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CONTROLLED CONTINUOUS K − g–FUSION FRAME IN HILBERT

C∗–MODULES

FAKHR-DINE NHARI1 AND MOHAMED ROSSAFI2∗

Abstract. Frame theory has been a great revolution for recent years. This theory has several
properties applicable in many fields of mathematics and engineering and plays a significant role in

signal and image processing, which lead to many applications in informatics, medicine and in the

theory of probability. In this paper, we introduce the concept of controlled continuous g-fusion frame
and controlled continuous K − g-fusion frame in Hilbert C∗-modules. Then we investigate some of

their properties. Also, we discuss the perturbation problem for a controlled continuous K− g-fusion
frame.

1. Introduction and Preliminaries

In 1952, the concept of frame in Hilbert spaces has been introduced by Duffin and Schaeffer [6] to
study some deep problems in nonharmonic Fourier series by abstracting the fundamental notion of
Gabor [9] for signal processing. Frames have been used in image processing, data compression and
sampling theory.

In 2000, Frank–Larson [8] introduced the concept of frames in Hilbet C∗-modules as a generalization
of frames in Hilbert spaces. The basic idea was to consider modules over C∗-algebras of linear spaces
and to allow the inner product to take values in the C∗-algebras [13].

Many generalizations of the concept of frame have been defined in Hilbert C∗-modules [10,12,16–20].
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms

for inverting the frame operator [3].
The paper is organized as follows, we continue this introductory section by recalling briefly the

definitions and basic properties of C∗-algebra and Hilbert C∗-modules. In Section 2, we introduce
the concept of (C,C

′
)-controlled continuous g-fusion frame, the (C,C

′
)-controlled continuous g-fusion

frame operator and establish some results. In Section 3, we introduce the concept of (C,C
′
)-controlled

continuous K − g-fusion frame and give some properties. Finally, in Section 4, we discuss the pertur-
bation problem for (C,C

′
)-controlled continuous K − g-fusion frame.

In the following, we briefly recall the definitions and basic properties of C∗-algebra and Hilbert
A -modules. Our reference for C∗-algebras is [4,5]. For a C∗-algebra A , if a ∈ A is positive, we write
a ≥ 0, and A + denotes the set of positive elements of A .

Definition 1.1 ([4]). If A is a Banach algebra, an involution is a map a → a∗ of A into itself such
that for all a and b in A and all scalars α the following conditions:

(1) (a∗)∗ = a.
(2) (ab)∗ = b∗a∗.
(3) (αa+ b)∗ = ᾱa∗ + b∗

hold.

Definition 1.2 ([4]). A C∗-algebra A is a Banach algebra with involution such that

∥a∗a∥ = ∥a∥2

for every a in A .
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Example. B = B(H ), the algebra of bounded operators on a Hilbert space, is a C∗-algebra, where
for each operator A, A∗ is the adjoint of A.

Definition 1.3 ([11]). Let A be a unital C∗-algebra and U be a left A -module such that the linear
structures of A and U are compatible. U is a pre-Hilbert A -module if U is equipped with an A -
valued inner product ⟨., .⟩ : U × U → A such that is sesquilinear, positive definite and respects the
module action. In other words,

(i) ⟨x, x⟩ ≥ 0 for all x ∈ U and ⟨x, x⟩ = 0 if and only if x = 0,
(ii) ⟨ax+ y, z⟩ = a⟨x, z⟩+ ⟨y, z⟩ for all a ∈ A and x, y, z ∈ U ,
(iii) ⟨x, y⟩ = ⟨y, x⟩∗ for all x, y ∈ U .

For x ∈ U , we define ∥x∥ = ∥⟨x, x⟩∥ 1
2 . If U is complete with ∥.∥, it is called a Hilbert A -module or

a Hilbert C∗-module over A . For every a in a C∗-algebra A , we have |a| = (a∗a)
1
2 and the A -valued

norm on U is defined by |x| = ⟨x, x⟩ 1
2 for x ∈ U .

Throughout this paper, U is considered to be a Hilbert C∗-modules over a C∗-algebra, we denote
that IU is the identity operator on U , {Hw}w∈Ω is a sequence of Hilbert C∗-submodules of U and
{Vw}w∈Ω is a sequence of Hilbert C∗-modules.

We denote by End∗A (U, Vw) a set of all adjointable operators. In particular, End∗A (U) denotes the
set of all adjointable operators on U . R(T ) for the range of T and GL+(U) denotes the set of all
bounded positive linear operators which have bounded inverse.

The following lemmas will be used to prove our mains results

Lemma 1.1 ([15]). Let U be a Hilbert A -module. If T ∈ End∗A (U), then

⟨Tx, Tx⟩ ≤ ∥T∥2⟨x, x⟩, ∀x ∈ U.

Lemma 1.2 ([2]). Let U and H be two Hilbert A -modules and T ∈ End∗A (U,H). Then the following
statements:

(i) T is surjective,
(ii) T ∗ is bounded below with respect to the norm, i.e., there is m > 0 such that ∥T ∗x∥ ≥ m∥x∥

for all x ∈ H,
(iii) T ∗ is bounded below with respect to the inner product, i.e., there is m′ > 0 such that ⟨T ∗x, T ∗x⟩

≥ m′⟨x, x⟩ for all x ∈ H

are equivalent.

Lemma 1.3 ([1]). Let U and H be two Hilbert A -modules and T ∈ End∗A (U,H). Then:

(i) If T is injective and T has closed range, then the adjointable map T ∗T is invertible and

∥(T ∗T )−1∥−1 ≤ T ∗T ≤ ∥T∥2.
(ii) If T is surjective, then the adjointable map TT ∗ is invertible and

∥(TT ∗)−1∥−1 ≤ TT ∗ ≤ ∥T∥2.
Lemma 1.4 ([2]). Let U be a Hilbert A -module over a C∗-algebra A , and T ∈ End∗A (U) such that
T ∗ = T . The following statements:

(i) T is surjective,
(ii) There are m,M > 0 such that m∥x∥ ≤ ∥Tx∥ ≤ M∥x∥, for all x ∈ U ,
(iii) There are m′,M ′ > 0 such that m′⟨x, x⟩ ≤ ⟨Tx, Tx⟩ ≤ M ′⟨x, x⟩, for all x ∈ U

are equivalent.

Lemma 1.5 ([7]). Let E,H and L be Hilbert A -modules, T ∈ End∗A (E,L) and T
′ ∈ End∗A (H,L).

Then the following two statements:

(1) T
′
(T

′
)∗ ≤ λTT ∗ for some λ > 0,

(2) There exists µ > 0 such that ∥(T ′
)∗z∥ ≤ µ∥T ∗z∥, for all z ∈ L

are equivalent.

