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IMPLICATION AND PRODUCTION GRAPHS ON EQ-ALGEBRAS

AKBAR PAAD

Abstract. In this paper, the implication and production graphs of EQ-algebras are investigated.

Firstly, a quasi r-prime up set is defined and some related results are provided. Further, implication
graphs are constructed and it is shown that these graphs of separated EQ-algebras is a connected

graph with diameter at most two and under certain conditions is a star graph. Moreover, the notion

of zero divisors by a product operation is defined and by means of zero divisors of an EQ-algebra
with bottom element 0, the production graph is introduced and it is proved that the production

graph is a connected graph with diameter at most two. Also, some necessary conditions for the
production graph to be a star graph are found. Finally, it is proved that the implication graphs and

the production graphs coincide in involutive residuated EQ-algebras.

1. Introduction

The EQ-algebras were proposed by Novák and De Baets [13, 14]. One of the motivations was to
introduce a special algebra as the correspondence of truth values for the high-order fuzzy type theory
(FTT ) [12] that generalizes the system of classical type theory [2] in which the sole basic connective
is an equality. Analogously, the basic connective in the (FTT ) should be a fuzzy equality. Another
motivation is from the equational style of proof in logic. It has three connectives: meet ∧, product
⊙ and fuzzy equality ∼. The implication operation → is the derived of the fuzzy equality ∼ and it
together with ⊙ no longer form a strictly adjoint pair, in general. The EQ-algebras are interesting
and important for studying and researching; residuated lattices which represent particular cases of
the EQ-algebras. In fact, the EQ-algebras generalize non-commutative residuated lattices [7]. From
the point of view of logic, the main difference between residuated lattices and the EQ-algebras lies
in the way the implication operation is obtained. While in residuated lattices it is obtained from a
(strong) conjunction, in the EQ-algebras it is obtained from the equivalence. Consequently, the two
kinds of algebras differ at several essential points despite their many similar or identical properties.
The graph theory has existed for many years and it has found many applications in engineering and
science such as chemical, electrical, civil and mechanical engineering; architecture; management and
control; communication; operational research; sparse matrix technology; combinatorial optimization;
computer science. Many books have been published on the applied graph theory [5,18,19]. Especially,
in the field of universal algebras and graph theory, the graph algebra is a way to get a directed graph
of algebraic structure. Algebraic graph theory comprises the study of algebraic objects arising in
connection with the graphs. Therefore many authors studied the theory of graphs. For example,
in connection with semigroups and rings, I. Beck in [3] introduced the zero-divisor graph associated
with the zero-divisor set of a commutative ring, whose vertex set is the set of zero divisors. Two
distinct zero divisors x, y are adjacent if and only if x · y = 0. In [9], Jun and Lee introduced the
notion of associated graph of BCK/BCI-algebras by zero divisors in BCK/BCI-algebras and verified
some properties of this graph. In addition, Torkzadeh and Ahmadpanah [16] defined the notions of
zero divisors of a non-empty subset of a residuated lattice and a graph associated to a residuated
lattice. They proved that this graph is always a connected graph and its diameter is at most two.
Aaly Kologani, Borzooei and Kim [1], studied the graph structures on hoop algebras and constructed
implicative and productive graphs. Moreover, they proved that these graphs are connected and both
complete and tree under certain conditions.
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This paper is organized as follows: In Section 2, the basic definitions, properties and theorems of
EQ-algebras and graph theory are reviewed. In Section 3, the notion of a quasi r-prime up set of
EQ-algebras is defined and some of their properties are provided. Further, the implication graphs are
constructed and it is shown that implication graphs of separated EQ-algebras is a connected graph
with diameter at most two and under certain conditions is a star graph. In Section 4, the notion of
zero divisors by a product operation is defined and by means of zero divisors of an EQ-algebra with
a bottom element 0, the production graph is introduced. Moreover, it is proved that the production
graph is a connected graph with diameter at most two. Also, some necessary conditions for the
production graph to be a star graph are investigated. Finally, it is proved that the implication graphs
and the production graphs coincide in the involutive residuated EQ-algebras.

2. Preliminaries

In this section, we give some fundamental definitions and results. For more details, refer to the
references.

Definition 2.1 ([13]). An EQ-algebra is an algebra (E,∧,⊙,∼, 1) of type (2, 2, 2, 0) satisfying the
following axioms:

(E1) (E,∧, 1) is a ∧-semilattice with a top element 1. We set x ≤ y if and only if x ∧ y = x;
(E2) (E,⊙, 1) is a commutative monoid and ⊙ is isotone with respect to ≤;
(E3) x ∼ x = 1 (reflexivity axiom);
(E4) ((x ∧ y) ∼ z)⊙ (s ∼ x) ≤ z ∼ (s ∧ y) (substitution axiom);
(E5) (x ∼ y)⊙ (s ∼ t) ≤ (x ∼ s) ∼ (y ∼ t) (congruence axiom);
(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x (monotonicity axiom);
(E7) x⊙ y ≤ x ∼ y (boundedness axiom), for all s, t, x, y, z ∈ E.

Let E be an EQ-algebra. Then for all x, y ∈ E, we put

x → y = (x ∧ y) ∼ x, x̃ = x ∼ 1.

The derived operation → is called implication. If an EQ-algebra E contains a bottom element 0, then
we can define the unary operation ¬ on E by ¬x = x ∼ 0 and for ∅ ≠ X ⊆ E, X := {¬x | x ∈ X}.

Definition 2.2 ([7, 13]). Let E be an EQ-algebra. Then we say that it is
(i) Separated if x ∼ y = 1 implies x = y, for all x, y ∈ E.
(ii) Spanned if it contains a bottom element 0 and 0̃ = 0.
(iii) Good, if x̃ = x, for all x ∈ E.
(iv) Residuated, if (x⊙ y) ∧ z = x⊙ y if and only if x ∧ ((y ∧ z) ∼ y) = x, for all x, y, z ∈ E.
(v) Involutive (IEQ-algebra), if ¬¬x = x, for all x ∈ E.
(vi) IEQ-algebra, if it has a lattice reduct and for all x, y, z, t ∈ E, ((x∨y) ∼ z)⊙(t ∼ x) ≤ z ∼ (y∨t).
Every residuated EQ-algebra or IEQ-algebra is good and every good EQ-algebra is spanned and

separated.

Lemma 2.3 ([8, 13]). Let E be an EQ-algebra. Then for all x, y, z ∈ E, – the following properties
hold:

(i) x ∼ y = y ∼ x, x ∼ y ≤ x → y. x⊙ y ≤ x ∧ y ≤ x, y.
(ii) (x → y)⊙ (y → x) ≤ x ∼ y.
(iii) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z) and x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).
(iv) (x ∼ y)⊙ (y ∼ z) ≤ x ∼ z and (x → y)⊙ (y → z) ≤ x → z.
(v) If x ≤ y, then x → y = 1 and x ∼ y = y → x.
(vi) If x ≤ y, then z → x ≤ z → x and y → z ≤ x → z.
(vii) If L contains a bottom element 0, then ¬0 = 1, ¬1 = 0 and ¬x = x → 0.

