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CONTROLLED CONTINUOUS K —¢g-FUSION FRAME IN HILBERT
C*-MODULES

FAKHR-DINE NHARI! AND MOHAMED ROSSAFI?*

Abstract. Frame theory has been a great revolution for recent years. This theory has several
properties applicable in many fields of mathematics and engineering and plays a significant role in
signal and image processing, which lead to many applications in informatics, medicine and in the
theory of probability. In this paper, we introduce the concept of controlled continuous g-fusion frame
and controlled continuous K — g-fusion frame in Hilbert C*-modules. Then we investigate some of
their properties. Also, we discuss the perturbation problem for a controlled continuous K — g-fusion
frame.

1. INTRODUCTION AND PRELIMINARIES

In 1952, the concept of frame in Hilbert spaces has been introduced by Duffin and Schaeffer [6] to
study some deep problems in nonharmonic Fourier series by abstracting the fundamental notion of
Gabor [9] for signal processing. Frames have been used in image processing, data compression and
sampling theory.

In 2000, Frank—Larson [8] introduced the concept of frames in Hilbet C*-modules as a generalization
of frames in Hilbert spaces. The basic idea was to consider modules over C*-algebras of linear spaces
and to allow the inner product to take values in the C*-algebras [13].

Many generalizations of the concept of frame have been defined in Hilbert C*-modules [10,12,16-20].

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms
for inverting the frame operator [3].

The paper is organized as follows, we continue this introductory section by recalling briefly the
definitions and basic properties of C*-algebra and Hilbert C*-modules. In Section 2, we introduce
the concept of (C, C/)—controlled continuous g-fusion frame, the (C, C/)—controlled continuous g-fusion
frame operator and establish some results. In Section 3, we introduce the concept of (C, C’/)—controlled
continuous K — g-fusion frame and give some properties. Finally, in Section 4, we discuss the pertur-
bation problem for (C,C")-controlled continuous K — g-fusion frame.

In the following, we briefly recall the definitions and basic properties of C*-algebra and Hilbert
o/-modules. Our reference for C*-algebras is [4,5]. For a C*-algebra <7, if a € &/ is positive, we write
a >0, and o/ denotes the set of positive elements of <.

Definition 1.1 ([4]). If &7 is a Banach algebra, an involution is a map a — a* of &/ into itself such
that for all a and b in & and all scalars « the following conditions:

(1) (") =a.

(2) (ab)* =b*a*.

(3) (aa+b)* = aa* + b*
hold.
Definition 1.2 ([4]). A C*-algebra 7 is a Banach algebra with involution such that

la*all = [lall?

for every a in <.
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Example. 2 = B(4¢), the algebra of bounded operators on a Hilbert space, is a C*-algebra, where
for each operator A, A* is the adjoint of A.
Definition 1.3 ([11]). Let o be a unital C*-algebra and U be a left o/-module such that the linear
structures of & and U are compatible. U is a pre-Hilbert «/-module if U is equipped with an .<7-
valued inner product (.,.) : U x U — & such that is sesquilinear, positive definite and respects the
module action. In other words,

(i) (z,z) > 0for all x € U and (z,z) = 0 if and only if z = 0,

(ii) (ax+y,z) = al{z,2z) + (y,z) for all a € & and z,y,z € U,

(iil) (x,y) = (y,x)* for all z,y € U.

For z € U, we define ||z|| = ||(z, z)||2. If U is complete with ||.||, it is called a Hilbert /-module or
a Hilbert C*-module over 7. For every a in a C*-algebra 7, we have |a| = (a*a)% and the @7-valued
norm on U is defined by |z| = (z,z)2 for z € U.

Throughout this paper, U is considered to be a Hilbert C*-modules over a C*-algebra, we denote
that Iy is the identity operator on U, {H, tweq is a sequence of Hilbert C*-submodules of U and
{Vw}wea is a sequence of Hilbert C*-modules.

We denote by End’, (U, V,,) a set of all adjointable operators. In particular, End’,(U) denotes the
set of all adjointable operators on U. Z(T') for the range of T and GL*(U) denotes the set of all
bounded positive linear operators which have bounded inverse.

The following lemmas will be used to prove our mains results

Lemma 1.1 ([15]). Let U be a Hilbert o/ -module. If T € End’,(U), then
(Tx,Tz) <||T|*(z,z), Yz eU.
Lemma 1.2 ([2]). Let U and H be two Hilbert o/ -modules and T € End’,(U, H). Then the following
statements:
(i) T is surjective,
(if) T™ is bounded below with respect to the norm, i.e., there is m > 0 such that ||T*z|| > m| z||
forallx € H,

(iil) T is bounded below with respect to the inner product, i.e., there ism’ > 0 such that (T*x, T*x)
>m/(z,z) for allz € H

are equivalent.
Lemma 1.3 ([1]). Let U and H be two Hilbert o/ -modules and T € End’,(U, H). Then:
(i) If T is injective and T has closed range, then the adjointable map T*T is invertible and
(T 7)Y~ < T°T < || T
(ii) If T is surjective, then the adjointable map TT™* is invertible and
I(TT*)~ Y|~ < TT* < || T
Lemma 1.4 ([2]). Let U be a Hilbert o/ -module over a C*-algebra o7, and T € End?,(U) such that
T* =T. The following statements:
(i) T is surjective,
(ii) There are m, M > 0 such that m|z| < ||Tz| < M||z||, for all x € U,
(i) There are m', M’ > 0 such that m’(z,z) < (Tz,Tz) < M'{(z,z), for allx € U
are equivalent.
Lemma 1.5 ([7)). Let E, H and L be Hilbert of -modules, T € End*,(E,L) and T" € End*,(H,L).
Then the following two statements:
(1) T'(T")* < ATT* for some A > 0,
(2) There exists ;1> 0 such that ||(T')*z|| < pl|T*z||, for all z € L
are equivalent.