Lemma 1.6 ([1]). If ϕ : A → B is an ∗-homomorphism between C∗-algebras, then ϕ is increasing,
that is, if a ≤ b, then ϕ(a) ≤ ϕ(b).
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2. Controlled Continuous g-fusion Frame in Hilbert C∗-modules

Let X be a Banach space, (Ω, µ) a measure space and a measurable function f : Ω → X. The
integral of the Banach-valued function f has been defined by Bochner and others. Most of the
properties of this integral are similar to those of the integral of real-valued functions. Since every
C∗-algebra and Hilbert C∗-module is a Banach space, thus we can use this integral and its properties.

Definition 2.1. Let {Hw}w∈Ω be a sequence of closed submodules orthogonally complemented in U ,
PHw

be the orthogonal projection from U to Hw, Λw ∈ End∗A (U, Vw), w ∈ Ω and {vw}w∈Ω be a family
of weights in A , i.e., each vw is a positive invertible element from the center of the C∗-algebra A .
We say Λ = {Hw,Λw, vw}w∈Ω is a continuous g-fusion frame for U if

(1) for each x ∈ U , {PHw
x}w∈Ω is measurable;

(2) for each x ∈ U , the function Λ̃ : Ω → Vw defined by Λ̃(w) = Λwx is measurable;
(3) there exist 0 < A ≤ B < ∞ such that

A⟨x, x⟩ ≤
∫
Ω

v2w⟨ΛwPHw
x,ΛwPHw

x⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U. (2.1)

We call A and B the lower and upper continuous g-fusion frame bounds, respectively. If A = B, we
call Λ the tight continuous g-fusion frame. Moreover, if A = B = 1, Λ is called the Parseval continuous
g-fusion frame.

Definition 2.2. Let C, C
′ ∈ GL+(U) and {Hw}w∈Ω be a sequence of closed submodules orthogonally

complemented in U , PHw
be the orthogonal projection from U to Hw, Λw ∈ End∗A (U, Vw), ∀w ∈ Ω

and {vw}w∈Ω be a family of weights in A , i.e., each vw is a positive invertible element from the center

of the C∗-algebra A . We say Λ = {Hw,Λw, vw}w∈Ω is a (C,C
′
)-controlled continuous g-fusion frame

for U if

(1) for each x ∈ U , {PHwx}w∈Ω is measurable,

(2) for each x ∈ U , the function Λ̃ : Ω → Vw defined by Λ̃(w) = Λwx is measurable,
(3) there exist 0 < A ≤ B < ∞ such that

A⟨x, x⟩ ≤
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U. (2.2)

We call A and B the lower and upper (C,C
′
)-controlled continuous g -fusion frame bounds, respec-

tively. If only the right-hand inequality of (2.2) is satisfied, we call Λ the (C,C
′
)-controlled continuous

g-fusion Bessel sequence. If A = B, we call Λ the tight (C,C
′
)-controlled continuous g-fusion frame.

Moreover, if A = B = 1, Λ is called the Parseval (C,C
′
)-controlled continuous g-fusion frame.

Proposition 2.1. If {vwΛwPHw
}w∈Ω is a (C,C

′
)-controlled continuous g-frame for U , then Λ =

{Hw,Λw, vw}w∈Ω is a (C,C
′
)-controlled continuous g-fusion frame for U .

Proof. Since {vwΛwPHw
}w∈Ω is a (C,C

′
)-controlled continuous g- frame for U , we have

A⟨x, x⟩ ≤
∫
Ω

⟨vwΛwPHwCx, vwΛwPHwC
′
x⟩dµ(w) ≤ B⟨x, x⟩

for each x ∈ U . Then

A⟨x, x⟩ ≤
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) ≤ B⟨x, x⟩.

Hence Λ is a (C,C
′
)-controlled continuous g-fusion frame for U . □

Suppose that Λ = {Hw,Λw, vw}w∈Ω be a (C,C
′
)-controlled continuous g-fusion Bessel sequence

for U . The bounded linear operator T(C,C′ ) : ⊕w∈ΩVw → U is defined by

T(C,C′ )({xw}w∈Ω) =

∫
Ω

vw(CC
′
)

1
2PHw

Λ∗
wxwdµ(w), ∀{xw}w∈Ω ∈ ⊕w∈ΩVw. (2.3)
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T(C,C′ ) is called the synthesis operator for the (C,C
′
)-controlled continuous g-fusion frame Λ.

The adjoint operator T ∗
(C,C′ )

: U → ⊕w∈ΩVw given by

T ∗
(C,C′ )

(y) =
{
vwΛwPHw

(C
′
C)

1
2 y

}
w∈Ω

, (2.4)

is called the analysis operator for the (C,C
′
)-controlled continuous g-fusion frame Λ.

When C and C
′
commute with each other and commute with the operator PHw

Λ∗
wΛwPHw

, for each

w ∈ Ω, then the (C,C
′
)-controlled continuous g-fusion frame operator S(C,C′ ) : U → U is defined as

S(C,C′ )(x) = T(C,C′ )T
∗
(C,C′ )

(x) =

∫
Ω

v2wC
′
PHw

Λ∗
wΛwPHw

Cxdµ(w), ∀x ∈ U. (2.5)

From now we assume that C and C
′
commute with each other and commute with the operator

PHwΛ
∗
wΛwPHw , for each w ∈ Ω.

Lemma 2.1. Let Λ be a (C,C
′
)-controlled continuous g-fusion frame for U . Then the (C,C

′
)-

controlled continuous g-fusion frame operator S(C,C′ ) is positive, self-adjoint and invertible.

Proof. For each f ∈ H, we have S(C,C′ )(x) =
∫
Ω
v2wC

′
PHwΛ

∗
wΛwPHwCxdµ(w)and∫

Ω

v2w⟨ΛwPHw
Cx,ΛwPWw

C
′
x⟩dµ(w) =

〈 ∫
Ω

v2wC
′
PHw

Λ∗
wΛwPHw

Cxdµ(w), x
〉
= ⟨S(C,C′ )(x), x⟩.

Since Λ is a (C,C
′
)-controlled continuous g-fusion frame for U , it follows that

A⟨x, x⟩ ≤ ⟨S(C,C′ )(x), x⟩ ≤ B⟨x, x⟩, ∀x ∈ U. (2.6)

So, S(C,C′ ) is a positive. Also, it is clearly bounded and linear. On the other hand, for each x, y ∈ U

⟨S(C,C′ )(x), y⟩ =
〈 ∫
Ω

v2wC
′
PHw

Λ∗
wΛwPHw

Cxdµ(w), y
〉

=
〈
x,

∫
Ω

v2wCPHwΛ
∗
wΛwPHwC

′
ydµ(w)

〉
= ⟨x, S(C′ ,C)(y)⟩.

That implies S∗
(C,C′ )

= S(C′ ,C). Also, as C and C
′
commute with each other and commute with

the operator PHw
Λ∗
wΛwPHw

, for each w ∈ Ω, we have S(C,C′ ) = S(C′ ,C). So, the (C,C
′
)-controlled

continuous g-fusion frame operator S(C,C′ ) is self-adjoint and we have

AIH ≤ S(C,C′ ) ≤ BIH . (2.7)

Therefore the (C,C
′
)-controlled continuous g-fusion frame operator S(C,C′ ) is invertible. □

Theorem 2.1. If Λ = {Hw,Λw, vw}w∈Ω is a (C,C
′
)-controlled continuous g-fusion frame for U with

frame bounds A and B, then T(C,C′ ) is surjective with ∥T(C,C′ )∥ ≤
√
B and T ∗

(C,C′ )
is injective, closed.