(viii) a⊙ (a → b) ≤ b̃ (weak modus ponens).
(ix) If E is good, then a⊙ (a → b) ≤ b.
(x) If E is residuated, then x → (y → z) = (x⊙ y) → z.
(xi) If E is separated, then x ≤ y if and only if x → y = 1.
(xii) If E is IEQ-algebra, then x → y ≤ (x ∨ z) → (y ∨ z).
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Definition 2.4 ([4]). Let E be an EQ-algebra and ∅ ≠ F ⊆ E. Then (i) F is called a prefilter of E
if it satisfies for all x, y ∈ E.

(F1) 1 ∈ F .
(F2) If x ∈ F , x → y ∈ F , then y ∈ F .
A prefilter F is said to be a filter if it satisfies.
(F3) If x → y ∈ F , then (x⊙ z) → (y ⊙ z) ∈ F for all x, y, z ∈ E.

Prefilters and filters coincide in residuated EQ-algebras. Let G be a graph with the vertex set V
and edge set E. The edge that connects two distinct vertices x and y is denoted by e(x, y). A graph
G = (V, E) is called connected if any two distinct vertices x and y of G are linked by a path in G,
otherwise the graph is called disconnected. For distinct vertices x and y of G, let d(x, y) be the length
of the shortest path from x to y. If there is no path between x and y, then d(x, y) = ∞. The diameter
of G is

diam(E) = sup{d(x, y) | x, y ∈ V(Γ(E))}.
A tree is a connected graph with no cycles. A graph G is called a complete graph if e(x, y) exists

for any distinct vertices x and y of G. A graph G is called a star graph in case there is a vertex x in
G such that every other vertex in G is an end connected with x and no other vertex by an edge [6].
Note. From now on, in this paper, let E be an EQ-algebra, unless otherwise is stated.

3. Implication Graph of an EQ-algbra

In this section, firstly, we define the sets r(X), l(X) by using implication operation. In the sequel,
by means of the set r(X) of an EQ-algebra, the associated implication graph Ω(E) is introduced and
some related results are provided.

Definition 3.1. Let X be a non-empty subset of EQ-algebra E. Then we define r(X), l(X) as follow:

r(X) = {a ∈ E | x → a = 1, for every x ∈ X},
l(X) = {a ∈ E | a → x = 1, for every x ∈ X}.

Definition 3.2. Let F be a non-empty subset of E. Then F is called a quasi r-prime up set if:
(i) F is a proper up set of E,
(ii) for any x, y ∈ E, if r({x, y}) ⊆ F , then x ∈ F or y ∈ F .

Example 3.3 ([10]). Let E = {0, a, b, 1} be a chain 0 < a < b < 1 with the following Cayley tables:

Table 1. Table 2.

⊙ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

∼ 0 a b 1
0 1 a a a
a a 1 b b
b a b 1 1
1 a b 1 1

Table 3.

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b a b 1 1
1 a b 1 1

Routine calculation shows that (E,∧,⊙,∼, 1) is an EQ-algebra and r({0, b}) = r({a, b}) = {1, b},
r({0, a}) = {1, a, b}, l({a, b}) = {0, a}. Moreover, F = {1, a, b} is a quasi r-prime up set of E.
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Proposition 3.4. Let X and Y be two non-empty subsets of E. Then the following statements hold:
(i) 1 ∈ r(X) and if E is an EQ-algebra with a bottom element 0, then 0 ∈ l(X).
(ii) X ⊆ r(l(X)) and X ⊆ l(r(X)).
(iii) If X ⊆ Y , then r(Y ) ⊆ r(X) and l(Y ) ⊆ l(X).
(iv) r(X) = r(l(r(X))) and l(X) = l(r(l(X))).
(v) If F is a prefilter of E, then r(F ) ⊆ F .
(vi) r({a, b}) = r({a}) ∩ r({b}), for any a, b ∈ E.

Proof. (i) Since X ̸= ∅ and by Lemma 2.3(v), x → 1 = 1, for any x ∈ X, we get that 1 ∈ r(X) and
since 0 ≤ x, for any x ∈ X, by Lemma 2.3(v), we conclude that 0 → x = 1 and so, 0 ∈ l(X).

(ii) Let x ∈ X and r(X) = Y . Then for any y ∈ Y , we have x → y = 1, for any x ∈ X. Hence
x ∈ l(Y ) and so, x ∈ r(l(X)). Therefore X ⊆ r(l(X)). The proof X ⊆ l(r(X)) is similar.

(iii) Let X ⊆ Y and a ∈ r(Y ). Then for any y ∈ Y , y → a = 1 and so, for any x ∈ X, x → a = 1.
Thus a ∈ r(X) and so, r(Y ) ⊆ r(X). The proof that l(Y ) ⊆ l(X) is similar.

(iv) By (ii), we have X ⊆ l(r(X)) and so, by (iii), we get r(l(r(X))) ⊆ r(X). Now, let Y = r(X).
Then by (ii), we have Y ⊆ r(l(Y )) and so, r(X) ⊆ r(l(r(X))). Hence r(X) = r(l(r(X))) and by a
similar way, we have l(X) = l(r(l(X))).

(v) If F is a prefilter of E and x ∈ r(F ), then f → x = 1, for any f ∈ F and since 1 ∈ F , we get
f → x ∈ F and by f ∈ F , we conclude that x ∈ F . Therefore r(F ) ⊆ F .

(vi) t ∈ r({a, b}) if and only if a → t = 1 and b → t = 1 if and only if t ∈ r({a}) and t ∈ r({b}) if
and only if t ∈ r({a}) ∩ r({b}). Therefore r({a, b}) = r({a}) ∩ r({b}), for any a, b ∈ E. □

Definition 3.5. For any x ∈ E, the set of all elements y ∈ E such that r({x, y}) = {1} is denoted
by Zx, in fact,

Zx = {y ∈ E | r({x, y}) = {1}}

Proposition 3.6. Let E be a separated EQ-algebra. Then for any x ∈ E, r({x, 1}) = {1}.

Proof. Let E be a separated EQ-algebra and x ∈ E. Then

r({x, 1}) = {a ∈ E | x → a = 1and 1 → a = 1}
= {a ∈ E | x → a = 1and a = 1}
= {1}. □

Proposition 3.7. Let a, b ∈ E such that a ≤ b. Then the following statements hold:
(i) r({b}) ⊆ r({a}).
(ii) r({b, x}) ⊆ r({a, x}), for any x ∈ E.
(iii) Za ⊆ Zb.

Proof. (i) Let a ≤ b and x ∈ r({b}). Then b → x = 1 and by Lemma 2.3(vi), we have b → x ≤ a → x
and so a → x = 1. Hence, x ∈ r({a}) and so, r({b}) ⊆ r({a}).