Lemma 1.6 ([1]). If ¢ : &/ — B is an x-homomorphism between C*-algebras, then ¢ is increasing,
that is, if a < b, then ¢(a) < ¢(b).



CONTROLLED CONTINUOUS K — g-FUSION FRAME 261

2. CONTROLLED CONTINUOUS g-FUSION FRAME IN HILBERT C*-MODULES

Let X be a Banach space, (2, 1) a measure space and a measurable function f : @ — X. The
integral of the Banach-valued function f has been defined by Bochner and others. Most of the
properties of this integral are similar to those of the integral of real-valued functions. Since every
C*-algebra and Hilbert C*-module is a Banach space, thus we can use this integral and its properties.

Definition 2.1. Let {H,,},co be a sequence of closed submodules orthogonally complemented in U,
Py, be the orthogonal projection from U to Hy,, Ay € End’, (U, V,,), w € Q and {vy, }weq be a family
of weights in 7, i.e., each v, is a positive invertible element from the center of the C*-algebra <.
We say A = {Hy, Ay, Uy fwea 1S a continuous g-fusion frame for U if

(1) for each z € U, {Py,,z}weq is measurable;

(2) for each z € U, the function A : Q — V,, defined by A(w) = A,z is measurable;

(3) there exist 0 < A < B < oo such that

Az, z) < /vi(AwPHw%AwPwa)d,u(w) < B{z,x), VY e U. (2.1)
Q
We call A and B the lower and upper continuous g-fusion frame bounds, respectively. If A = B, we
call A the tight continuous g-fusion frame. Moreover, if A = B = 1, A is called the Parseval continuous
g-fusion frame.

Definition 2.2. Let C, C' € GLT(U) and {Hy, }weq be a sequence of closed submodules orthogonally
complemented in U, Pg, be the orthogonal projection from U to Hy, A, € End’, (U, V,), Yw € Q
and {vy, }weq be a family of weights in &7, i.e., each v,, is a positive invertible element from the center

of the C*-algebra of. We say A = {Hy, Ay, Uy Jwen 1s a (C, C/)—controlled continuous g-fusion frame
for U if

(1) for each z € U, { Py, z}weq is measurable,
(2) for each x € U, the function A : Q — V,, defined by A(w) = A,z is measurable,
(3) there exist 0 < A < B < oo such that
Az, z) < /vi(AwPHwa,AwPHwC/x>d,u(w) < B(z,z), VzxeU. (2.2)
Q
We call A and B the lower and upper (C, C',)—controlled continuous ¢ -fusion frame bounds, respec-
tively. If only the right-hand inequality of (2.2) is satisfied, we call A the (C, C’/)—controlled continuous

g-fusion Bessel sequence. If A = B, we call A the tight (C, C’/)—controlled continuous g-fusion frame.
Moreover, if A= B =1, A is called the Parseval (C,C")-controlled continuous g-fusion frame.

Proposition 2.1. If {vyAw P, bwea is a (C,C)-controlled continuous g-frame for U, then A =
{Huy, Aw, V0 }uweq is a (C,C")-controlled continuous g-fusion frame for U.

Proof. Since {vyAwPp, Ywea is a (C, C')-controlled continuous g- frame for U, we have

w w

Az, z) < /(vawPH Cx, vy Py, C x)dp(w) < Bz, z)
Q
for each x € U. Then

Az, z) < /vi(AwPHwa,AwPHwClx>du(w) < Bz, x).
Q

Hence A is a (C,C")-controlled continuous g-fusion frame for U. O

Suppose that A = {H,,, Ay, Uy }weq be a (C, C,)—controlled continuous g-fusion Bessel sequence
for U. The bounded linear operator T o) : GweaVw — U is defined by

Tieoy (T twea) = / v (CC')2 Py Aywdp(w),  V{wwhwen € SuweaVi. (2.3)
Q
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T(C,C/) is called the synthesis operator for the (C, C')—controlled continuous g-fusion frame A.
The adjoint operator T(*C oy’ U — @&yeaViy given by
* / 1
T(C,C’)(y) = {vawPHw (CO)z y}weﬂ’ (2.4)
is called the analysis operator for the (C, C,)—controlled continuous g-fusion frame A.
When C and C" commute with each other and commute with the operator Py, A% A, Py, , for each
w € Q, then the (C, Cl)—controlled continuous g-fusion frame operator S(C’C/) : U — U is defined as

Sicoy(@) = T(C,C’)T(%,c/)(x) = /vfuC Py AjyAy Pr, Caxdp(w), Vo e U. (2.5)
Q

From now we assume that C' and ¢’ commute with each other and commute with the operator
Py, Aj Ay Py, , for each w € .

