Transactions of A. Razmadze
Mathematical Institute
Vol. 178 (2024), issue 2, 247-257

A STUDY OF FANTASTIC FILTERS IN BL-ALGEBRAS

JAVAD MOGHADERI! AND SOMAYEH MOTAMED?*

Abstract. In this article, we first introduce the concept of the extension of a non-empty subset
X in BL-algebras and by an example we see that this set is not a filter, in general. So, by adding
a condition, we prove that the concept of the extension of X becomes a filter and with the help
of an example, we show the necessity of this condition. Then we examine and study the concept
of the extension of X completely. After that, we check this definition in different algebras such as
integral BL-algebras, linear SBL-algebras, implication BL-algebras and MV-algebras. Also, with
the help of this new concept, we obtain an equivalent property for fantastic filters, which makes
checking MV-algebras faster. In fact, we prove some new properties for fantastic filters in BL-
algebras. In addition, a new filter in BL-algebras is introduced and characterized. We state and
prove some theorems to determine the relationships between this notion and the other types of filters
in BL-algebras.

1. INTRODUCTION

Various problems in system identification involve characteristics that are essentially non-probabilistic
in nature [17]. In response to this situation, L. A. Zadeh introduced in 1965 fuzzy set theory as an
alternative to probability theory. His fundamental idea consists in understanding lattice-valued maps
as generalized characteristic functions of some new kind of subsets, the so-called fuzzy sets, of a given
universe. For historical reasons we quote the original definition (cf. [8] and [18]). Fuzzy logic grows as
a new discipline from the necessity to deal with vague data and imprecise information caused by the
indistinguishability of objects in certain experimental environments. As a set of mathematical tools,
fuzzy logic is only using [0, 1]-valued maps and certain binary operations * on the real unit interval
[0,1] known also as left-continuous t-norms. It took some time to understand that partially ordered
monoids of the form ([0, 1], <, %) as algebras for [0, 1]-valued interpretations of a certain type of non-
classical logic, is the so-called monoidal logic. BL-algebras arise naturally in the analysis of the proof
theory of propositional fuzzy logic. Indeed, Basic fuzzy logic (BL for short) and its corresponding
BL-algebras were introduced by Héjek (see [9] and references therein) with the purpose of formal-
izing the many-valued semantics induced by the continuous t-norms on the real unit interval [0, 1].
BL-algebras are the algebraic structures for Héjek’s Basic logic [9]. BL-algebras rise as Lindenbaum
algebras from certain logical axioms in a similar manner that Boolean algebras or MV -algebras do
from the Classical logic or Lukasiewicz logic, respectively. Filters theory plays an important role in
studying these logical algebras. From a logical point of view, various filters correspond to various
sets of provable formulas. Hajek introduced the concepts of filters and prime filters in BL-algebras.
Turunen studied some properties of the prime filters of BL-algebras in [15]. Haveshki et al. in [10]
continued the algebraic analysis of BL-algebras and introduced (positive) implicative and fantastic
filters of BL-algebras. After that we defined the notions of normal filters and obstinate filters in [2]
and [4], respectively.

This paper aims to analyze the structure of BL-algebras by fantastic filters. In previous research,
the concept of the fantastic filters has been used to classify BL-algebras in such a way that the
researchers showed that a BL-algebra is MV if and only if the filter {1} is fantastic. Since filters
play a very important role in examining different structures of BL-algebras, in this article we tried to
introduce and study a new filter for studying BL-algebras as much as possible. Our motivation was

2020 Mathematics Subject Classification. 03B47, 03G25, 06D99.
Key words and phrases. BL-algebra; Dense element; Fantastic filter; Ds-filter; Maximal filter; Prime filter.
*Corresponding author.