(ii) Since a ≤ b, by (i) and Proposition 3.4(vi), for any x ∈ E, we get

r({b, x}) = r({b}) ∩ r({x}) ⊆ r({a}) ∩ r({x}) = r({a, x}).
(iii) If x ∈ Za, then r({a, x}) = {1}. Now, if t ∈ r({b, x}), then b → t = 1 and x → t = 1. Since

a ≤ b, by Lemma 2.3(vi), we get b → x ≤ a → x and so, a → x = 1. Hence t ∈ r({a, x}) and so,
t = 1. Therefore r({b, x}) = {1} and so, x ∈ Zb. Thus Za ⊆ Zb. □

Corollary 3.8. Let E be a separated EQ-algebra and a, b ∈ E such that a → b = 1. Then:
(i) r({b}) ⊆ r({a}),
(ii) Za ⊆ Zb.

Proof. Since E is a separated EQ-algebra and a → b = 1, by Lemma 2.3(xi), we conclude that a ≤ b.
Therefore the assertion holds by Proposition 3.7. □

Theorem 3.9. Let E be a separated EQ-algebra and F be a proper up set of E. Then F is a quasi
r-prime up set of E if and only if r({x1, x2, . . . , xn}) ⊆ F implies that there exists 1 ≤ i ≤ n such that
xi ∈ F .
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Proof. Let E be a separated EQ-algebra and F be a quasi r-prime subset of E. Then we proceed by
induction on n. If n = 2, then r({x1, x2}) ⊆ F implies x1 ∈ F or x2 ∈ F . Now, suppose the statement
holds for n− 1 and r({x1, x2, . . . , xn}) ⊆ F , for x1, x2, . . . , xn ∈ E. If y ∈ r({x1, x2, . . . , xn−1}), then
xi → y = 1, for any 1 ≤ i ≤ n − 1 and since E is separated, we get xi ≤ y, for any 1 ≤ i ≤ n − 1.
Now, let a ∈ r({y, xn}). Then y → a = 1 and xn → a = 1 and so, y ≤ a and xn ≤ a. By xi ≤ y, for
any 1 ≤ i ≤ n − 1, we have xi ≤ a, for any 1 ≤ i ≤ n − 1. Hence xi ≤ a, for any 1 ≤ i ≤ n and so,
xi → a = 1, for any 1 ≤ i ≤ n. Thus, a ∈ r({x1, x2, . . . , xn}) and so, r({y, xn}) ⊆ r({x1, x2, . . . , xn})
and since r({x1, x2, . . . , xn}) ⊆ F , we get r({y, xn}) ⊆ F which implies y ∈ F or xn ∈ F . If xn ̸∈ F ,
then y ∈ F and so, r({x1, x2, . . . , xn−1}) ⊆ F . Now, by the induction hypothesis, we conclude that
xi ∈ F , for some 1 ≤ i ≤ n− 1. The converse is obvious. □

The following example shows that the condition separated in Theorem 3.9 is necessary.

Example 3.10 ([17]). Let E = {0, a, b, c, d, 1}, where 0 ≤ a ≤ b ≤ d ≤ 1, a ≤ c ≤ d. The
multiplication and fuzzy equality are defined as follows:

Table 4. Table 5.

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 a a a b
c 0 0 a 0 a c
d 0 0 a a a d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 0 0 0 0 0
a 0 1 d d d d
b 0 d 1 d d d
c 0 d d 1 d d
d 0 d d d 1 1
1 0 d d d 1 1

Thus (E,∧,⊙,∼, 1) is an EQ-algebra, but not separated. Now, let F = {1, d}. Then F is an up set
and r({b, c}) = {1, d} ⊆ F , while b ̸∈ F and c ̸∈ F . Therefore F is not a quasi r-prime up set of E.

Proposition 3.11. For any x ∈ E, ∅ ≠ Zx is an up set of E and 1 ∈ Zx.

Proof. Let a ≤ b and a ∈ Zx. Then r({a, x}) = {1} and since by Proposition 3.7(ii), r({b, x}) ⊆
r({a, x}) and by Proposition 3.4(i), 1 ∈ r({b, x}), we get r({b, x}) = {1} and so, b ∈ Zx. Therefore
Zx is an up set of E. Moreover, since Zx is a non-empty subset of E, there exists d ∈ E such that
d ∈ Zx and since d ≤ 1 and Zx is an up set of E, we conclude that 1 ∈ Zx. □

Proposition 3.12. Let E be a residuated EQ-algebra, a, b, x ∈ E and r({a, x}) = r({b, x}) = {1}.
Then r({a⊙ b, x}) = {1}.

Proof. Let E be a residuated EQ-algebra, r({a, x}) = r({b, x}) = {1} and t ∈ r({a ⊙ b, x}), for
a, b, x ∈ E. Then (a⊙ b) → t = 1 and x → t = 1 and so, by Lemma 2.3(x), a → (b → t) = (a⊙ b) →
t = 1 and x → (b → t) = b → (x → t) = b → 1 = 1. Hence (b → t) ∈ r({a, x}) = {1}. Thus b → t = 1
and since x → t = 1, we get t ∈ r({b, x}) = {1}. Therefore t = 1 and so, r({a⊙ b, x}) = {1}. □

Theorem 3.13. Let E be a residuated EQ-algebra and x ∈ E. Then ∅ ≠ Zx is a filter of E.

Proof. By Proposition 3.11, 1 ∈ Zx, for any x ∈ E. If a, a → b ∈ Zx, then r({a, x}) = r({a →
b, x}) = {1} and since E is a residuated EQ-algebra, by Proposition 3.18, we get r({a ⊙ (a →
b), x}) = {1} and since by Lemma 2.3(ix), a⊙ (a → b) ≤ b, by Proposition 3.18(ii), we conclude that
r({b, x}) ⊆ r({a⊙ (a → b), x}) and so, r({b, x}) = {1}. Thus b ∈ Zx and so, Zx is a prefilter of E and
since E is a residuated EQ-algebra, we conclude that Zx is a filter of E. □

Theorem 3.14. Let E be a separated EQ-algebra, x ∈ E and Zx be maximal in {Za | a ∈ E,Za ̸= ∅}.
Then Zx is a quasi r-prime up set of E.

Proof. By Proposition 3.11, Zx is an up set. We prove that Zx is a quasi r-prime up set. Let a, b ∈ E
such that r({a, b}) ⊆ Zx and a ̸∈ Zx. By Proposition 3.6, r({x, 1}) = {1} and so, 1 ∈ Zx and since
Zx is maximal, we find that Zx is proper. Moreover, r({a, b, x}) = {1}, since if r({a, b, x}) ̸= {1},
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by Proposition 3.4(vi), we have r({a, b, x}) = r({a, b}) ∩ r({x}) ⊆ Zx ∩ r({x}). Now, if there exists
1 ̸= t ∈ r({a, b, x}), then t ∈ Zx ∩ r({x}) and so, r({x, t}) = {1} and x → t = 1, which implies
t ∈ r({x, t}). Hence t = 1, which is a contradiction. Thus r({a, b, x}) = {1}. By a ̸∈ Zx, we get
r({a, x}) ̸= {1} and so, there exists 1 ̸= w ∈ r({a, x}). Hence a → w = 1 and x → w = 1 and so, by
Proposition 3.8, Zx ⊆ Zw. Now, if Zw = E, then by a ∈ E, we have a ∈ Zw and so, r({a,w}) = {1}
and since a → w = 1, we conclude that w ∈ r({a,w}) and so, w = 1, which is impossible. Hence, since
Zx is maximal, we get Zx = Zw. In addition, since a → w = 1 and x → w = 1, by Proposition 3.8,
r({w}) ⊆ r({a}) and r({w}) ⊆ r({x}) and so, we have

r({b, w}) = r({b}) ∩ r({w}) ⊆ r({b}) ∩ r({a}) ∩ r({x}) = r({a, b, x}) = {1}.
Hence r({b, w}) = {1} and so, b ∈ Zw = Zx. Therefore Zx is a quasi r-prime up set of E. □

Definition 3.15. Let E be an EQ-algebra. Then Ω(E) is called an implication graph of E if the
vertices are just the elements of E and for distinct x, y ∈ E, there is an edge connecting x and y if
and only if r({x, y}) = {1}.
Example 3.16 ([10]). Let E = {0, a, b, 1} be a chain 0 < a < b < 1 with the following Cayley tables:

Table 6. Table 7.