Lemma 2.1. Let A be a (C,C')-controlled continuous g-fusion frame for U. Then the (C,C")-
controlled continuous g-fusion frame operator S(c,c’) 1s positive, self-adjoint and invertible.

Proof. For each f € H, we have S ¢ o (2) = [ v2C" Py, A% Ay P, Czdpu(w)and

/v?u(AwPHwCo:,AH,PWWC,:U}du(w) = </U?UCIPHU,AZAU,PHU,C'xdu(w),x> = (Sc,cy (@), 7).
Q Q

Since A is a (C, C")-controlled continuous g-fusion frame for U, it follows that
Alz,x) < (S0 (2),2) < B(z,z), VzeUl. (2.6)

So, S(c,c’) is a positive. Also, it is clearly bounded and linear. On the other hand, for each x, y € U

(S(C,C/)(x),w = </viC/PHwA;AwPHwC:L'du(w),w
Q
— (z, / w2 C Py, Ny Ay P, C ydp(w))
Q
= <xvs(c’,c)(y)>-

That implies S(*c oy = 5(0/70). Also, as C' and C" commute with each other and commute with

the operator Pp,, A7, Aw Py, for each w € Q, we have S oy = S ¢)- So, the (C, C")-controlled

continuous g-fusion frame operator S(C,C’) is self-adjoint and we have

Therefore the (C, C")-controlled continuous g-fusion frame operator S(c,cy Is invertible. O

Theorem 2.1. If A = {Hy, Ay, vy bwea is a (C,C")-controlled continuous g-fusion frame for U with
frame bounds A and B, then T oy is surjective with || T o\ | < VB and T(*C o) is injective, closed.

Proof. For each x € U, we have

w w

Az, z) < /vi(AwPH Cx, APy, C z)dp(w) < Blz, z).

Q
Then
Az, z) < (T(*Cycf):E,T(*Cyc/)@ < Bz, z). (2.8)
Hence
VAl < 1T g2l (29)
So, T(*C’C,) is injective, we now show that the Z(Ty) is closed.
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Let {T(*C7C/)(‘Tn)}n€N e R(T (.o’ )) such that hmT(CC )( n) =Y.
Let n, m € N, from (2.8), we have

(Tr = Ty, Ty — L) < AT (CC)( T )s T(*CC)( —Tm)).

Then

[{(Tn = Ty Tn — Tm)|| < A_1||T(*C}c')($n - xm)H2~
Since {T(*C C,)(xn)}neN is a Cauchy sequence in @yeq Vi, S0, ||[{(Zn — Tm, Tn — Tm)|| = 0. Therefore
the sequence {x, }nen is a Cauchy sequence in U and there exists « € U such that limz,, = . Again,

n
by (2.8), we have
ITte.cry@n = Tiocr )95”2 < Bl{an — 2,20 — )|,

T* (x)|| — 0 implies that T )( x) =y, hence Z(T"

thus ”TCC)( n) = (c,c") (c,c’ (c,c’)
T(C)C ) Is surjective. O

) is closed, finally

We estabilish an equivalent definition of (C, C")—controlled continuous g-fusion frame.

Theorem 2.2. Let C, C' € GLT(U) and {Hy}wea be a sequence of closed submodules orthogonally
complemented in U, Py, be the orthogonal projection from U to H,,, Ay, € End:, (U, V), Yw € Q
and {vy twea be a family of weights in <, then A = {W;,A;,v;};es is a (C, C")-controlled g-fusion
frame for U if and only if there exist two constants 0 < A < B < oo such that

Allz]* <

/vimechx,AwPHwC’@du(w)H < Ble|?, Vzel. (2.10)
Q

Proof. If A is a (C,C")-controlled g-fusion frame for U, then we have inequality (2.10). Conversely,
assume that (2.10) holds. From (2.4), the (C,C")-controlled g-fusion frame operator S(c ¢y is positive,
self-adjoint and invertible. Then for all € U, we have

((Sicon)?®, (Sie,01)?7) = (Sie,0ryz,7) = /U72D<AwPHwC$7AwPHwCl@du(w)- (2.11)
0

w\»—-

From (2.11) and (2.10), for each = € U, we have

VA2l < |15}

So, by Lemma 1.4, we conclude that A is a (C, c )-controlled continuous g-fusion frame for U. O

Gonell < VB|lz||, VzeU.

Theorem 2.3. If the operator Ticcoy + GweaVw = U defined by T({xy}weq) = fQ vw(CC'/)%x

Py, N zwdp(w) is well-definite and surjective, then {Hy, Ay, Vo bweq is a (C,C)-controlled contin-
uous g-fusion frame for U.