Proof. For each x ∈ U, we have

A⟨x, x⟩ ≤
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) ≤ B⟨x, x⟩.

Then

A⟨x, x⟩ ≤ ⟨T ∗
(C,C′ )

x, T ∗
(C,C′ )

x⟩ ≤ B⟨x, x⟩. (2.8)

Hence √
A∥x∥ ≤ ∥T ∗

(C,C′ )
x∥. (2.9)

So, T ∗
(C,C′ )

is injective, we now show that the R(T ∗
Λ) is closed.
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Let {T ∗
(C,C′ )

(xn)}n∈N ∈ R(T ∗
(C,C′ )

) such that lim
n

T ∗
(C,C′ )

(xn) = y.

Let n, m ∈ N, from (2.8), we have

⟨xn − xm, xn − xm⟩ ≤ A−1⟨T ∗
(C,C′ )

(xn − xm), T ∗
(C,C′ )

(xn − xm)⟩.

Then

∥⟨xn − xm, xn − xm⟩∥ ≤ A−1∥T ∗
(C,C′ )

(xn − xm)∥2.
Since {T ∗

(C,C′ )
(xn)}n∈N is a Cauchy sequence in ⊕w∈ΩVw, so, ∥⟨xn − xm, xn − xm⟩∥ → 0. Therefore

the sequence {xn}n∈N is a Cauchy sequence in U and there exists x ∈ U such that lim
n

xn = x. Again,

by (2.8), we have

∥T ∗
(C,C′ )

xn − T ∗
(C,C′ )

x∥2 ≤ B∥⟨xn − x, xn − x⟩∥,
thus ∥T ∗

(C,C′ )
(xn) − T ∗

(C,C′ )
(x)∥ → 0 implies that T ∗

(C,C′ )
(x) = y, hence R(T ∗

(C,C′ )
) is closed, finally

T(C,C′ ) is surjective. □

We estabilish an equivalent definition of (C,C
′
)-controlled continuous g-fusion frame.

Theorem 2.2. Let C, C
′ ∈ GL+(U) and {Hw}w∈Ω be a sequence of closed submodules orthogonally

complemented in U , PHw
be the orthogonal projection from U to Hw, Λw ∈ End∗A (U, Vw), ∀w ∈ Ω

and {vw}w∈Ω be a family of weights in A , then Λ = {Wj ,Λj , vj}j∈J is a (C,C
′
)-controlled g-fusion

frame for U if and only if there exist two constants 0 < A ≤ B < ∞ such that

A∥x∥2 ≤
∥∥∥∥ ∫

Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w)

∥∥∥∥ ≤ B∥x∥2, ∀x ∈ U. (2.10)

Proof. If Λ is a (C,C
′
)-controlled g-fusion frame for U , then we have inequality (2.10). Conversely,

assume that (2.10) holds. From (2.4), the (C,C
′
)-controlled g-fusion frame operator S(C,C′ ) is positive,

self-adjoint and invertible. Then for all x ∈ U, we have

⟨(S(C,C′ ))
1
2x, (S(C,C′ ))

1
2x⟩ = ⟨S(C,C′ )x, x⟩ =

∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w). (2.11)

From (2.11) and (2.10), for each x ∈ U , we have

√
A∥x∥ ≤ ∥S

1
2

(C,C′ )
x∥ ≤

√
B∥x∥, ∀x ∈ U.

So, by Lemma 1.4, we conclude that Λ is a (C,C
′
)-controlled continuous g-fusion frame for U . □

Theorem 2.3. If the operator T(C,C′ ) : ⊕w∈ΩVw → U defined by T ({xw}w∈Ω) =
∫
Ω
vw(CC

′
)

1
2×

PHw
Λ∗
wxwdµ(w) is well-definite and surjective, then {Hw,Λw, vw}w∈Ω is a (C,C

′
)-controlled contin-

uous g-fusion frame for U .

Proof. For each x ∈ U , we have∥∥∥∥∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwC
′
x⟩dµ(w)

∥∥∥∥ =

∥∥∥∥ ∫
Ω

v2w⟨ΛwPHw
(CC

′
)

1
2x,ΛwPHw(CC

′
)

1
2x⟩dµ(w)

∥∥∥∥
=

∥∥∥∥〈x, ∫
Ω

v2w(CC
′
)

1
2PHw

Λ∗
wΛwPHw

(CC
′
)

1
2x

〉
dµ(w)

∥∥∥∥
= ∥⟨x, T(C,C′ )({vwΛwPHw

(CC
′
)

1
2 }w∈Ω)⟩∥

≤ ∥x∥ ∥T(C,C′ )∥ ∥{vwΛwPHw
(CC

′
)

1
2 }w∈Ω| ≤ ∥x∥ ∥T(C,C′ )∥

×
∥∥∥∥∫

Ω

v2w⟨ΛwPHw
(CC

′
)

1
2x,ΛwPHw

(CC
′
)

1
2x⟩dµ(w)

∥∥∥∥ 1
2
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= ∥x∥ ∥T(C,C′ )∥
∥∥∥∥ ∫

Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w)

∥∥∥∥ 1
2

,

hence ∥∥∥∥∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w)

∥∥∥∥ ≤ ∥T(C,C′ )∥
2∥x∥2. (2.12)

Since T(C,C′ ) is surjective, by Lemma 1.2, there exists ν > 0 such that

ν∥x∥ ≤ ∥T ∗
(C,C′ )

x∥, ∀x ∈ U,

so, T ∗
(C,C′ )

is injective and this implies that T ∗
(C,C′ )

: U → R(T ∗
(C,C′ )

) is invertible. Therefore

(T ∗
/R(T∗

(C,C
′
)
))

−1T ∗
(C,C′ )

x = x, for each x ∈ U , then

∥x∥2 ≤ ∥(T ∗
/R(T∗

(C,C
′
)
))

−1∥2∥T ∗
(C,C′ )

(x)∥2, ∀x ∈ U,

hence
∥(T ∗

/R(T∗
(C,C

′
)
))

−1∥−2∥x∥2 ≤ ∥T ∗
(C,C′ )

(x)∥2, ∀x ∈ U.