⊙ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 b b
b 0 b 1 b
1 0 b b 1

Then (E,∧,⊙,∼, 1) is a separated EQ-algebra and the graph Ω(E) is given by the following figure:
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Figure 1. Associated implication graph Ω(E).

Example 3.17 ([11]). Let E = {0, a, b, c, d, 1}, where 0 ≤ a, b ≤ c ≤ 1, 0 ≤ b ≤ d ≤ 1, but a, b and,
respectively c, d are incomparable. The multiplication and a fuzzy equality are defined as follows:

Table 8. Table 9.

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 d c b a 0
a d 1 b c 0 a
b c b 1 d c b
c b c d 1 b c
d a 0 c b 1 d
1 0 a b c d 1
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Table 10.

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

(E,∧,⊙,∼, 1) is a good IEQ-algebra. Routine calculation shows that r({1, a}) = r({1, b}) =
r({1, c}) = r({1, d}) = {1} and r({a, d}) = r({c, d}) = {1}. Therefore

E(Ω(E)) = {e(1, a), e(1, b), e(1, c), e(1, d), e(a, d), e(c, d)}.
Ω(E) is given by the following figure:
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Figure 2. Associated implication graph Ω(E).

Theorem 3.18. Let E be a separated EQ-algebra. Then Ω(E) is a connected graph with diameter at
most two.

Proof. Let E be a separated EQ-algebra. Then for any x ∈ E,

r({1, x}) = {y ∈ E | x → y = 1 and 1 → y = 1}
= {y ∈ E | x → y = 1 and 1 ∼ y = 1}
= {y ∈ E | x → y = 1 and y = 1} = {1}.

Hence 1 is connected with all vertices Ω(E) and so, it is a connected graph. Now, let x, y ∈ E be two
distinct vertices. If r({x, y}) = {1}, then d(x, y) = 1 and if r({x, y}) ̸= {1}, then the path e(x, 1, y)
exists and so, d(x, y) = 2. Hence

diam(Ω(E)) = sup{d(x, y) | x, y ∈ V (Ω(E))} ≤ 2. □

Theorem 3.19. Let E be a finite chain and separated EQ-algebra. Then Ω(E) is a star graph.

Proof. Suppose E is a finite chain and separated EQ-algebra. By Proposition 3.18, Ω(E) is a connected
graph. Now, we proceed by induction on n, where |E| = n, and we prove that Ω(E) is a star graph. If
n = 3, then we have x1 ≤ x2 ≤ 1 and by Proposition 3.18, we get r({x1, 1}) = {1} and r({x2, 1}) = {1}
and since x1 ≤ x2, we get x1 → x2 = 1 and so, r({x1, x2}) = {x2, 1}. Hence, 1 is just connected
with all vertices of E, and so, Ω(E) is a star graph. Now, let E = {x1, . . . , xn−2, xn−1, 1} such that
x1 ≤ · · · ≤ xn−2 ≤ xn−1 ≤ 1. By the induction hypothesis, we find that Ω(D) is a star graph such that
D ⊆ E and |D| = n− 1. Consider D = {x1, . . . , xn−2, 1} such that xi ≤ xn−1, for any 1 ≤ i ≤ n− 2
and so, xi → xn−1 = 1. Hence r({xi, xn−1}) = {xn−1, 1}, for any 1 ≤ i ≤ n − 2 and so xn−1 is not
connected to any element of D\{1} and so, Ω(E) is a star graph. □
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Corollary 3.20. If E is a finite chain and separated EQ-algebra, then Ω(E) is a tree.

Proof. It follows from Theorem 3.19. □

Proposition 3.21. For any x, y ∈ E, Zx ̸= Zy if and only if r({x, y}) = {1}, where Zx, Zy are the
quasi r-prime up sets of E.

Proof. Let r({x, y}) = {1}, for x, y ∈ E. Then y ∈ Zx and x ∈ Zy. Now, if Zx = Zy, then x ∈ Zx and
y ∈ Zy and so, r({x, x}) = {1} and r({y, y}) = {1}. Now, since by (E3), x → x = 1 and y → y = 1,
we get x ∈ r({x, x}) and y ∈ r({y, y}), which is impossible. Therefore, Zx ̸= Zy. Conversely, let
Zx ̸= Zy and r({x, y}) ̸= {1}. Then y ̸∈ Zx and x ̸∈ Zy. Now, if a ∈ Zx, then r({a, x}) = {1} ⊆ Zy

and since Zy is a quasi r-prime up set of E, we conclude that a ∈ Zy or x ∈ Zy and since x ̸∈ Zy, we
get a ∈ Zy. Hence Zx ⊆ Zy and in a similar way, we conclude that Zy ⊆ Zx and so, Zx = Zy, which
is impossible. Therefore r({x, y}) = {1}. □

4. Production Graph of an EQ-algbra

In this section, firstly, we define the notion of zero divisors by a product operation and provide
related results. In what follows, by means of zero divisors of an EQ-algebra with a bottom element 0,
the associated production graph Γ(E) is introduced.

Note. From now on, in this section, let E be an EQ-algebra with a bottom element 0, unless
otherwise is stated.

Definition 4.1. Let X be a non-empty subset of E. Then the set of all zero divisors of X is denoted
by ZX and defined as follows:

ZX = {a ∈ E | a⊙ x = 0, for any x ∈ X}

Example 4.2. Let E be the EQ-algebra given in Example 3.3 and X = {a, b}. Then ZX = {0, a, b}.

Example 4.3. Let E be the EQ-algebra given in Example 3.10, X = {a, c} and Y = {b, d}. Then
ZX = {0, a, c} and ZY = {0, a}.

Example 4.4 ([10]). Let E = {0, a, b, 1} be a chain 0 < a < b < 1 with the following Cayley tables:

Table 11. Table. 12

⊙ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

Table. 13

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a 1 1

Routine calculation shows that (E,∧,⊙,∼, 1) is an EQ-algebra. Now, let X = {a}, Y = {b} and
W = {a, b}. Then ZX = ZY = ZW = {0}.