Proof. For each x € U, we have

H/ (A Py, C, Ay Py, C x)dp(w H H/v (AP, (CC )22, Ay Py, (CC')2 2)dp(w H
Q

<x, 02 (CC'Y3 Py, A% Ay Prr, (CC) 2 ) dpu(w H

=nu¢naax&mAmexccvéth»H

<zl T ool {vwAw P, (CC )2 tueal < [z | Tic ol

2
X

/mmmwm%M&wmﬂ<m
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1
2

)

. |T<C,c/>|H [ 0P Cr AP €
Q

hence
H /U?U<AwPchx7AwPHwC/x>d/~L(w)H <N on Pl (2.12)
Q
Since T{¢ ¢y is surjective, by Lemma 1.2, there exists v > 0 such that
vije| < Tgcryzl, Ve el,
so, T(*c,c’) is injective and this implies that T(*Cﬂ oy U — %’(T(*ac,)) is invertible. Therefore
(T 1~ ))_IT(*C ot =7, for each x € U, then
(c.c” '
2 * —1y2 * 2
l2l < (T . ) W T ooy @7 Ve el
hence
1Tar- )72l < T @IP Vo €U,
So,
Tacr, ) 12l < | [ 200 P, Co P, € )| 213)
’ Q

From inequalities (2.12) and (2.13), we conclude that {Hy,, Ay, vy }weq is a (C, C')-controlled contin-
uous g-fusion frame for U. O

Theorem 2.4. Let A = {Hy, Ay, v twea be a (C,C)-controlled continuous g-fusion frame for U
and I’ = {H,,, Ty, Uy fwea be a (C, Cl)—contmlled continuous g-fusion Bessel sequence for U, suppose
that C and C' commute with Py It Ay Pr, for each w € Q. If the operator Q : U — U defined
by Q(z) = [, v2CPy, T% Ay Py, C xdp(w) is surjective, then T is a (C,C")-controlled continuous
g-fusion frame for U.

Proof. Let Th and Tt be the synthesis operators of A and T, respectively.
For each x € U, we have

Qz) = /viCPHwF;AwPHwC/xdu(w)
Q
= / 02 (CC')? Py, T% Ay Py, (CC') 2 zdp(w)
Q
= Tt ({vw A Prr,, (CC )22} eq)
=TrTx(x).
Since @ is surjective, for each y € U, there exists € U such that y = Q(x), hence y = TrTx(z),

because Trz € ®yeqViw, then Tt is surjective and therefore by Theorem 2.3, I' is a (C, C/)—controlled
continuous g-fusion frame for U. O

Theorem 2.5. Let A = {Hy, Ay, Vo twea be a (C,C)-controlled continuous g-fusion frame for U
with frame bounds A and B. If 8 € End,(U) is injective, has closed range, 0Py, C = Py, C0
and HPH,WC/ = PHwC/H for each w € Q, then {Hy, Ay, vy twea is a (C, Cl)-contmlled continuous
g-fusion frame for U.

Proof. Let A be a (C, C',)—controlled continuous g-fusion frame for U with frame bounds A and B,
then for each = € U,

Az, z) < /vi(AwPHwa,AwPHwC/x>du(w) < B{z,x),
Q
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and for each x € U, we have

/ 02 (ApOPy, C, ApOPy, C z)dp(w) = / 02 (A Py, COz, Ay Py, C 02)dp(w) (2.14)
Q Q
From equality (2.14), for each x € U,

/ 02 (A0 Py, Cx, Apb Py, C z)du(w) < Bfz, Ox)
Q
< B|6|* (z,z),
and
Az, 0z) < / 02 (AwOPy, Cx, APy, C 2)dp(w).

Q
Since 6 is injective, has closed range, by Lemma 1.3,

1(6°6)~ 1|7 (w, z) < (007, )
So,
AY0°0)"Y o, 7) < / V2 (AwOPs. O, A0 Pr. C aydu(w).
Q
Then {Hy, Awb, vy bwea is a (C, C")—controlled continuous g-fusion frame for U. O
In the next theorem, we take V,, C U for all w € Q.

Theorem 2.6. Let A = {Hy, Ay, Vo Jweq be a (C, C/)—controlled continuous g-fusion frame for U with
frame bounds A and B. If 0 € End’,(U,V,,) is injective, has closed range, suppose that O\, Py, C =
APy, CO and QAwPHwC/ = AwPHwClH for allw € Q, then {Hy,, 0\, vy twea 15 a (C, C/)—contmlled
continuous g-fusion frame for U.

Proof. For each x € U, we have

Az, z) < /vi(AwPHwCa:,AwPHwC,x>d,u(w) < B{z,x)
Q
and
/ 02 (0A iz, C, 0A Prr., C' du(w) = / 02 (A Py, COz, Ay Pyt C 0)dpa(w). (2.15)
Q Q
From equality (2.15) follows

/ 02 (0A Py, C,0M, Py, C 2)dp(w) < B(fz, 0z)
Q
< B|/4||*(z, z).
Also, for each z € U,
Az, 0z) < / v2 (0A Py, Cx,0A Py, C z)dp(w),
Q
Since 6 is injective, has closed range, therefore

Al )" w,z) < (0%0z,x),
S0,
Al 0) "N, z) < / 02 (A, P, C, OA, Py, C ) dpu(w).
Q
Thus {H,, Ay, vy }wea is a (C, C/)—controlled continuous g-fusion frame for U. O
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Theorem 2.7. Let for every w € Q, A, € End,(U,Vy) and {Yw}vea, be a (C,C)-controlled
continuous frame for Vi, with frame bounds C,, and D., such there exist C' and D such that C < Cy,
and D,, < D, suppose that C' commutes with P, A} for all w € Q, and the following conditions are
equivalent:

(1) {vwCPH Al Ywotvea, is a (C,C)-controlled continuous frame for U.

(2) {Huy, A, Vw tweq 18 a (C, C)-controlled continuous g-fusion frame for U.