So,

∥(T ∗
/R(T∗

(C,C
′
)
))

−1∥−2∥x∥2 ≤
∥∥∥∥∫

Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w)

∥∥∥∥. (2.13)

From inequalities (2.12) and (2.13), we conclude that {Hw,Λw, vw}w∈Ω is a (C,C
′
)-controlled contin-

uous g-fusion frame for U . □

Theorem 2.4. Let Λ = {Hw,Λw, vw}w∈Ω be a (C,C
′
)-controlled continuous g-fusion frame for U

and Γ = {Hw,Γw, vw}w∈Ω be a (C,C
′
)-controlled continuous g-fusion Bessel sequence for U , suppose

that C and C
′
commute with PHw

Γ∗
wΛwPHw

for each w ∈ Ω. If the operator Q : U → U defined

by Q(x) =
∫
Ω
v2wCPHw

Γ∗
wΛwPHw

C
′
xdµ(w) is surjective, then Γ is a (C,C

′
)-controlled continuous

g-fusion frame for U .

Proof. Let TΛ and TΓ be the synthesis operators of Λ and Γ, respectively.
For each x ∈ U , we have

Q(x) =

∫
Ω

v2wCPHw
Γ∗
wΛwPHw

C
′
xdµ(w)

=

∫
Ω

v2w(CC
′
)

1
2PHw

Γ∗
wΛwPHw

(CC
′
)

1
2xdµ(w)

= TΓ

(
{vwΛwPHw

(CC
′
)

1
2x}w∈Ω

)
= TΓT

∗
Λ(x).

Since Q is surjective, for each y ∈ U, there exists x ∈ U such that y = Q(x), hence y = TΓT
∗
Λ(x),

because T ∗
Λx ∈ ⊕w∈ΩVw, then TΓ is surjective and therefore by Theorem 2.3, Γ is a (C,C

′
)-controlled

continuous g-fusion frame for U . □

Theorem 2.5. Let Λ = {Hw,Λw, vw}w∈Ω be a (C,C
′
)-controlled continuous g-fusion frame for U

with frame bounds A and B. If θ ∈ End∗A (U) is injective, has closed range, θPHw
C = PHw

Cθ

and θPHwC
′
= PHwC

′
θ for each w ∈ Ω, then {Hw,Λwθ, vw}w∈Ω is a (C,C

′
)-controlled continuous

g-fusion frame for U .

Proof. Let Λ be a (C,C
′
)-controlled continuous g-fusion frame for U with frame bounds A and B,

then for each x ∈ U,

A⟨x, x⟩ ≤
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) ≤ B⟨x, x⟩,
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and for each x ∈ U, we have∫
Ω

v2w⟨ΛwθPHwCx,ΛwθPHwC
′
x⟩dµ(w) =

∫
Ω

v2w⟨ΛwPHwCθx,ΛwPHwC
′
θx⟩dµ(w) (2.14)

From equality (2.14), for each x ∈ U,∫
Ω

v2w⟨ΛwθPHw
Cx,ΛwθPHw

C
′
x⟩dµ(w) ≤ B⟨θx, θx⟩

≤ B∥θ∥2⟨x, x⟩,
and

A⟨θx, θx⟩ ≤
∫
Ω

v2w⟨ΛwθPHw
Cx,ΛwθPHw

C
′
x⟩dµ(w).

Since θ is injective, has closed range, by Lemma 1.3,

∥(θ∗θ)−1∥−1⟨x, x⟩ ≤ ⟨θθ∗x, x⟩
So,

A∥(θ∗θ)−1∥−1⟨x, x⟩ ≤
∫
Ω

v2w⟨ΛwθPHwCx,ΛwθPHwC
′
x⟩dµ(w).

Then {Hw,Λwθ, vw}w∈Ω is a (C,C
′
)-controlled continuous g-fusion frame for U . □

In the next theorem, we take Vw ⊆ U for all w ∈ Ω.

Theorem 2.6. Let Λ = {Hw,Λw, vw}w∈Ω be a (C,C
′
)-controlled continuous g-fusion frame for U with

frame bounds A and B. If θ ∈ End∗A (U, Vw) is injective, has closed range, suppose that θΛwPHw
C =

ΛwPHw
Cθ and θΛwPHw

C
′
= ΛwPHw

C
′
θ for all w ∈ Ω, then {Hw, θΛw, vw}w∈Ω is a (C,C

′
)-controlled

continuous g-fusion frame for U .

Proof. For each x ∈ U , we have

A⟨x, x⟩ ≤
∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwC
′
x⟩dµ(w) ≤ B⟨x, x⟩

and ∫
Ω

v2w⟨θΛwPHwCx, θΛwPHwC
′
x⟩dµ(w) =

∫
Ω

v2w⟨ΛwPHwCθx,ΛwPHwC
′
θx⟩dµ(w). (2.15)

From equality (2.15) follows∫
Ω

v2w⟨θΛwPHw
Cx, θΛwPHw

C
′
x⟩dµ(w) ≤ B⟨θx, θx⟩

≤ B∥θ∥2⟨x, x⟩.
Also, for each x ∈ U ,

A⟨θx, θx⟩ ≤
∫
Ω

v2w⟨θΛwPHwCx, θΛwPHwC
′
x⟩dµ(w),

Since θ is injective, has closed range, therefore

A∥(θ∗θ)−1∥−1⟨x, x⟩ ≤ ⟨θ∗θx, x⟩,
so,

A∥(θ∗θ)−1∥−1⟨x, x⟩ ≤
∫
Ω

v2w⟨θΛwPHw
Cx, θΛwPHw

C
′
x⟩dµ(w).

Thus {Hw, θΛw, vw}w∈Ω is a (C,C
′
)-controlled continuous g-fusion frame for U . □
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Theorem 2.7. Let for every w ∈ Ω, Λw ∈ End∗A (U, Vw) and {yw,v}v∈Ωw
be a (C,C)-controlled

continuous frame for Vw with frame bounds Cw and Dw such there exist C and D such that C ≤ Cw

and Dw ≤ D, suppose that C commutes with PHw
Λ∗
w for all w ∈ Ω, and the following conditions are

equivalent:

(1) {vwCPHw
Λ∗
wyw,v}v∈Ωw

is a (C,C)-controlled continuous frame for U .
(2) {Hw,Λw, vw}w∈Ω is a (C,C)-controlled continuous g-fusion frame for U .