Lemma 4.5. If E is a residuated EQ-algebra, then a⊙ b = 0 if and only if a ≤ ¬b, for any a, b ∈ E.
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Proof. Let E be a residuated EQ-algebra and a, b ∈ E. If a⊙ b = 0, then by Lemma 2.3(x) and (vi),
a → ¬b = a → (b → 0) = (a ⊙ b) → 0 = 0 → 0 = 1. Hence by Lemma 2.3(xi), a ≤ ¬b. Conversely,
if a ≤ ¬b, then by (E2) and by Lemma 2.3(vii), a ⊙ b ≤ b ⊙ ¬b = b ⊙ (b → 0) ≤ 0̃ = 0 and so,
a⊙ b = 0. □

Proposition 4.6. Let X and Y be two non-empty subsets of E. Then the following statements hold:
(i) 0 ∈ ZX .
(ii) If X ⊆ Y , then ZX ⊆ ZY .
(iii) If ZX − {1} ≠ ∅, then ZZX−{1} ⊆ ZX , where E is residuated.

(iv) If 1 ∈ X, then ZX = {0}.
(v) If F is a prefilter of E, then ZF = {0}.
(vi) 1 ∈ ZX if and only if X = {0} if and only if ZX = E.
(vii) If 0 ∈ X, then ZX = ZX−{0}.
(viii) ZX ∪ ZY ⊆ ZX∧Y , where X ∧ Y = {x ∧ y | x ∈ X, y ∈ Y }.
(ix) ZX is a down set of E.

Proof. (i) Since for any x ∈ X, x⊙ 0 = 0, we get 0 ∈ ZX .
(ii) If X ⊆ Y and a ∈ ZY , then for any y ∈ Y, we have a ⊙ y = 0 and so, for x ∈ X, we have

a⊙ x = 0. Hence a ∈ ZX and so, ZX ⊆ ZY ,
(iii) Let ZX − {1} ̸= ∅ and a ∈ ZZX−{1}. Then for any x ∈ ZX − {1}, a ⊙ x = 0 and since

x ∈ ZX − {1}, we get x = ¬t such that t ∈ ZX − {0}. Hence a ⊙ ¬t = 0, for any t ∈ ZX − {0} and
since E is a residuated EQ-algebra, by Lemma 4.5, we conclude that ¬t ≤ ¬a, for any t ∈ ZX − {0}
and since t ∈ ZX − {0}, we get t⊙ b = 0, for any b ∈ X. Hence by Lemma 4.5, we have b ≤ ¬t, and
since ¬t ≤ ¬a, we get b ≤ ¬a and so, b ⊙ a ≤ a ⊙ ¬a = 0. Thus a ⊙ b = 0, for any b ∈ X and so,
a ∈ ZX . Therefore ZZX−{1} ⊆ ZX .

(iv) If 1 ∈ X and a ∈ ZX , then a⊙ 1 = 0 and so, a = 0, Thus ZX = {0}.
(v) If F is a prefilter of E, then 1 ∈ F and so, by (iv), ZF = {0}.
(vi) Let 1 ∈ ZX . Then for any x ∈ X, 1⊙ x = 0 and so, x = 0. Hence X = {0}. If X = {0}, then

by 1 ⊙ 0 = 0, we get 1 ∈ ZX . Moreover, if X = {0}, then for any a ∈ E, a ⊙ 0 = 0 and so, a ∈ ZX .
Hence ZX = E. Finally, if ZX = E, then 1 ∈ ZX and so, X = {0}.

(vii) Since X − {0} ⊆ X, by (ii), we get ZX−{0} ⊆ ZX . If 0 ∈ X and a ∈ ZX , then for any
0 ̸= x ∈ X, a⊙ x = 0 and so, a ∈ ZX−{0}. Hence ZX−{0} = ZX .

(viii) Let a ∈ ZX ∪ ZY . Then a ∈ ZX or a ∈ ZY and so, a⊙ x = 0 for any x ∈ X or a⊙ y = 0 for
any y ∈ Y . By Lemma 2.3(i), x∧y ≤ x, y and by (E2), a⊙ (x∧y) ≤ a⊙x, a⊙y. Hence a⊙ (x∧y) = 0
and so, a ∈ ZX∧Y . Therefore ZX ∪ ZY ⊆ ZX∧Y .

(ix) Let a ≤ b and b ∈ ZX . Then for any x ∈ X, b⊙ x = 0 and since by (E2), a⊙ x ≤ b⊙ x = 0,
we get a⊙ x = 0, for any x ∈ X. Therefore a ∈ ZX and so, ZX is a down set of E. □

Definition 4.7. For any x ∈ E, the set Dx is called the set of all zero divisors of x and is defined as
follows:

Dx = {y ∈ E | Z{x,y} = {0}}.

By Proposition 4.12 (iv), D1 = E and 1 ∈ Dx, for any x ∈ E.

Example 4.8. Let E be the EQ-algebra given in Example 4.4. Then Da = Db = {0, a, b, 1}.

Example 4.9 ([10]). Let E = {0, a, b, 1} be a chain 0 < a < b < 1 with the following Cayley tables:

Table. 14 Table. 15

⊙ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

∼ 0 a b 1
0 1 a a a
a a 1 b b
b a b 1 1
1 a b 1 1
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Table. 16

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b a b 1 1
1 a b 1 1

Then (E,∧,⊙,∼, 1) is an EQ-algebra, but not residuated. Routine calculation shows that Da =
{b, 1} and Db = {a, b, 1}.

Theorem 4.10. Let E be a good EQ-algbera and x ∈ E. Then Dx is a prefilter of E. Moreover, if
E is a residuated EQ-algebra, then Dx is a filter of E.

Proof. Since 1 ∈ Dx, we get Dx ̸= ∅. Let a, a → b ∈ Dx. Then Z{a,x} = {0} and Z{a→b,x} = {0}.
Now, if t ∈ Z{b,x} = {0}, then b⊙ t = 0 and x⊙ t = 0 and since E is a good EQ-algebra, by Lemma
2.3(ix), we conclude that a ⊙ (a → b) ≤ b and so, by (E2), a ⊙ (a → b) ⊙ t ≤ b ⊙ t = 0. Hence
a ⊙ (a → b) ⊙ t = 0 and since x ⊙ t = 0, we get x ⊙ (a → b) ⊙ t = 0. Thus (a → b) ⊙ t ∈ Z{a,x}
and so, (a → b) ⊙ t = 0. Hence t ∈ Z{a→b,x} and so, t = 0. Therefore Z{b,x} = {0} and so, b ∈ Dx.
Hence Dx is a prefilter of E. Finally, if E is a residuated EQ-algebra, then by Definition 2.4, Dx is
a filter of E. □

By the following example, we show that the condition good in Theorem 4.10 is necessary.

Example 4.11 ([10]). Let E = {0, a, b, c, 1} be a chain 0 < a < b < c < 1 with the following Cayley
tables:

Table. 17 Table. 18

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 0 0 c
1 0 a b c 1

∼ 0 a b c 1
0 1 0 0 0 0
a 0 1 b b b
b 0 b 1 c c
c 0 b c 1 1
1 0 b c 1 1

Table. 19

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 b 1 1 1
c 0 b c 1 1
1 0 b c 1 1

Then (E,∧,⊙,∼, 1) is an EQ-algebra. Routine calculation shows that Da = {1}, Db = {1} and
Dc = {1}. But {1} is not a prefilter of E, because 1 → c = 1 ∈ {1}, 1 ∈ {1} and c ̸∈ {1}.