Proof. Let {Yw}veq, be a (C,C)-controlled continuous frame for V,,, then for each = € U, we have

Cy (VA Pr, Cx, vy Ay Py, C) < /(vau,PHwC'o:,yww)(Cyww,vawPHwa>du(v)

Qu
< Dy (v P, Cx,y vy P, Cx),
then
Cw (VN P, Cx, vy Ay Py, C) < /(w,vaPHwAfuywm<vaPHwAfUCywwy,x}d,u(v)
Qqp
< Dy (v P, Cxy vy Ay P, C),
S0,

C{vypAy P, Cx, vy Aoy Prp,, C) < /(x,vaPHwAfuywm)(CUwCPHwAZ,yw,U,a:)du(v)
Qo
< D{vyAy Py, Cx, vy Ny Py, Cx),

w w

hence

C/vi(AwPHwa,AwPHmC@du(w) §//(x,vaPHwAnyw,ﬁ(C’va’PHU,A*wyw,U,m)du(v)du(w)
Q Q Qu

w w

< D/vi(AwPH Cx, Ay Py, Cx)du(w). (2.16)
Q

Suppose that {vy,CPr, A% Yw v tven, is a (C, C)-controlled continuous frame for U with frame bounds
C' and D,7 then for each x € U,

O, <17,1‘> < //<1'7'UwCPHwA*wyw,v><CUwCPHwA:;yw,vam>dﬂ(v)dﬂ(w) < D/ <1‘,I>, (2'17)
Q Q

by (2.16) and (2.17), we have

C/vi(AwPHwCLAwPHwa>du(w) < D’ (z, )
Q

and

C (z,z) < D/v?u(AwPHwC’z,AwPHwC’z>du(w).
Q

Therefore

Dilcl <I’,SC> S /U1211<A111PH1UCI7Au;PHwCI>d:u(w) S CilD, <l‘,l‘>, Ve eU.
Q

So, {Huy, Aw, Uy fweq is a (C, C)-controlled continuous g-fusion frame for U. Conversely, assume that
{Huy, A, Y Jweq is a (C, C)-controlled continuous g-fusion frame for U with frame bounds C' and
D', then for each z € U,

C'(z,z) < /Ui(AwPHwa,AwPHwC@du(w) < D'(z,z),
Q
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and by (2.16), we have

CC (z,z) < //(x,vaPHwAfuyw,w<vaC’PHwAfvyw7v,m)du(v)dﬂ(w) < DD (x,x).
Q Q,
Thus we can conclude that {v,C Py, AXyw .o tveq, is a (C, C)-controlled continuous frame for U. O
Under which conditions a (C,C")-controlled continuous g-fusion frame for U with U a C*-module
over a unital C*-algebras A is also a (C,C")-controlled continuous g-fusion frame for U with U a

C*-module over a unital C*-algebras B? the following theorem answers this question. In the next
theorem, we take V,, C U, Yw € Q.

Theorem 2.8. Let (U, o7, (.,.)o) and (U, B,{.,.)z) be two Hilbert C*-modules and let ¢ : o/ — A be
a x-homomorphisme and 6 be a map on H such that (0x,0y)s = ¢((x,y)w) for allz, y € U. Suppose
that A = {Hy, Ay, Vo bweq is a (C,C")-controlled continuous g-fusion frame for (U, </, (.,.) ) with
the frame operator Sg and lower and upper bounds A and B, respectively. If 0 is surjective such that
OMA P, = AP, 0 for each w € Q and 0C = CO and 0C" = C'0, then {Hy, Ay, d(vw) }wea is a
(C, Cl)—contmlled continuous g-fusion frame for (U, B, {.,.) ) with frame operator Sz and lower and
upper bounds A and B, respectively, and (Sz0x,0y)z = ¢({Sw,y) o).

Proof. Since 6 is surjective, for every y € U, there exists x € U such that 8z = y. Using the definition
of a (C,C")-controlled continuous g-fusion frame for (U, <7, (.,.) ), we have

Az, x) oy < /vﬁ,(AwPHwC’x,AwPHwC'm>%du(w) < B(z,x) .
Q
Then

¢(A{z, x) o) < ¢</Ui}(AwPHwa,AwPH,wC,@ddu(w)) < ¢(Blw,2) ).
Frome the definition of the *-homomorphism, we have

Ap((z,2) o) < /gb(vi,)gb((AwPHwa,AwPHwC/@ddu(w)) < Bo((z,7) ).
Q

Using the relation between 6 and ¢, we get

Albz,02) 5 < / D(v0)* (O Py, C, 0A Py, C ) pdpu(w) < B0z, 02) 5.
Q

Since OA; Py, = A;j Py, 0 for each j € J and 6C = C'f and 0C" = 0/9, we have
A0z, 02) 5 < / B(ve)? (AP, COz, Ay Pry, C 02) pdpu(w) < B{0z, 0x) 5.
Q

Therefore
A<y7y>35 S /¢(HU))2<A11)PHwCy; AwPHwOIy>35 S B<yay>%7 Vy cU.
Q

This implies that {H,,Aw,d(ve)}wea is a (C,C )-controlled continuous g-fusion frame for
(U, B,{.,.)%).
And for each x € U,

P((Swrz,y)er) = ¢
[0

<</Ui)C/PHwAZ}AwPHwCId/L(w)’y>m>
Q

O
</UEU<A1UPHwa7AwPH,wC/y>g{d/,L(w)>
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— [ 600 (0 Pit, CO2. 0, P, C 8 )
Q

oy / $(0)2C Pry, A% Ay Par, COdp(w), 0y)
Q

3. CONTROLLED CONTINUOUS K — ¢g-FUSION FRAMES IN HILBERT C*-MODULES

We begin this section with the following

Lemma 3.1 ([14]). Let {Hy}wea be a sequence of orthogonally complemented closed submodules of
U and T € End,(U) invertible, if T*TH,, C H,, for each w € Q, then {TH,}wea is a sequence of
orthogonally complemented closed submodules and Py, T* = P, T* Pry,, .