Proof. Let {yw,v}v∈Ωw be a (C,C)-controlled continuous frame for Vw, then for each x ∈ U, we have

Cw⟨vwΛwPHw
Cx, vwΛwPHw

Cx⟩ ≤
∫
Ωw

⟨vwΛwPHw
Cx, yw,v⟩⟨Cyw,v, vwΛwPHw

Cx⟩dµ(v)

≤ Dw⟨vwΛwPHw
Cx, vwΛwPHw

Cx⟩,
then

Cw⟨vwΛwPHw
Cx, vwΛwPHw

Cx⟩ ≤
∫
Ωw

⟨x, vwCPHw
Λ∗
wyw,v⟩⟨vwCPHw

Λ∗
wCyw,v, x⟩dµ(v)

≤ Dw⟨vwΛwPHwCx, vwΛwPHwCx⟩,
so,

C⟨vwΛwPHw
Cx, vwΛwPHw

Cx⟩ ≤
∫
Ωw

⟨x, vwCPHw
Λ∗
wyw,v⟩⟨CvwCPHw

Λ∗
wyw,v, x⟩dµ(v)

≤ D⟨vwΛwPHwCx, vwΛwPHwCx⟩,
hence

C

∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

Cx⟩dµ(w) ≤
∫
Ω

∫
Ωw

⟨x, vwCPHw
Λ∗
wyw,v⟩⟨CvwCPHw

Λ∗
wyw,v, x⟩dµ(v)dµ(w)

≤ D

∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

Cx⟩dµ(w). (2.16)

Suppose that {vwCPHw
Λ∗
wyw,v}v∈Ωw

is a (C,C)-controlled continuous frame for U with frame bounds

C
′
and D

′
, then for each x ∈ U,

C
′
⟨x, x⟩ ≤

∫
Ω

∫
Ωw

⟨x, vwCPHw
Λ∗
wyw,v⟩⟨CvwCPHw

Λ∗
wyw,v, x⟩dµ(v)dµ(w) ≤ D

′
⟨x, x⟩, (2.17)

by (2.16) and (2.17), we have

C

∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwCx⟩dµ(w) ≤ D
′
⟨x, x⟩

and

C
′
⟨x, x⟩ ≤ D

∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

Cx⟩dµ(w).

Therefore

D−1C
′
⟨x, x⟩ ≤

∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwCx⟩dµ(w) ≤ C−1D
′
⟨x, x⟩, ∀x ∈ U.

So, {Hw,Λw, vw}w∈Ω is a (C,C)-controlled continuous g-fusion frame for U . Conversely, assume that

{Hw,Λw, vw}w∈Ω is a (C,C)-controlled continuous g-fusion frame for U with frame bounds C
′
and

D
′
, then for each x ∈ U,

C
′
⟨x, x⟩ ≤

∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwCx⟩dµ(w) ≤ D
′
⟨x, x⟩,
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and by (2.16), we have

CC
′
⟨x, x⟩ ≤

∫
Ω

∫
Ωw

⟨x, vwCPHw
Λ∗
wyw,v⟩⟨CvwCPHw

Λ∗
wyw,v, x⟩dµ(v)dµ(w) ≤ DD

′
⟨x, x⟩.

Thus we can conclude that {vwCPHwΛ
∗
wyw,v}v∈Ωw is a (C,C)-controlled continuous frame for U . □

Under which conditions a (C,C
′
)-controlled continuous g-fusion frame for U with U a C∗-module

over a unital C∗-algebras A is also a (C,C
′
)-controlled continuous g-fusion frame for U with U a

C∗-module over a unital C∗-algebras B? the following theorem answers this question. In the next
theorem, we take Vw ⊂ U , ∀w ∈ Ω.

Theorem 2.8. Let (U,A , ⟨., .⟩A ) and (U,B, ⟨., .⟩B) be two Hilbert C∗-modules and let ϕ : A → B be
a ∗-homomorphisme and θ be a map on H such that ⟨θx, θy⟩B = ϕ(⟨x, y⟩A ) for all x, y ∈ U . Suppose

that Λ = {Hw,Λw, vw}w∈Ω is a (C,C
′
)-controlled continuous g-fusion frame for (U,A , ⟨., .⟩A ) with

the frame operator SA and lower and upper bounds A and B, respectively. If θ is surjective such that
θΛwPHw

= ΛwPHw
θ for each w ∈ Ω and θC = Cθ and θC

′
= C

′
θ, then {Hw,Λw, ϕ(vw)}w∈Ω is a

(C,C
′
)-controlled continuous g-fusion frame for (U,B, ⟨., .⟩B) with frame operator SB and lower and

upper bounds A and B, respectively, and ⟨SBθx, θy⟩B = ϕ(⟨SA x, y⟩A ).

Proof. Since θ is surjective, for every y ∈ U, there exists x ∈ U such that θx = y. Using the definition
of a (C,C

′
)-controlled continuous g-fusion frame for (U,A , ⟨., .⟩A ), we have

A⟨x, x⟩A ≤
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩A dµ(w) ≤ B⟨x, x⟩A .

Then

ϕ
(
A⟨x, x⟩A

)
≤ ϕ

(∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwC
′
x⟩A dµ(w)

)
≤ ϕ

(
B⟨x, x⟩A

)
.

Frome the definition of the ∗-homomorphism, we have

Aϕ
(
⟨x, x⟩A

)
≤

∫
Ω

ϕ(v2w)ϕ
(
⟨ΛwPHw

Cx,ΛwPHw
C

′
x⟩A dµ(w)

)
≤ Bϕ

(
⟨x, x⟩A

)
.

Using the relation between θ and ϕ, we get

A⟨θx, θx⟩B ≤
∫
Ω

ϕ(vw)
2⟨θΛwPHw

Cx, θΛwPHw
C

′
x⟩Bdµ(w) ≤ B⟨θx, θx⟩B.

Since θΛjPWj
= ΛjPWj

θ for each j ∈ J and θC = Cθ and θC
′
= C

′
θ, we have

A⟨θx, θx⟩B ≤
∫
Ω

ϕ(vw)
2⟨ΛwPHwCθx,ΛwPHwC

′
θx⟩Bdµ(w) ≤ B⟨θx, θx⟩B.

Therefore

A⟨y, y⟩B ≤
∫
Ω

ϕ(vw)
2⟨ΛwPHwCy,ΛwPHwC

′
y⟩B ≤ B⟨y, y⟩B, ∀y ∈ U.

This implies that {Hw,Λw, ϕ(vw)}w∈Ω is a (C,C
′
)-controlled continuous g-fusion frame for

(U,B, ⟨., .⟩B).
And for each x ∈ U ,

ϕ
(
⟨SA x, y⟩A

)
= ϕ

(〈∫
Ω

v2wC
′
PHwΛ

∗
wΛwPHw

Cxdµ(w), y
〉

A

)

= ϕ

(∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
y⟩A dµ(w)

)
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=

∫
Ω

ϕ(vw)
2⟨ΛwPHwCθx,ΛwPHwC

′
θy⟩Bdµ(w)

=
〈 ∫
Ω

ϕ(vw)
2C

′
PHw

Λ∗
wΛwPHw

Cθxdµ(w), θy
〉

B

= ⟨SBθx, θy⟩B. □

3. Controlled Continuous K − g-fusion Frames in Hilbert C∗-modules

We begin this section with the following

Lemma 3.1 ([14]). Let {Hw}w∈Ω be a sequence of orthogonally complemented closed submodules of
U and T ∈ End∗A (U) invertible, if T ∗THw ⊆ Hw for each w ∈ Ω, then {THw}w∈Ω is a sequence of
orthogonally complemented closed submodules and PHw

T ∗ = PHw
T ∗PTHw

.