248 J. MOGHADERI AND S. MOTAMED

to study filters as possible in BL-algebras, to be able to obtain new relationships between filters as
well as different structures of BL-algebras, including M V-algebras, Boolean algebras, etc. Therefore
we defined the concept of D,-filter and proved that every filter of MV -algebras is a Dg-filter. In this
paper, we define a new concept and with its help we obtain new properties for fantastic filters that
are used for the study of MV -algebras.

The structure of the paper is as follows:

In Section 2, we recall the basic definitions and put in evidence many rules of calculus in BL-
algebras which we need in the rest of the paper. In this paper, we introduced the notion of the
extension of a nonempty subset of BL-algebras and described it. Also, we obtained a new equivalence
property for fantastic filters with the help of the new concept of extension of a set in BL-algebras.
Finally, we defined the notion of the D,-filter of BL-algebras and investigated some of its properties.

2. PRELIMINARIES

Definition 2.1 ([9]). A BL-algebra is an algebra (A4, A,V,*,—,0,1) with four binary operations
A, V, %, — and two constants 0, 1 such that:

(BLy) (A,A,V,0,1) is a bounded lattice L(A),
(BLs) (A,*,1) is a commutative monoid,
(BL3) * and — form an adjoint pair, i.e, ¢ < a — b if and only if ax c < b, for all a,b,c € A,
(BL4) aNb=ax(a—D),
(BL;) (a—=b)V(b—a)=1.

It is easy to prove that if A is a BL-algebra and z,y,z € A, we have the following rules of calculus
(for more details see [6,7,9,16]):

(BLg) x <y ifand only if x — y =1,

(BL;) 1l 5 x=zand z <y — =z,

(BLg) 2 = (y > 2)=(z*xy) > z=y— (z — 2),

(BLg) If <y, theny - 2 <z =2, 2z—>2<z—>y xxz <yx*xzand y~ <z, where
- =z —0,

(BLy) y<(y—z)—zandazVy=((x—=y) =y A((y—z) - z),

(BL11) zxy<zAy<z,y<zVy,z<z ,z7 "=z ,zx0=0and xx2~ =0,

(BLi2) ¢ =y~ =y—a =x =y =(x*y),

(BL13) zx(yVz) = (zxy)V(zxz). Hjek [9] defined a filter of a BL-algebra A to be a nonempty
subset F' of A such that (i) a,b € F implies axb € F, and (ii) if a € F, a < b, then b € F. Turunen [15]
defined a deductive system of a BL-algebra A to be a nonempty subset D of A such that (i) 1 € D
and (ii) x € D and  — y € D imply y € D. Note that a subset F' of a BL-algebra A is a deductive
system of A if and only if F is a filter of A [15].

Let z € A and F, G be the filters of A. We know that

[z) ={a € A:a>z", for somen € N},
(FU[z))={a€ A: a> f*a", forsome f € F, n€ N},
(FUG)={a€A: a> fxg, for some f € F, g € G}.

Let F' be a filter of a BL-algebra A. F is proper if F' # A. A proper filter F' of A is called a prime
filter of A if for all x,y € A, x Vy € F implies € F or y € F. Equivalently, F' is a prime filter of A
if and only if for all z,y € A, either z — y € F or y — x € F. A filter of A is maximal if it is proper
and not contained in any other proper filter of A. If M is a maximal filter of A and = ¢ M, then
(MU|z)) = A. A proper filter F of a BL-algebra A is an obstinate filter if x,y ¢ F imply x — y € F
and y — x € F, [4].

Let F' be a proper filter of A. The intersection of all maximal filters of A containing F' is called
the radical of F' and it is denoted by Rad (F'). We have proved that Rad (F) ={a € A: (a")” —
a € F, forall n € N}, for any filter F' of A (for details, see [14]). It is clear that F' C Rad (F),
for any filter F' of A. Throughout this paper, it is assumed that (A4, A, V,*,—,0,1) (in short A) is a
BL-algebra (unless we write otherwise).
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3. EXTENSION OF A SET IN BL-ALGEBRAS
In this section, the concept of extension of a set in BL-algebras is introduced and also characterized.