Definition 3.1. Let K € End’,(U) and let { H,, }w,cq be a sequence of closed submodules orthogonally
complemented in U, Py, be the orthogonal projection from U to H,, A, € End%, (U, V,), for each
w € Q and {vy Jweq be a family of weights in 7, i.e., each v, is a positive invertible element from
the center of «7; we say that A = {Hy, Ay, Uy fweq is a continuous K — g-fusion frame for U if

(1) for each xz € U, {Py,,z}weq is measurable;

(2) for each = € U, the function A : Q — V,, defined by A(w) = A,z is measurable;

(3) there exist 0 < A < B < oo such that

A(K*x, K*x) < /vi(AwPwa,AwPwa)du(w) < B(z,x), VzeUl. (3.1)
Q
We call A and B lower and upper frame bounds of a continuous K — g-fusion frame, respectively.

Definition 3.2. Let C,C" € GLT(U) and K € End*,(U), {Hy}weo be a sequence of closed sub-
modules orthogonally complemented of U, {vy}weq be a family of weights, i.e., each v, is a pos-
itive invertible element from the center of &/ and A, € End’(U,V,,) for each w € Q. We say

A = {Hy, Ay, v }wea is a (C, C")—controlled continuous K — g-fusion frame for U if there exist
0 < A < B < o such that

A(K*x, K*x) < /vi(AwPHwa,AwPHwC/@dﬂ(w) < B(z,x), VzeU. (3.2)
Q

The constants A and B are called a lower and an upper bounds of a (C, C,)-controlled continuous
K — g-fusion frame, respectively. If the left-hand inequality of (3.2) is an equality, we say that A is a
tight (C, C,)—controlled continuous K — g-fusion frame.

Remark 3.1. If A is a (C, C")-controlled continuous K — g-fusion frame for U with bounds A and B,
we have

AKK* < 80,01y < Bly. (3.3)
From inequality (3.3) and equality (2.5), we have

Lemma 3.2. Let K € End*,(U) and A be a (C,C")-controlled continuous g-fusion Bessel sequence
for U. Then A is a (C, Cl)-contmlled continuous K — g-fusion frame for U if and only if there exists
a constant A > 0 such that AKK™ < S ¢y, where S ¢y is the frame operator for A.

Theorem 3.1. Let A = {H,, Ay, Uy bweq and T = {Wy,, Ty, Uy fweq be two (C, C/)—com‘rolled con-
tinuous g-fusion Bessel sequences for U with bounds By and Bs, respectively. Suppose that T and Tt
are their synthesis operators such that TrTx = K* for some K € End*,(U). Then both A and T' are
(c, Cl)-controlled continuous K and K* — g-fusion frames for U, respectively.
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Proof. For each x € U, we have

(K*z, K*x) = (It TRz, Ty Txa) < ||Tv|*(Tx, Tx f)

< Bg/vi(AwPHwC’x,AwPHwC"z>d;L(w).
Q

Hence
By Y K*x, K*z) < /vi(AwPHwa,AwPHwC/x>dp(w).
Q
This means that A is a (C,C")-controlled continuous K — g-fusion frame for U. Similarly, I is a
(C, C’/)—controlled continuous K* — g-fusion frame for H with the lower bound By . 0

Theorem 3.2. Let Q € End:,(U) be an invertible operator on U and A = {Hy, Aw, Uy fwea be
a (C, Cl)—contmlled continuous K — g-fusion frame for U for some K € End%,(U). Suppose that
Q*QH, C H,, Yw € Q and C, C' commute with Q. Then I' = {QHy, Ay P, Q% vy }weq 5 a
(C, Cl)-controlled continuous QK Q* — g-fusion frame for U.

Proof. Since A is a (C, C/)—controlled continuous K — g-fusion frame for U, 3 A, B > 0 such that

w w

A(K*z, K*x) < /v3,<AwPH Cx, APy, C z)dp(w) < Blz,z), VzeU.
Q

Also, @ is an invertible linear operator on U, so, for any w € Q, QH,, is closed in U. Now, for each
x € U, using Lemma 3.1, we obtain

/ 02 (A Pr Q" Posr, Cty A Prr. Q* P, C ) dp(w) = / 02 (A Por. Q" Cr, My Pyt Q7 C' ) dpa(w)
Q Q

= / 02 (AP, CQ*z, Ay Py, C' Q*z)dpu(w)

Q
<B(Q'f,Q"f) < B|Q|*(z, ).
On the other hand, for each f € H,
A((QKQ")"z, (QKQ")"z) = A(QK"Q"z, QK" Q")
< A|QIHK*Q*x, K*Q*x)