Definition 3.1. LetK ∈ End∗A (U) and let {Hw}w∈Ω be a sequence of closed submodules orthogonally
complemented in U , PHw

be the orthogonal projection from U to Hw, Λw ∈ End∗A (U, Vw), for each
w ∈ Ω and {vw}w∈Ω be a family of weights in A , i.e., each vw is a positive invertible element from
the center of A ; we say that Λ = {Hw,Λw, vw}w∈Ω is a continuous K − g-fusion frame for U if

(1) for each x ∈ U , {PHw
x}w∈Ω is measurable;

(2) for each x ∈ U , the function Λ̃ : Ω → Vw defined by Λ̃(w) = Λwx is measurable;
(3) there exist 0 < A ≤ B < ∞ such that

A⟨K∗x,K∗x⟩ ≤
∫
Ω

v2w⟨ΛwPHwx,ΛwPHwx⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U. (3.1)

We call A and B lower and upper frame bounds of a continuous K − g-fusion frame, respectively.

Definition 3.2. Let C,C
′ ∈ GL+(U) and K ∈ End∗A (U), {Hw}w∈Ω be a sequence of closed sub-

modules orthogonally complemented of U , {vw}w∈Ω be a family of weights, i.e., each vw is a pos-
itive invertible element from the center of A and Λw ∈ End∗A(U, Vw) for each w ∈ Ω. We say

Λ = {Hw,Λw, vw}w∈Ω is a (C,C
′
)-controlled continuous K − g-fusion frame for U if there exist

0 < A ≤ B < ∞ such that

A⟨K∗x,K∗x⟩ ≤
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U. (3.2)

The constants A and B are called a lower and an upper bounds of a (C,C
′
)-controlled continuous

K − g-fusion frame, respectively. If the left-hand inequality of (3.2) is an equality, we say that Λ is a

tight (C,C
′
)-controlled continuous K − g-fusion frame.

Remark 3.1. If Λ is a (C,C
′
)-controlled continuous K− g-fusion frame for U with bounds A and B,

we have

AKK∗ ≤ S(C,C′ ) ≤ BIH . (3.3)

From inequality (3.3) and equality (2.5), we have

Lemma 3.2. Let K ∈ End∗A (U) and Λ be a (C,C
′
)-controlled continuous g-fusion Bessel sequence

for U . Then Λ is a (C,C
′
)-controlled continuous K − g-fusion frame for U if and only if there exists

a constant A > 0 such that AKK∗ ≤ S(C,C′ ), where S(C,C′ ) is the frame operator for Λ.

Theorem 3.1. Let Λ = {Hw,Λw, vw}w∈Ω and Γ = {Ww,Γw, uw}w∈Ω be two (C,C
′
)-controlled con-

tinuous g-fusion Bessel sequences for U with bounds B1 and B2, respectively. Suppose that TΛ and TΓ

are their synthesis operators such that TΓT
∗
Λ = K∗ for some K ∈ End∗A (U). Then both Λ and Γ are

(C,C
′
)-controlled continuous K and K∗ − g-fusion frames for U , respectively.
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Proof. For each x ∈ U , we have

⟨K∗x,K∗x⟩ = ⟨TΓT
∗
Λx, TΓT

∗
Λx⟩ ≤ ∥TΓ∥2⟨T ∗

Λ, T
∗
Λf⟩

≤ B2

∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwC
′
x⟩dµ(w).

Hence

B−1
2 ⟨K∗x,K∗x⟩ ≤

∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w).

This means that Λ is a (C,C
′
)-controlled continuous K − g-fusion frame for U . Similarly, Γ is a

(C,C
′
)-controlled continuous K∗ − g-fusion frame for H with the lower bound B−1

1 . □

Theorem 3.2. Let Q ∈ End∗A (U) be an invertible operator on U and Λ = {Hw,Λw, vw}w∈Ω be

a (C,C
′
)-controlled continuous K − g-fusion frame for U for some K ∈ End∗A (U). Suppose that

Q∗QHw ⊂ Hw, ∀w ∈ Ω and C, C
′
commute with Q. Then Γ = {QHw,ΛwPHw

Q∗, vw}w∈Ω is a

(C,C
′
)-controlled continuous QKQ∗ − g-fusion frame for U .

Proof. Since Λ is a (C,C
′
)-controlled continuous K − g-fusion frame for U , ∃ A,B > 0 such that

A⟨K∗x,K∗x⟩ ≤
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U.

Also, Q is an invertible linear operator on U , so, for any w ∈ Ω, QHw is closed in U . Now, for each
x ∈ U , using Lemma 3.1, we obtain∫
Ω

v2w⟨ΛwPHwQ
∗PQHwCx,ΛwPHwQ

∗PQHwC
′
x⟩dµ(w) =

∫
Ω

v2w⟨ΛwPHw
Q∗Cx,ΛwPHw

Q∗C
′
x⟩dµ(w)

=

∫
Ω

v2w⟨ΛwPHwCQ∗x,ΛwPHwC
′
Q∗x⟩dµ(w)

≤ B⟨Q∗f,Q∗f⟩ ≤ B∥Q∥2⟨x, x⟩.
On the other hand, for each f ∈ H,

A⟨(QKQ∗)∗x, (QKQ∗)∗x⟩ = A⟨QK∗Q∗x,QK∗Q∗x⟩
≤ A∥Q∥2⟨K∗Q∗x,K∗Q∗x⟩

≤ ∥Q∥2
∫
Ω

v2w⟨ΛwPHwC(Q∗x),ΛwPHwC
′
(Q∗x)⟩dµ(w)

= ∥Q∥2
∫
Ω

v2w⟨ΛwPHw
Q∗Cx,ΛwPHw

Q∗C
′
x⟩dµ(w)

= ∥Q∥2
∫
Ω

v2w⟨ΛwPHw
Q∗PQHw

Cx,ΛwPHw
Q∗PQHw

C
′
x⟩dµ(w).

Then

A

∥Q∥2
⟨(QKQ∗)∗x, (QKQ∗)∗x⟩ ≤

∫
Ω

v2w⟨ΛwPHw
Q∗PQHw

Cx,ΛwPHw
Q∗PQHw

C
′
x⟩dµ(w).

Therefore Γ is a (C,C
′
)-controlled continuous QKQ∗ − g-fusion frame for U . □

Theorem 3.3. Let Q ∈ End∗A (U) be an invertible operator on U and Γ = {QHw,ΛwPHwQ
∗, vw}w∈Ω

be a (C,C
′
)-controlled continuous K − g-fusion frame for U for some K ∈ End∗A (U). Suppose that

Q∗QHw ⊂ Hw, ∀w ∈ Ω and C, C
′
commute with Q. Then Λ = {Hw,Λw, vw}w∈Ω is a (C,C

′
)-

controlled continuous Q−1KQ− g-fusion frame for U .
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Proof. Since Γ = {QHw,ΛwPHw
, vw}w∈Ω is a (C,C

′
)-controlled continuous K− g-fusion frame for U ,

there exists two constants A, B > 0 such that

A⟨K∗x,K∗x⟩ ≤
∫
Ω

v2w⟨ΛwPHwQ
∗PQHwCx,ΛwPHwQ

∗PQHwC
′
x⟩dµ(w) ≤ B⟨x, x⟩, ∀x ∈ U.