Proposition 4.12. Let E be an EQ-algebra. Then for all a, b, c, d, x ∈ E, the following statements
hold:

(i) If a, b ∈ Dx, then a⊙ b ∈ Dx.
(ii) If a ∈ Dx and a ≤ b, then b ∈ Dx, (up set).
(iii) a ∼ b ∈ Dx if and only if a → b ∈ Dx and b → a ∈ Dx.
(iv) If a ∼ b ∈ Dx and b ∼ c ∈ Dx, then a ∼ c ∈ Dx.
(v) If a → b ∈ Dx and b → c ∈ Dx, then a → c ∈ Dx.
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(vi) If a ∼ b ∈ Dx and c ∼ d ∈ Dx, then (a ∧ c) ∼ (b ∧ d) ∈ Dx.
(vii) If a ∼ b ∈ Dx and c ∼ d ∈ Dx, then (a ∼ c) ∼ (b ∼ d) ∈ Dx.
(viii) If a ∼ b ∈ Dx and c ∼ d ∈ Dx, then (a → c) ∼ (b → d) ∈ Dx.
(ix) If E is a IEQ-algebra and a ∼ b ∈ Dx, c ∼ d ∈ Dx, then (a ∨ c) ∼ (b ∨ d) ∈ Dx.
(x) If E is residuated lattice and a ∼ b ∈ Dx, then (a⊙ c) ∼ (b⊙ c) ∈ Dx.
(xi) If a ≤ b, then Da ⊆ Db.

Proof. (i) Let a, b ∈ Dx. Then Z{a,x} = {0} and Z{b,x} = {0} and if t ∈ Z{a⊙b,x}, then t⊙ a⊙ b = 0
and t⊙ x = 0. Hence (t⊙ a)⊙ b = 0 and since t⊙ x = 0, we get (t⊙ a)⊙ x = 0. Thus (t⊙ a) ∈ Z{b,x}
and so, t⊙a = 0 and since t⊙x = 0, we conclude that t ∈ Z{a,x}. Hence t = 0 and so, Z{a⊙b,x} = {0}.
Therefore a⊙ b ∈ Dx.

(ii) Let a ∈ Dx, a ≤ b and t ∈ Z{b,x}. Then Z{a,x} = {0} and t⊙ b = 0, t⊙ x = 0. Since a ≤ b, by
(E2), we get a⊙ t ≤ b⊙ t = 0 and so, t⊙ a = 0. Hence t ∈ Z{a,x} and so, t = 0. Thus Z{b,x} = {0}
and so, b ∈ Dx.

(iii) Let a ∼ b ∈ Dx. Then by Lemma 2.3(i), a ∼ b ≤ a → b and so, by (ii), we conclude
that a → b ∈ Dx. In a similar way and by Lemma 2.3(i), we get b → a ∈ Dx. Conversely, let
a → b ∈ Dx and b → a ∈ Dx. Then by (i), (a → b) ⊙ (b → a) ∈ Dx and since by Lemma 2.3(ii),
(a → b)⊙ (b → a) ≤ a ∼ b, by (ii), we get a ∼ b ∈ Dx.

(iv) Let a ∼ b ∈ Dx and b ∼ c ∈ Dx. Then by (i), (a ∼ b) ⊙ (b ∼ c) ∈ Dx and since by
Lemma 2.3(iv), (a ∼ b)⊙ (b ∼ c) ≤ a ∼ c, so, by (ii), we conclude that a ∼ c ∈ Dx.

(v) Let a → b ∈ Dx and b → c ∈ Dx. Then by (i), (a → b) ⊙ (b → c) ∈ Dx and since by
Lemma 2.3(iv), (a → b)⊙ (b → c) ≤ a → c, so, by (ii), we conclude that a → c ∈ Dx.

(vi) Let a ∼ b ∈ Dx and c ∼ d ∈ Dx. Then by Lemma 2.3(iii), we have a ∼ b ≤ (a ∧ c) ∼ (b ∧ c)
and c ∼ d ≤ (c ∧ b) ∼ (d ∧ b) and so, by (ii), we get (a ∧ c) ∼ (b ∧ c) ∈ Dx and (c ∧ b) ∼ (d ∧ b) ∈ Dx.
Hence by (iv), we conclude that (a ∧ c) ∼ (b ∧ d) ∈ Dx.

(vii) Let a ∼ b ∈ Dx and c ∼ d ∈ Dx. Then by Lemma 2.3(iii), we have a ∼ b ≤ (a ∼ c) ∼ (b ∼ c)
and c ∼ d ≤ (c ∼ b) ∼ (d ∼ b) and so, by (ii), we get (a ∼ c) ∼ (b ∼ c) ∈ Dx and (c ∼ b) ∼ (d ∼ b) ∈
Dx. Hence by (iv), we conclude that (a ∼ c) ∼ (b ∼ d) ∈ Dx.

(viii) Let a ∼ b ∈ Dx and c ∼ d ∈ Dx. Since by (E3), c ∼ c = 1 ∈ Dx and d ∼ d = 1 ∈ Dx,
by (vi), we conclude that (a ∧ c) ∼ (b ∧ c) ∈ Dx and (b ∧ c) ∼ (b ∧ d) ∈ Dx and so, by (iv), we get
(a∧c) ∼ (b∧d) ∈ Dx and since a ∼ b ∈ Dx, by (vi), we conclude that (a ∼ (a∧c)) ∼ (b ∼ (b∧d)) ∈ Dx.
Therefore (a → c) ∼ (b → d) ∈ Dx.

(ix) Let E be an IEQ-algebra and a ∼ b ∈ Dx, c ∼ d ∈ Dx. Then by Lemma 2.3(i), we have
a ∼ b ≤ a → b and c ∼ d ≤ c → d and so, by (ii), we conclude that a → b ∈ Dx and c → d ∈ Dx.
Now, by Lemma 2.3xii, we have a → b ≤ (a ∨ c) → (b ∨ c) and c → d ≤ (c ∨ b) → (d ∨ b) and so,
by (ii), we get (a ∨ c) → (b ∨ c) ∈ Dx and (c ∨ b) → (d ∨ b) ∈ Dx. Hence by (v), we conclude that
(a ∨ c) → (b ∨ d) ∈ Dx. Moreover, since a ∼ b = b ∼ a and c ∼ d = d ∼ c, we get b ∼ a ∈ Dx,
d ∼ c ∈ Dx and in a similar way, we conclude that (b∨ d) → (a∨ c) ∈ Dx. Therefore by (iii), we have
(a ∨ c) ∼ (b ∨ d) ∈ Dx.

(x) Let E be a residuated lattice and a ∼ b ∈ Dx. Then by Theorem 4.10, Dx is a filter of E and
since by Lemma 2.3(i), a ∼ b ≤ a → b, we get a → b ∈ Dx and so, (a⊙ c) → (b⊙ c) ∈ Dx. In a similar
way, we conclude that (b⊙ c) → (a⊙ c) ∈ Dx. Therefore by (iii), (a⊙ c) ∼ (b⊙ c) ∈ Dx.