Definition 3.1. For any nonempty subset X of A, define an extension of X as the set X¢ = {z €
A: x~ <a”, for some a € X}. Note that X¢ is not a filter, in general, see the following example.

Example. Let A = {0,a,b,¢,d, 1}, where 0 < b < a < 1and 0 < d < a,c < 1. Define * and — by
the following table.

* 1 a b c d 0 — 1 a b c d 0
1 1 a b c d 0 1 1 a b c d 0
a a b b d 0 0 a 1 1 a c c d
b b b b 0 0 0 b 1 1 1 c c c
c c d 0 c d 0 c 1 a b 1 a b
d|d 0 0 d 0 0 d 1 1 a 1 1 a
o|0 O 0O O 0 o0 0 1 1 1 1 1 1

The Hasse diagram of this table looks as follows:

1
o)
b
c
d
0

Then (A, A,V,*,—,0,1) is a BL-algebra, [11]. Clearly, X¢ = {a}® = {a,1} is not a filter of A.
Also, {a,b} = {a,b,1}, {b}¢ = {b,1}, {c}* = {¢,d, 1}, {d}* = {d,1} and so, {a}®, {b}, {c}°, {d}°

are not filters.

Remark 3.1. For any nonempty subset X of A, we have
r € X< ax <a, for somea € X;
<z~ xa =0, for some a € X,by (BL3).
Therefore
X¢={xeA: 27 xa=0, for some a € X}.
In the following, we add a condition that X°¢ becomes a filter.

Theorem 3.1. Let X be a nonempty subset of A\ {0}, which is closed under” x”. Then X€ is a
filter of A.

Proof. Assume that a < b, for a,b € A such that a € X¢ Then there exists x € X such that
a” xx=0. So, b~ xx =0 and therefore b € X¢. Now, let a,b € X¢. Thus there exist x,y € X such
that a” xx=b" %y =0.Hence x <a " and y < b . Then zxy <a ~ b~ = (a*xb)”~ and so,
(axb)" x(xxy) =0, for zxy € X. Therefore a xb € X¢. Thus X¢ is a filter of A. O

Remark 3.2. Note that in Example 3, X is not closed under ” * 7, and X¢ is not a filter of A.
Therefore the condition of being closed under ” *” is necessary so that X€¢ becomes a filter of A.

Let X be a nonempty subset of A. The set of double complemented elements X is denoted by
D(X)={x e A: 27~ € X} (see [3]). An element a of A is said to be dense if and only if a= = 0.
We denote by D;(A) the set of the dense elements of A.

The following theorem reveals some basic properties of X¢.
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Theorem 3.2. For any two nonempty subsets X and Y of A, we have the following:
(1) X C X°¢=D(X®).
) Dy(4) C X¢ = (X°)°, s0 X C (X°).
) if X CY then X¢ CY°.
) (XNY)eCXeUYe =(XUY)e.
)0 ¢ X if and only if 0 & X©.
6) X ={ac A: (aVz)” =a, forsomex € X} ={a € A: (aANz)” ==, for some
zreXt={a €A: z<a ", for somex e X}.

(2

(3
(4
(5

Proof. (1) For any « € X, we have = < z~. Hence z € X°¢. Therefore X C X°¢. Now, we have
DX)={ze€A: 27~ € X°};
={xeA: 277 <a, for some a € X};
={ze€eA: 27 <a, forsomea € X} =X°

(2) Let a € Dy(A). Then 0 =a~ <z, for any z € X. And so, a € X¢, i.e., Ds(A4) C X°.

Now, by part (1), we have X¢ C (X*¢)¢. Again, let x € (X¢)¢. Then, 2~ < a~, for some a € X®.
Hence a= < ¢, for some ¢ € X. Hence = <a~ < ¢ and c € X. Thus z € X¢, i.e, (X¢)¢ C X°.
Therefore (X¢)¢ = X¢. Now, by using (1), we get X C (X°)°.

