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COMPLEX COBORDISM MODULO SPHERICAL COBORDISM
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Dedicated to the memory of Academician Nodar Berikashvili

Abstract. We propose a commutative, complex-oriented cohomology theory MU∗
S(−), complex

cobordism modulo c1-spherical cobordism with the coefficient ring, identical to a quotient ring
MU∗/S. This exploits the Baas-Sullivan theory of cobordism with singularities and all the Mironov

obstructions to the commutativity vanish.

1. Introduction

In [5], we observe that the ideal in a complex cobordism ring MU∗ generated by the polynomial
generators S = (x1, xk, k ≥ 3) of a c1-spherical cobordism ring W ∗, viewed as elements in MU∗ by a
forgetful map, is prime.

Using the Baas–Sullivan theory of cobordism with singularities and proving that all the Mironov
obstructions to the commutativity vanish, we define a commutative, complex-oriented cohomology
theory MU∗

S(−), complex cobordism modulo c1-spherical cobordism with the coefficient ring, identical
to the quotient ring MU∗/S.

Then any subsequence Σ ⊆ S is also regular in MU∗ and therefore provides a multiplicative
complex-oriented cohomology theory MU∗

Σ(−).
In particular, we prove that the generators of W ∗[1/2] can be specified as follows:
i) For Σ = (xk, k ≥ 3), the corresponding cohomology is identical to the Abel cohomology, con-

structed previously in [11];
ii) Another example corresponding to Σ = (xk, k ≥ 5) gives MU∗[1/2]/Σ, the coefficient ring of the

universal Buchstaber formal group law, i.e., it rationally is identical to the Krichever–Hoehn complex
elliptic genus [13,14].

2. Statements

The theory of complex cobordism MU∗(−) and special unitary cobordism MSU∗(−) play an
important role in the cobordism theory. The ring MSU∗ is torsion free after localized away from 2,

MSU∗[1/2] = Z[1/2][y2, y3, . . . ], |yi| = 2i.

With the SU -structure forgetful inclusion in mind

MSU∗[1/2] ⊂ MU∗[1/2] = Z[1/2][a1, a2, a3, . . . ], |ai| = 2i,

the generators yi can be treated as the elements in MU∗[1/2].
In particular, yi is a SU -manifold if and only if all Chern numbers of yi having factor c1, are zero.

Thus we have to check the main Chern number si(yi) for Novikov’s criteria [17], in order for the set
of polynomial generators to belong to MSU∗[1/2].

In [12], Conner and Floyd introduced c1-spherical cobordism groups W 2n ⊂ MU2n. A complex
cobordism class belongs to W 2n if and only if every Chern number involving c21 vanishes.

W ∗ is not a subring of MU∗. However, with respect to some complex orientation and some ∗
multiplication, the ring W ∗ is polynomial on generators in every positive even degree except 4, [15,18]:

W ∗ = Z[x1, xk : k ≥ 3], x1 = CP1, xk ∈ W2k. (2.1)
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The polynomial generators xk can be specified by the condition for the main Chern numbers sk(xk) =
d(k)d(k − 1) for k ≥ 3, where

d(k) =

{
p, if k + 1 = ps for some primep,

1, otherwise.

By [18], the cohomology theory W ∗(−) is complex-oriented and (by Proposition 3.12) the ring
W ∗[1/2] is generated by the coefficients of the corresponding formal group law FW . In particular,

W ∗[1/2] is a free MSU∗[1/2] module generated by 1 and [CP1].

Our main observation is that the sequence of polynomial generators of W ∗, (xk, k ≥ 3) in (2.1)
viewed as the elements in MU∗ by a forgetful map, generates the same ideal in MU∗ as the coefficients
αij , i, j ≥ 2 of the universal formal group law.

With that in mind, we prove one of our main results

Theorem 2.1. Let S = (x1, xk, k ≥ 3) be a sequence of polynomial generators of c1-spherical cobor-
dism W ∗. Then:

i) S is regular in MU∗.
ii) any subsequence Σ of S is regular in MU∗.

The use of the Baas–Sullivan theory of cobordism with singularities defines a multiplicative coho-
mology theory MU∗

Σ(−), with the scalar ring MU∗/(Σ). All obstructions to multiplicativity vanish
bay [16]. Clearly, h∗

Σ(−) is complex-oriented.
One interesting example of Theorem 2.1 is the Abel cohomology h∗

Ab constructed in [11].

Theorem 2.2. For Σ = (xi, i ≥ 3), the cohomology theory MU∗
Σ(−)[1/2] is identical to the Abel

cohomology h∗
Ab[1/2].

The Abel cohomology is commutative by [11]. For any Σ, the question of commutativity is not
trivial. The obstruction to commutativity is studied in [16]. In some cases, all obstructions vanish
only for dimensional reasons.

In particular, using Σ = S in Theorem 2.1, we define the complex cobordism modulo c1-spherical
cobordism.

Theorem 2.3. There is a commutative complex-oriented cohomology theory MU∗
S(−) with the coef-

ficient ring MU∗/S.

Another example of Theorem 2.1 is related to the Buchstaber formal group law FB [2–4, 6]. Af-
ter tensored with rational numbers, the corresponding classifying map fB is identical [7, 8] to the
Krichever–Hoehn complex elliptic genus [13, 14]. The scalar ring ΛB of FB is calculated in [10]. In
particular, it has only 2-torsion and the quotient

ΛB = ΛB/torsion

is an integral domain. We will consider this example and prove the following

Theorem 2.4. Let Σ = (xi, i ≥ 5), where xi as in Theorem 2.1. Let ΛB be the scalar ring of the
universal Buchstaber formal group law. Then the cohomology theory MU∗

Σ(−)[1/2] is multiplicative,
commutative, complex-oriented and has the coefficient ring, identical to MU∗[1/2]/Σ := ΛB [1/2].

On the c1-spherical cobordism W ∗, we discuss a genus

ϕW : W ∗ → Z[x1, x3, x4].
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