(xi) Let a ≤ b and x ∈ Da. Then Z{a,x} = {0} and if t ∈ Z{b,x}, then t⊙ b = 0 and t⊙ x = 0. By
(E2), t⊙a ≤ t⊙ b = 0, hence t⊙a = 0 and so, t ∈ Z{a,x}. Thus t = 0 and so, Z{b,x} = {0}. Therefore
x ∈ Db and so, Da ⊆ Db. □

Definition 4.13. The set of dense elements of EQ-algebra E is denoted by Ds(E) and defined as
follows:

Ds(E) = {x ∈ E | ¬x = 0}.

Example 4.14. Let E be the EQ-algebra given in Example 4.11. Then one can see that Ds(E) =
{a, b, c, 1}.

Proposition 4.15. Let E be a spanned EQ-algebra. Then D0 ⊆ Ds(E).
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Proof. Let E be a spanned EQ-algebra and a ∈ D0. Then Z{a,0} = {0} and since by Lemma 2.3(viii),

a⊙ ¬a ≤ 0̃ = 0, we get a⊙ ¬a = 0 and so, ¬a ∈ Z{a,0}. Hence ¬a = 0 and so, a ∈ Ds(E). Therefore
D0 ⊆ Ds(E). □

Theorem 4.16. Let E be a residuated EQ-algebra. Then D0 = Ds(E).

Proof. Let E be a residuated EQ-algebra. Then E is a good EQ-algebra and so it is a spanned EQ-
algebra. Hence by Proposition 4.15, D0 ⊆ Ds(E). Now, let a ∈ Ds(E). Then ¬a = 0. If t ∈ Z{a,0},
then a ⊙ t = 0 and so, by Lemma 4.5, t ≤ ¬a and since ¬a = 0, we get t = 0 and so, Z{a,0} = {0}.
Hence a ∈ D0 and so, Ds(E) ⊆ D0. Therefore D0 = Ds(E). □

By the following example we show that the condition spanned in Proposition 4.15 and the condition
residuated in Theorem 4.16 are necessary.

Example 4.17. Let E be the EQ-algebra given in Example 4.9. Then E is not a spanned and
residuated EQ-algebra and D0 ⊈ Ds(E). Because D0 = {a, 1} and Ds(E) = ∅ so, D0 ⊈ Ds(E) and
D0 ̸= Ds(E).

Definition 4.18. Let E be an EQ-algebra with the bottom element 0. Then Γ(E) is called an
associated production graph, if the vertices are just the elements of E, and for distinct a, b ∈ E, there
is an edge connecting a and b if and only if Z{a,b} = {0}. The edge that connects two vertices a and b
is denoted by e(a, b).

Example 4.19. Let E be the EQ-algebra given in Example 4.9. Then Z{0,a} = {0, a} and Z{0,b} =
Z{0,1} = Z{a,b} = Z{a,1} = Z{b,1} = {0}. Therefore E(Γ(E)) = {e(0, b), e(0, 1), e(a, b), e(a, 1), e(b, 1)}
and Γ(E) is given by the following figure:

s
s

s
s
�

�
�
��

A
A
A
AA

�
�

�
��

1

0

ba

Figure 3. Associated production graph Γ(E).

Example 4.20 ([17]). Let E = {0, a, b, c, d, 1}, where 0 ≤ a ≤ b ≤ c ≤ d ≤ 1. The multiplication and
fuzzy equality are defined as follows:

Table. 20 Table. 21

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 a a c
c 0 0 a a a d
d 0 0 a a a d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 c b a 0 0
a c 1 b a a a
b b b 1 b b b
c a a b 1 c c
d 0 a b c 1 d
1 0 a b c d 1

Then (E,∧,⊙,∼, 1) is a good EQ-algebra. Routine calculation shows that
Z{1,a} = Z{1,b} = Z{1,c} = Z{1,d} = {0}. Therefore E(Γ(E)) = {e(1, a), e(1, b), e(1, c), e(1, d)} and

Γ(E) is given the following figure:
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Figure 4. Associated production graph Γ(E).

Example 4.21. Let E be an EQ-algebra given in Example 3.17. Then routine calculation shows that
Z{1,a} = Z{1,b} = Z{1,c} = Z{1,d} = {0} and Z{a,d} = Z{c,d} = {0}. Therefore

E(Γ(E)) = {e(1, a), e(1, b), e(1, c), e(1, d), e(a, d), e(c, d)}
and Γ(E) is given by the following figure:
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Figure 5. Associated production graph Γ(E).

Definition 4.22 ([15]). An EQ-algebra E with the bottom element 0 is called an integral EQ-algebra.
If x⊙ y = 0, then x = 0 or y = 0, for all x, y ∈ L.

Theorem 4.23. Let E be an integral EQ-algebra. Then the associated production graph Γ(E) is
complete.

Proof. Let E be an integral EQ-algebra and x, y be distinct non-zero elements of E. If t ∈ Z{x,y},
then x⊙ t = 0 and y⊙ t = 0 and since E is an integral EQ-algebra, we get t = 0 and so, Z{x,y} = {0}.
If x = 0 and y ̸= 0 and t ∈ Z{0,y}, then y ⊙ t = 0 and so, t = 0. Hence Z{0,y} = {0} and so,
every two distinct elements of E are connected, Therefore, the associated production graph Γ(E)
is complete. □

Example 4.24. Let E = {0, a, b, c, d, 1}, where 0 ≤ a, b ≤ c ≤ d ≤ 1, a, b are incomparable. The
multiplication and fuzzy equality are defined as follows:

Table. 22 Table. 23

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a a a a a
b 0 a a a a b
c 0 a a a a c
d 0 a a a d d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 1 d d d d
a 1 1 d d d d
b d d 1 d d d
c d d d 1 d d
d d d d d 1 d
1 d d d d d 1
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Then (E,∧,⊙,∼, 1) is an integral EQ-algebra. Moreover, Z{x,y} = {0} for any two distinct elements
of E. Therefore Γ(E) is a complete graph and it is given by the following figure:
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Figure 6. Associated production graph Γ(E).

Theorem 4.25. Γ(E) is a connected graph with diameter at most two.

Proof. Since Z{1,x} = {0}, for any x ∈ E, we find that 1 is connected with all elements of E\{1}.
Hence both vertices are connected by a path and so, Γ(E) is a connected graph. Now, let x, y be two
vertices in Γ(E). If Z{x,y} = {0}, then d(x, y) = 1 and if Z{x,y} ̸= {0}, then the path e(x, 1, y) exists.
Hence d(x, y) = 2 and so,

diam(Γ(E)) = sup{d(x, y) | x, y ∈ V (Γ(E))} ≤ 2. □

Theorem 4.26. Let E be an EQ-algebra. Then:
(i) If E is a residuated EQ-algebra and Ds(E) = E\{0}, then Γ(E) is a complete graph.
(ii) If E is a spanned EQ-algebra and Γ(E) is a complete graph, then Ds(E) = E\{0}.