Letting x ∈ U , we have

A⟨(Q−1KQ)∗x, (Q−1KQ)∗x⟩ = A⟨Q∗K∗(Q−1)∗x,Q∗K∗(Q−1)∗x⟩
≤ A∥Q∥2⟨K∗(Q−1)∗x,K∗(Q−1)∗x⟩

≤ ∥Q∥2
∫
Ω

v2w⟨ΛwPHw
Q∗PQHw

C(Q−1)∗x,

ΛwPHw
Q∗PQHw

C
′
(Q−1)∗x⟩dµ(w)

≤ ∥Q∥2
∫
Ω

v2w⟨ΛwPHw
Q∗C(Q−1)∗x,ΛwPHw

Q∗C
′
(Q−1)∗x⟩dµ(w)

= ∥Q∥2
∫
Ω

v2w⟨ΛwPHw
Q∗(Q−1)∗Cx,ΛwPHw

Q∗(Q−1)∗C
′
x⟩dµ(w)

= ∥Q∥2
∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwC
′
x⟩dµ(w).

Then, for each f ∈ H, we have

A

∥Q∥2
⟨(Q−1KQ)∗x, (Q−1KQ)∗x⟩ ≤

∫
Ω

v2w⟨ΛwPHwCx,ΛwPHwC
′
x⟩dµ(w).

Also, for each x ∈ U , we have∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) =

∫
Ω

v2w⟨ΛwPHw
CQ∗(Q−1)∗x,ΛwPHw

C
′
Q∗(Q−1)∗x⟩dµ(w)

=

∫
Ω

v2w⟨ΛwPHw
Q∗C(Q−1)∗x,ΛwPHw

Q∗C
′
(Q−1)∗x⟩dµ(w)

=

∫
Ω

v2w⟨ΛwPHwQ
∗PQHwC(Q−1)∗x,

ΛwPHw
Q∗PQHw

C
′
(Q−1)∗xdµ(w)⟩

≤ B⟨(Q−1)∗x, (Q−1)∗x⟩
≤ B∥Q−1∥2⟨x, x⟩.

Thus Λ is a (C,C
′
)-controlled continuous Q−1KQ− g-fusion frame for U . □

Theorem 3.4. Let K ∈ End∗A (U) be an invertible operator on U and Λ = {Hw,Λw, vw}w∈Ω be

a (C,C
′
)-controlled continuous g-fusion frame for U with frame bounds A, B and let S(C,C′ ) be

the associated (C,C
′
)-controlled continuous g-fusion frame operator. Suppose that for all w ∈ Ω,

T ∗THw⊂Hw, where T =KS−1
(C,C′ )

and C, C
′
commute with T . Then {KS−1

(C,C′ )
Hw,ΛwPHw

S−1
(C,C′ )

K∗,

vw}w∈Ω is a (C,C
′
)-controlled continuous K − g-fusion frame for U with the corresponding (C,C

′
)-

controlled continuous g-fusion frame operator KS−1
(C,C′ )

K∗.

Proof. Now, T = KS−1
(C,C′ )

is invertible on U and T ∗ = (KS−1
(C,C′ )

)∗ = S−1
(C,C′ )

K∗. For each x ∈ U ,

we have

⟨K∗x,K∗x⟩ = ⟨S(C,C′ )S
−1
(C,C′ )

K∗x, S(C,C′ )S
−1
(C,C′ )

K∗x⟩
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≤ ∥S(C,C′ )∥
2⟨S−1

(C,C′ )
K∗x, S−1

(C,C′ )
K∗x⟩

≤ B2⟨S−1
(C,C′ )

K∗x, S−1
(C,C′ )

K∗x⟩.

Now, for each x ∈ U , we get∫
Ω

v2w⟨ΛwPHwT
∗PTHwC(x),ΛwPHwT

∗PTHwC
′
(x)⟩dµ(w) =

∫
Ω

v2w⟨ΛwPHwT
∗C(x),

ΛwPHw
T ∗C

′
(x)⟩dµ(w)

=

∫
Ω

v2w⟨ΛwPHwCT ∗(x),

ΛwPHw
C

′
T ∗(x)⟩dµ(w)

≤ B⟨T ∗x, T ∗x⟩
≤ B∥T∥2⟨x, x⟩
≤ B∥S−1

(C,C′ )
∥2∥K∥2⟨x, x⟩

≤ B

A2
∥K∥2⟨x, x⟩.

On the other hand, for each x ∈ U , we have∫
Ω

v2w⟨ΛwPHwT
∗PTHwC(x),ΛwPHwT

∗PTHwC
′
(x)⟩dµ(w) =

∫
Ω

v2w⟨ΛwPHwT
∗C(x),

ΛwPHwT
∗C

′
(x)⟩dµ(w)

=

∫
Ω

v2w⟨ΛwPHwCT ∗(x),

ΛwPHw
C

′
T ∗(x)⟩dµ(w)

≥ A⟨T ∗x, T ∗x⟩
= A⟨S−1

(C,C′ )
K∗x, S−1

(C,C′ )
K∗x⟩

≥ A

B2
⟨K∗x,K∗x⟩.

Thus {KS−1
(C,C′ )

Hw,ΛwPHw
S−1
(C,C′ )

K∗, vw}w∈Ω is a (C,C
′
)-controlled continuous K − g-fusion frame

for U .
For each x ∈ U , we have∫
Ω

v2wC
′
PTHw(ΛwPHwT

∗)∗(ΛwPHwT
∗)PTHwCxdµ(w) =

∫
Ω

v2wC
′
PTHwTPHwΛ

∗
w

(ΛwPHw
T ∗)PTHw

Cxdµ(w)

=

∫
Ω

v2wC
′
(PHw

T ∗PTHw
)∗Λ∗

wΛw

(PHw
T ∗PTHw)Cxdµ(w)

=

∫
Ω

v2wC
′
TPHwΛ

∗
wΛwPHwT

∗Cxdµ(w)

=

∫
Ω

v2wTC
′
PHw

Λ∗
wΛwPHw

CT ∗xdµ(w)
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= T

(∫
Ω

v2wC
′
PHw

Λ∗
wΛwPHw

CT ∗xdµ(w)

)
= TS(C,C′ )T

∗(x) = KS−1
(C,C′ )

K∗(x).

This implies that KS−1
(C,C′ )

K∗ is the associated (C,C
′
)-controlled continuous g-fusion frame

operator. □

In the next theorem we give an equivalent definition of a (C,C
′
)-controlled K − g-fusion frame.