< QI / 02 (AP, C(Q*2), A Prr, C (@) dps(uw)

Q
QI [ ¢ (A Pi. Q" A Pit, Q°C ) di(w)
Q
= ||QH2 /U?U<AwPHwQ*PQHU, C(E, AwPHwQ*PQHWC/.’E>d/QL(U}).
Q
Then
A /
W((QKQ*)%, (QKQ")"x) < /vi(AwPHwQ*PQHwCa:,AwPHwQ*PQHwC x)dp(w).
Q
Therefore T is a (C, C/)—controlled continuous QK Q* — g-fusion frame for U. g

Theorem 3.3. Let Q € End%,(U) be an invertible operator on U and T’ = {QH.y, Ay Pr,, Q*, v fwen
be a (C, C/)—contmlled continuous K — g-fusion frame for U for some K € Endt,(U). Suppose that
Q*QH, C Hy,, Yw € Q and C, C' commute with Q. Then A = {Hy, Ay, vy tweq is a (C,C")-
controlled continuous Q' KQ — g-fusion frame for U.



270 F-D. NHARI AND M. ROSSAFI

Proof. Since T' = {QH.y, A Prr,, , Vo }uweq is a (C, C')-controlled continuous K — g-fusion frame for U,
there exists two constants A, B > 0 such that

A(K*x, K*x) < /vi(AwPHwQ*PQHwa,AwPHwQ*PQHwC/@du(w) < B(z,z), VxeU.
Q
Letting = € U, we have

A(QTIKQ) z, (QTTKQ) z) = AQ'K™(Q™) 2, Q" K*(Q™")"x)
< AQIMHE™ Q1) z, K*(Q71) )

< QI / 02 (A Prr., Q" Pow, C(Q V),
Q

AP, Q" Pom, 0 (Q ") x)dp(w)

<qQI? / 2 (A Pir, Q°C(Q ), A Prr, Q°C (@) ) dp(w)
Q

ok / 2 (A Prr, Q% (Q V) Cr, A Prr, Q7(Q 1) C ) dpu(w)

Q

= 1QIP [ V2 {AuPa, Cor A Prt, € )ip(w)
Q
Then, for each f € H, we have

A /7
Top (@ K@= (@Q7KQYa) < / v2 (A Py, O, APy, O 2)dps(w).
Q

Also, for each x € U, we have

/vi(AwPHw Cx, Ay Po,, C'z)dp(w) =
Q

v2 (A P, CQ*(Q™ 1), Ay P, O’ Q*(Q™Y) ) dpu(w)

02 (A Pr, Q*C(Q™ 1) 2, Ay Py, Q*C (Q™ 1) ) dpu(w)

V(A Prr, Q" P, C(Q™1)"x,

D O O

AwPh, Q" Pop, C (Q™ 1) zdp(w))
< B{(Q71) 'z, (Q7) )
< BlQ7!|*(w, ).
Thus A is a (C, C/)-controlled continuous Q'K Q — g-fusion frame for U. O

Theorem 3.4. Let K € End,(U) be an invertible operator on U and A = {Hy, Ay, Vi fwen be
a (C, C,)—controlled continuous g-fusion frame for U with frame bounds A, B and let S(C,C') be

the associated (C, C,)-controlled continuous g-fusion frame operator. Suppose that for all w € €,

T*TH, C H,, where T:KS(_C{C,) and C, C' commute with T. Then {KS(_C{C,)H“,,A“,PHwS(_Cl,C/)K*,

Uy fweq @5 a (C, C’/)—contmlled continuous K — g-fusion frame for U with the corresponding (C, C’/)—

controlled continuous g-fusion frame operator KS(Clc,)K*.

Proof. Now, T = KS7! is invertible on U and T* = (KS’_1 *= g1

.0 (C,C,)) (C,C,)K*. For each = € U,

we have

(K*z, K*x) = (S(QC/)S(&C,)K*I,S(CC/)S(*CI’C,)K*@
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< ||S(CC/)H2< (CC )K*ZL' Sclc) *ZL’>

2 1 * K*
<B<S(CchS(CC x).

Now, for each x € U, we get

/ V2 (A Pyt T* Pror C(2), A P, T* Py, C' () dpu(w) = / 02 (A Py T*C(),
Q Q
APy, T*C' (2))dp(w)

w

- / 0 (A Par, CT" (2),
Q

AP, C'T*(x))dp(w)
< B(T*z,T"z)
< B||T*(z, z)
< BIIS(‘C}C/)HQIIKIIQ@,@

< DK @,2).

On the other hand, for each x € U, we have
/ 02 (AP, T* Pry, C(2), Aw Py, T* Pri., C (2))dpu(w) = / v2 (A Py, T*C (),
Q

Q
APy, T°C (2)) dp(w)

U’lQU <Aw PH’(U CT* (l‘)?

