Such a sequence determines the star product

a ⋆B b = a · b+B1(a⊗ b)t+B2(a⊗ b)t2 +B3(a⊗ b)t3 + · · · ∈ A[[t]],

which can be naturally extended to a k[[t]]−bilinear product

⋆B : A[[t]]⊗A[[t]]→ A[[t]]

and condition (4.1) guarantees the associativity of this algebra (A[[t]], ⋆B).
Equivalence of deformations. Two deformations {Bi} and {B′

i} are called equivalent if there
exists a sequence of homomorphisms {Gi : A→ A; i = 0, 1, 2, . . . ; G0 = id} such that∑

r+s=n

Gr(Bs(a⊗ b)) =
∑

i+j+k=n

B′
i(Gj(a)⊗Gk(b)). (4.2)

The sequence {Gi} determines the homomorphism G =
∑
Git

i : A → A[[t]]. In its turn, this G
extends naturally to a k[[t]]−linear bijection

G : (A[[t]], ⋆B)→ (A[[t]], ⋆B′)

and condition (4.2) guarantees that this extension is multiplicative, i.e., is an isomorphism of the
deformed algebras.
Trivial Deformation. A deformation {Bi} is called trivial if {Bi} is equivalent to {B0, 0, 0, . . . }.
The algebra A is called rigid if each its deformation is trivial.
Interpretation of deformations as twisting elements.

Now, we present the interpretation of deformations and their equivalence in terms of twisting
elements of Version 2 type and their equivalence in the hGa of Hochschild cochains.



486 T. KADEISHVILI

Each deformation {Bi : A
⊗2 → A, i = 0, 1, 2, . . . } can be interpreted as a version 2 type twisting

element b = b1 + b2 + · · · + bk + · · · , bk = Bk · tk ∈ C
2,k

: the associativity condition (4.2) can be
rewritten for each n ≥ 1 as

δBn · tn =

n∑
i=1

Bi · ti ⌣1 Bn−i · tn−i,

that is,

δbn =
∑

i+j=n

bi ⌣1 bj .

Suppose now that the two deformations {Bi} and {B′
i} are equivalent, i.e., there exists {Gi} such

that condition (4.2) is satisfied. In terms of the Hochschild cochsins, this condition looks like (3.5),

b′ = b+ δg + g ⌣ g + g ⌣1 b+ E1,1(b
′; g) + E1,2(b

′; g, g),

where g = g1 + · · ·+ gk + · · · , gk = Gk · tk ∈ C1,k.
So, we find that deformations are equivalent if and only if the corresponding twisting elements

b and b′ are equivalent. Consequently, the set of equivalence classes of deformations is bijective to
D′(C∗,∗).

As we are working on the bigraded variant of hGa generated by the Hochschild cochain complex

C
∗,∗

= C∗(A,A)⊗ k[[t]], it is clear that
Hp,q(C∗,∗) = HHp(A,A) · tq,

where HHp(A,A) is the Hohchschild cohomology of A. Then from Section 3.2 follow two classical
results of Gerstenhaber from [8].

By Theorem 3.5, if H3,n(C
∗,∗

) = 0 for n ≥ 2, then each b1 : A ⊗ A → A is integrable, but since

H3,n(C
∗,∗

) = HH3(A,A) ·tn, we get a classical result of Gerstenhaber: the triviality of the Hochschild
cohomology HH3(A,A) guarantees the integrability of each b1.

By Theorem 3.6, if H2,n(C
∗,∗

) = 0 for n ≥ 1, then C
∗,∗

is rigid, i.e., each twisting element b is

triwial. And again, since H2,n(C
∗,∗

) = HH2(A,A)·tn, we get another classical result of Gerstenhaber:
the triviality of the Hochschild cohomology HH2(A,A) guarantees the triviality of each deformation
of A, that is, the rigidity of A.

Remark 4.1. As we see, in determining the equivalence of deformations there take place only the
operations E1,1 and E1,2, the higher operations E1,k, k > 2 disappear due to (3.4). Therefore
considering only the deformation problem, it is impossible to establish a general formula (3.3) for
transformation of twisting elements. The operation E1,1(a, b) which we denote here as a ⌣1 b, was
introduced by Gerstehaber and denoted as the product of circles a◦b, he also mentioned that although
this product is not associative, its commutator [a, b] = a ◦ b − b ◦ a satisfies the Jacobi identity, and
the obtained Lie algebra structure is well related to the cup-product in the Hochschild complex, and
this induces the so-called Gerstenhaber algebra structure on the Hochschild cohomology. Because
of this work with deformations, some authors use the db = [b, b]-Maurer–Cartan solution instead of
db = b ⌣1 b. We hope that application of higher hGa operations E1,k will be useful for the theory of
deformations.
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