Theorem 3.5. Let K ∈ End∗A (U). Then Λ = {Ww,Λw, vw}w∈Ω is a (C,C
′
)-controlled continuous

K − g-fusion frame for U if and only if there exist the constants A, B > 0 such that

A∥K∗x∥2 ≤ ∥
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w)∥ ≤ B∥x∥2, ∀x ∈ U. (3.4)

Proof. Evidently, every (C,C
′
)-controlled K − g-fusion frame for H satisfies (3.4). For the converse,

we suppose that (3.4) holds. For any {xw}w∈Ω ∈ ⊕w∈ΩVw,∥∥∥∥∫
Ω

vw(CC
′
)

1
2PHwΛ

∗
wxwdµ(w)

∥∥∥∥ = sup
∥y∥=1

∥∥∥∥⟨∫
Ω

vw(CC
′
)

1
2PWjΛ

∗
jxw, y⟩dµ(w)

∥∥∥∥
= sup

∥y∥=1

∥∥∥∥∫
Ω

⟨vw(CC
′
)

1
2PHw

Λ∗
wxw, y⟩dµ(w)

∥∥∥∥
= sup

∥y∥=1

∥∥∥∥∫
Ω

⟨xw, vwΛwPHw
(CC

′
)

1
2 y⟩dµ(w)

∥∥∥∥
≤ sup

∥y∥=1

∥∥∥∥∫
Ω

⟨xw, xw⟩dµ(w)
∥∥∥∥ 1

2

∥∥∥∥∫
Ω

v2w⟨ΛwPHw(CC
′
)

1
2 y,ΛwPHw(CC

′
)

1
2 y⟩dµ(w)

∥∥∥∥ 1
2

= sup
∥y∥=1

∥∥∥∥∫
Ω

⟨xw, xw⟩dµ(w)
∥∥∥∥ 1

2
∥∥∥∥∫

Ω

v2w⟨ΛwPHw
Cy,ΛwPHw

C
′
y⟩dµ(w)

∥∥∥∥ 1
2

≤ sup
∥y∥=1

∥∥∥∥∫
Ω

⟨xw, xw⟩dµ(w)
∥∥∥∥ 1

2√
B∥y∥ =

√
B∥{xw}w∈Ω∥.

Thus the
∫
Ω
vw(CC

′
)

1
2PHw

Λ∗
wxwdµ(w) converges in U .

Since

⟨Tx, {xw}w∈Ω⟩ =
∫
Ω

⟨vwΛwPHw(CC
′
)

1
2x, xw⟩dµ(w) =

〈
x,

∫
Ω

vw(CC
′
)

1
2PHwΛ

∗
wxwdµ(w)

〉
,

T is adjointable. Now, for each x ∈ U, we have

⟨Tx, Tx⟩ =
∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w) ≤ ∥T∥2⟨x, x⟩.

On the other hand, the left-hand inequality of (3.4) gives

∥K∗x∥2 ≤ 1

A
∥Tx∥2, ∀x ∈ U.

Then Lemma 1.5 implies that there exists a constant µ > 0 such that

KK∗ ≤ µT ∗T,
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and hence

1

µ
⟨K∗x,K∗x⟩ ≤ ⟨Tx, Tx⟩ =

∫
Ω

v2w⟨ΛwPHw
Cx,ΛwPHw

C
′
x⟩dµ(w), ∀x ∈ U.

We conclude that Λ is a (C,C
′
)-controlled continuous K − g-fusion frame for U . □

4. Perturbation of Controlled K − g-fusion Frame in Hilbert C∗-modules

Theorem 4.1. Let Λ = {Hw,Λw, vw}w∈Ω be a (C,C
′
)-controlled continuous K−g-fusion frame for U

with frame bounds A, B and Γw ∈ End∗A (U, Vw). Suppose that C and C
′
commute with PWwΓ

∗
wΓwPWw

for all w ∈ Ω such that for each x ∈ U ,

∥{(vwΛwPHw
− uwΓwPWw

)(CC
′
)

1
2x}w∈Ω∥ ≤λ1∥{vwΛwPHw

(CC
′
)

1
2x}w∈Ω∥

+ λ2∥{uwΓwPWw
(CC

′
)

1
2x}w∈Ω∥+ ϵ∥K∗x∥.

where 0 < λ1, λ2 < 1 and ϵ > 0 such that ϵ < (1− λ1)
√
A.

Then {Ww,Γw, uw}w∈Ω is a (C,C
′
)-controlled continuous K − g-fusion frame for U .

Proof. For each x ∈ U , we have∥∥∥∥ ∫
Ω

u2
w⟨ΓwPWw

Cx,ΓwPWw
C

′
x⟩dµ(w)

∥∥∥∥ 1
2

= ∥{uwΓwPWw(CC
′
)

1
2x}w∥

= ∥{uwΓwPWw(CC
′
)

1
2x}w + {vwΛwPHw(CC

′
)

1
2x}w−

{vwΛwPHw
(CC

′
)

1
2x}w∥

≤ ∥{(uwΓwPWw
− vwΛwPHw

)(CC
′
)

1
2x}w∥

+ ∥{vwΛwPHw
(CC

′
)

1
2x}w∥

≤ (λ1 + 1)∥{vwΛwPHw(CC
′
)

1
2x}w∥

+ λ2∥{uwΓwPWw
(CC

′
)

1
2x}w∥+ ϵ∥K∗x∥.

So,

(1− λ2)∥{uwΓwPWw
(CC

′
)

1
2x}w∥ ≤ (λ1 + 1)

√
B∥x∥+ ϵ∥K∗x∥.

Then

∥{uwΓwPWw
(CC

′
)

1
2x}w∥ ≤ (λ1 + 1)

√
B∥x∥+ ϵ∥K∗x∥
1− λ2

≤
( (λ1 + 1)

√
B + ϵ∥K∥

1− λ2

)
∥x∥.

Hence ∥∥∥∥ ∫
Ω

u2
w⟨ΓwPWw

Cx,ΓwPWw
C

′
x⟩dµ(w)

∥∥∥∥ ≤
( (λ1 + 1)

√
B + ϵ∥K∥

1− λ2

)2

∥x∥2.

On the other hand, for each x ∈ U,∥∥∥∥∫
Ω

u2
w⟨ΓwPWw

Cx,ΓwPWw
C

′
x⟩dµ(w)

∥∥∥∥ 1
2

= ∥{uwΓwPWw
(CC

′
)

1
2x}w∥

= ∥{(uwΓwPWw
− vwΛwPHw

)(CC
′
)

1
2x}w

+ {vwΛwPHw
(CC

′
)

1
2x}w∥

≥ ∥{vwΛwPHw
(CC

′
)

1
2x}w∥

− ∥{(uwΓwPWw − vwΛwPHw)(CC
′
)

1
2x}w∥
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≥ (1− λ1)∥{vwΛwPHw
(CC

′
)

1
2x}w∥

− λ2∥{uwΓwPWw
(CC

′
)

1
2x}w∥ − ϵ∥K∗x∥.

Thus ∥∥∥∥∫
Ω

u2
w⟨ΓwPWw

Cx,ΓwPWw
C

′
x⟩dµ(w)

∥∥∥∥ ≥
( (1− λ1)

√
A− ϵ

1 + λ2

)2

∥K∗x∥2. □
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