Il
S

AwPHwC/T* (2))dp(w)

> AT x, T"x)
= A(S_ (CC )K*x S(CC ) K*z)
A
> B—(K*x,K*x}
Thus {KS(C o )Hu,, Ay Py, S(_c o )K*, Vo tweq is a (C, C')-controlled continuous K — g-fusion frame
for U

For each x € U, we have

/ vV2C Pry, (AwPy, T*) (AP, T*)Prg, Cadu(w) = [ v2C Prg, TPy, A

Q

{O\

(AwPHw T*)PTHw C’zdu(w)

02 C' (Py, T* Pry, )" A% Ay,

D\

(P, T Priw) Cxdu(w)

02 C TPy, N5 Ay Py, T*Cadp(w)

v2TC Py, A% APy, CT* zdp(w)

ol ol
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- T( / uic’PHwA;AwPHWCT*xdu(w))

Q
This implies that KS( Cc) K* is the associated (C, C’/)—controlled continuous g—fusion frame
operator. O

In the next theorem we give an equivalent definition of a (C,C")-controlled K — g-fusion frame.

Theorem 3.5. Let K € End:,(U). Then A = {Wy, Ay, vy }wea is a (C, C/)-controlled continuous
K — g-fusion frame for U if and only if there exist the constants A, B > 0 such that

A K z||? < ||/v3<AwPH Cz, Ay Py, C'2)dp(w)| < Bllz|?, Va e U. (3.4)

w w

Proof. Evidently, every (C,C")-controlled K — g-fusion frame for H satisfies (3.4). For the converse,
we suppose that (3.4) holds. For any {4 }wea € PweaVuw,

H/vw (cc’y PHU,waw u(w)|| = sup (/vw(CC’/)éPWjA;xw,y>du(w)‘

lyll=111 2
= sup /(Uw(CC’/)%PHwAfuxw,y)du(w) ‘
llyll=1
Q
= sup /(xw,va Py, (CCY2y)dpu(w )‘
llyll=1
Q

%
< sup || [ (T, Tw)dp(w)
lyll=1

o)
o~

2

\ [ 0P, (0C ) AP, (€Y gt

1 1
2 2

= o | [ addnte)| | [ 0P, o, AP € it
=
@ Q
< ”stlllp1 /(xw,xw>du(w)H VB|yll = VB|{zw}weall
y =
Q

Thus the [, v,(CC")2 Py, Al dpu(w) converges in U.
Since

(T, {22 weer) = / (00 A Par, (CC Vo, 2 )dpa(w) = (x, / 0u(CC)E Py, Ay udp(w)),
Q Q
T is adjointable. Now, for each x € U, we have
(T, T} = / V2 (A Ppr. C2, M P C 2)dp(w) < | 7|2z, ).
Q
On the other hand, the left-hand inequality of (3.4) gives

1
| K*z|? < Z||Ta:|\2, Yz e U.

Then Lemma 1.5 implies that there exists a constant p > 0 such that
KK* < puT*T,
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and hence
1 /
—(K"z, K*z) < (Tx,Tx) = /vi(AwPHwa,AwPHwC x)dp(w), Vo e U.
s Q
We conclude that A is a (C,C")-controlled continuous K — g-fusion frame for U. O

4. PERTURBATION OF CONTROLLED K — g-FUSION FRAME IN HILBERT C*-MODULES

Theorem 4.1. Let A = {Hy, Ay, v bweq be a (C,C")-controlled continuous K — g-fusion frame for U
with frame bounds A, B and T, € End%,(U,V,,). Suppose that C and C" commute with Py, T% Ty Py,
for all w € Q such that for each x € U,

1{(vewAw Prry — ol P, )(CC )2z} eall <M [{vwhu P, (CC )2} weal
+ Xo[[{uwTw P, (CC )2} yeql| + €l K 2|,

where 0 < A\, Ay < 1 and € > 0 such that e < (1 — \;)VA.
Then {Wey, Ty, iy fweq @s a (C, C')—contmlled continuous K — g-fusion frame for U.
Proof. For each x € U, we have

1
2

H / W2 (T Py C, Ty Py ' 2y dpa(w) || = [ {1t Tw Pov, (CC') 3 2o
Q

= |{uwlwPw, (CCH2 2}y + {vwAw Py, (CCZa}y—
{vwho P, (CC )2}y ||
< {(wwTwPw, — vuho P, )(CC )2z}, |
+ [{vwAwPa, (CC' )2}y |
< (M + D|{vwAwPr, (CC )i}yl
+ Aa[{ww L Piv, (CC )22}y || + € K.

w

So,
(1 = Ao) [{tw o Povr, (CC )32} || < (M + V)VB||]| + €| K*z]|.
Then
"\% M+ DVB||z|| + €| K*z
T P, (CC Yo}l < 21D 1! AHQ |
M+ D)VB+ | K|
< .
< (o)l
Hence

/ui,(l wPw,, Cx, Ty Py, C’/x>d,u(w) < (
w w 1 A2
Q

On the other hand, for each x € U,
1
/7 5 ’
H / 2Ty Py Cr, Ty Py C x)d,u(w)H — [{twTw P, (CC' Y a}ul
Q

= [{(uulwPw, — vwhwPr,)(CC )i},
+ {vwAw Py, (CC Y2z}
> [{vwhAwPrr, (CC )2}y
— (TP, — vwh Py, )(CC )2},
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> (1= A1) {vwAwPr, (CC )2ty ||
= Xof[{uwlw P, (CC )2z}t || — e K"z

Thus

(1—/\1)\/2—6

2
K*z||2. O
o) I

H / ugj(FwPWwa,FwPWwC/@dM(w)H > (
Q
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