Proof. (i) Let x, y be non-zero elements of E. Then x, y ∈ Ds(E) and so, ¬x = ¬y = 0. Now, if
t ∈ Z{x,y}, then x ⊙ t = 0 and y ⊙ t = 0 and so, by Lemma 4.5, t ≤ ¬x,¬y. Hence t = 0 and so,
Z{x,y} = {0}. If x = 0, y ̸= 0 and t ∈ Z{0,y}, then y ⊙ t = 0 and so, by Lemma 4.5, t = 0 and so,
Z{0,y} = {0}. Therefore every two distinct elements of E are connected and so, Γ(E) is a complete
graph.

(ii) Let E be a spanned EQ-algebra, Γ(E) be a complete graph and x ∈ E\{0}. Then Z{0,x} = {0}
and since by Lemma 2.3(viii), x⊙¬x ≤ 0̃ = 0, we conclude that x⊙¬x = 0 and so, ¬x ∈ Z{0,x} = {0}.
Hence ¬x = 0 and so, x ∈ Ds(E). Thus E\{0} ⊆ Ds(E) and since ¬0 = 1, we get Ds(E) ⊆ E\{0}.
Therefore Ds(E) = E\{0}. □

Theorem 4.27. Let E be a residuated EQ-algebra. Then:
(i) Ds(E) = E\{0} if and only if Γ(E) is a complete graph.
(ii) If Ds(E) = E\{0} and |E| > 2, then Γ(E) is not a tree.
(iii) If Γ(E) is a tree, then Ds(E) = {1}.

Proof. (i) It follows from Theorem 4.26.
(ii) Let Ds(E) = E\{0}. Then by (i), Γ(E) is a complete graph and since |E| > 2, we conclude

that there exists a path which is a circle and so, Γ(E) is not a tree.
(iii) Since ¬1 = 0, we get 1 ∈ Ds(E). Now, if 1 ̸= x ∈ Ds(E), then ¬x = 0 and since Z{1,x} = {0},

we conclude that 1 and x are connected. Moreover, since E is a residuated EQ-algebra, we have

Z{0,x} = {a ∈ E | a⊙ x = 0} = {a ∈ E | a ≤ ¬x} = {a ∈ E | a ≤ 0} = {0}.
Hence 0 and x are connected and so, we have a path e(0, x, 1, 0) which is a circle, but this is impossible.
Therefore Ds(E) = {1}. □

Theorem 4.28. Let E be a spanned EQ-algebra that satisfies in the following conditions:
(i) |Ds(E)| = 1.
(ii) There is a ∈ E\{0} such that a ≤ x, for any x ∈ E\{0}.
Then Γ(E) is a star graph.
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Proof. Since Z{1,x} = {0}, we find that 1 is connected with every element of E\{1}. Now, let
x, y ∈ E\{1} such that x ̸= y. Since |Ds(E)| = 1, we conclude that ¬x ̸= 0 and ¬y ̸= 0 and so, by
(ii), there exists a ∈ E such that a ≤ ¬x and a ≤ ¬y. Now, by (E2) and Lemma 2.3(viii), we have
a⊙x ≤ x⊙¬x ≤ 0̃ = 0 and a⊙y ≤ y⊙¬y ≤ 0̃ = 0. Hence a⊙x = 0 and a⊙y = 0 and so, a ∈ Z{x,y}.
Thus Z{x,y} ̸= {0} and so x, y are not connected. Therefore Γ(E) is a star graph. □

By the following examples, we show that both conditions listed in Theorem 4.28 are necessary.

Example 4.29. Let E be the EQ-algebra given in Example 4.9. Then |Ds(E)| = 0 and Γ(E) is not
a star graph. Moreover, the graph Γ(E) is given by the following figure:
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Figure 7. Associated production graph Γ(E).

Example 4.30. Let E be the EQ-algebra given in Example 4.24. Then E is not a spanned EQ-algebra
and Γ(E) is not a star graph.

Example 4.31. Let E be the EQ-algebra given in Example 3.17. Then E is a spanned EQ-algebra
and by routine calculation, we can see that |Ds(E)| = 1 and condition (ii) of Theorem 4.28 does not
hold. Thus Γ(E) is not a star graph, because Z{c,d} = {0} and so, e(c, d) exists. Moreover, the graph
Γ(E) is given by the following figure:
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Figure 8. Associated production graph Γ(E).

In the following, we study the relation between implication graphs and production graphs of resid-
uated and involutive EQ-algebras.

Theorem 4.32. Let E be a residuated EQ-algebra and x ∈ E. Then Zx ⊆ Dx.

Proof. Let y ∈ Zx. Then r({x, y}) = {1}, if t ∈ Z{x,y}, then x⊙ t = 0 and y ⊙ t = 0 and since E is a
residuated EQ-algebra, by Lemma 4.5, we get x ≤ ¬t and y ≤ ¬t and so, x → ¬t = 1 and y → ¬t = 1.
Hence ¬t ∈ r({x, y}) and so, ¬t = 1 and since E is a separated EQ-algebra, we conclude that t = 0
and so, Z{x,y} = {0}. Therefore y ∈ Dx and so, Zx ⊆ Dx. □

Theorem 4.33. Let E be an involutive EQ-algebra and x ∈ E. Then Dx ⊆ Zx.

Proof. Let y ∈ Dx. Then Z{x,y} = {0}, if t ∈ r({x, y}), then x → t = 1 and y → t = 1 and so, x ≤ t
and y ≤ t. Now, by (E2) and Lemma 2.3(ix), we have x⊙ ¬t ≤ t⊙ ¬t ≤ 0 and y ⊙ ¬t ≤ t⊙ ¬t ≤ 0.
Hence x ⊙ ¬t = 0 and y ⊙ ¬t = 0 and so, ¬t ∈ Z{x,y}. Thus ¬t = 0 and since E is an involutive
EQ-algebra, we get t = ¬¬t = ¬0 = 1 and so r({x, y}) = {1}. Therefore y ∈ Zx and so, Dx ⊆ Zx. □

Theorem 4.34. Let E be an involutive residuated EQ-algebra. Then the implication graph Ω(E) and
the production graph Γ(E) coincide.
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Proof. Let E be an involutive residuated EQ-algebra and x ∈ E. Then by Theorem 4.32 and The-
orem 4.33, we conclude that Dx = Zx. Therefore the implication graph Ω(E) and the production
graph Γ(E) coincide. □

Example 4.35. Let E be the EQ-algebra in Example 3.17. Then the implication graph Ω(E) and
the production graph Γ(E) coincide.

5. Conclusion

The results of this paper are devoted to the study of implication and production graphs of EQ-
algebras. A quasi r-prime up set and some of its related properties are investigated. Further, impli-
cation graphs are constructed and it is shown that implication graphs of separated EQ-algebras are
connected graph with diameter at most two and under certain conditions they are star graphs. Also,
several examples of implication graphs are given. Moreover, the notion of zero divisors by a product
operation is defined and by means of zero divisors of an EQ-algebra with the bottom element 0, the
production graph is introduced and several examples of production graphs are provided. Also, it is
proved that the production graph is a connected graph with diameter at most two and under certain
conditions, it is a star graph. Finally, when studying the implication graph and the production graph
in involutive residuated EQ-algebras, we have proved that they coincide.
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