(3) Suppose X C Y. Let z € X¢. Then we obtain z~ < a~, for some a € X CY. Hence it yields
x € Y¢. Therefore X¢ C Y€.

(4) We know X NY C X,Y. So, by (3), we get (X NY)* C X°and (X NY)® C Y°. Hence
(XNnY)r CXeuve

Now, we know X, Y C X UY. So, from (3), X*UY*® C (XUY)°. Now, let a € (X UY)®. Thus
we obtain ¢~ <z, for some x € X UY. Hence we have three cases: & eX,orzeY orxe XNY.

Case (1), if a= < z7, for some z € X. This implies that a € X¢. And so, a € X¢UY¢®. Case (2),
if a= < a7, for some z € Y. This implies that a € Y¢. And so, a € X¢UY*®. Case (3),ifa” <z,
for some z € X NY. This implies that a € (X NY)°. As (X NY)* C X°UY*® wegetaec XeUY".
Hence (X UY)® C XeUYe®. Therefore (X UY)*=XcUY*.

(5) Assume that 0 ¢ X and 0 € X°. Then there exists z € X such that 1 = 0~ < 2. Hence
x=~ <17 =0,ie =~ =0. So, from (BL;1), we have x < 27—, and thus z = 0. That is a
contradiction, since 0 ¢ X. Therefore 0 ¢ X°©.

Conversely, the proof is straightforward, by using (1).

(6) We have

X¢={acA: a~ <z, for some z € X};
={a€A: a” ANz~ =a~, for some z € X};
={a€A: (ava)” =a”, for some z € X}.
Similarly, we have
X¢={a€A: a~ <z, for some z € X};
={a€A: a= Va~ =z, for some z € X};
={a€A: (aNx)” =z, for some x € X}.
By using (BL3), we have
X¢={a€A: a <z, for some z € X},
={a€A: a xxz=0, for some x € X};
={a€A: x<a ~, for some x € X}. O

In the following examples we show that the inverse inclusion of Theorem 3.2(1) may not hold, in
general.
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Example. Let A ={0,a,b,1}, where 0 < a < b < 1. Define * and — as follows:

—= o O %
oo o olo
Q Q@ O O
oo O
— o Ol
— oo ol
oo ~=lo
Q Q ~ R
S SN
I T e e

Then (A, A,V,*,—,0,1) is a BL-algebra [11]. Take X = {1}. It is clear that X°¢ = {b,1}. So,
Xe ¢ X.

A BlL-algebra A is called an implication BL-algebra if (z — y) — x = z, for all z,y € A such that
y #£ 0, see [1].

Theorem 3.3. Let A be an implication BL-algebra, X be a nonempty subset of A and 0 ¢ X. Then
Xe=A~{0}.

Proof. Let A be an implication BL-algebra. Then by using Theorem 4.6 [1], we get Ds(A) = A~ {0}.
By Theorem 3.2(2), we have Ds(A) C X¢. As 0 ¢ X and by applying Theorem 3.2(5), we conclude
that X© C A~ {0}. Therefore Ds(A) = AN {0} C X° C A~ {0}, ie., X¢= A {0}. O

We recall that a SBL-algebra A is a BL-algebra that satisfies = Az =0, for all z € A.
Lemma 3.1. Let A be a linear SBL-algebra, X be a subset of A and 0 ¢ X. Then X¢ = A\ {0}.

Proof. Let A be a linear SBL-algebra. Then by part (2) of Proposition 3.3 [13], A is a special BL-
algebra. So, Ds;(A) = A\ {0}, it follows from Proposition 3.1 [13]. By the proof of Theorem 3.3,
Xe=A~{0}. O

A BL-algebra A is called an integral BL-algebra if x xy =0, then z =0 or y = 0, for all z,y € A.
A proper filter F of a BL-algebra A is called an integral filter if for all z,y € A, (z*y)~ € F implies
x- € Fory  €F (see [5]).

Lemma 3.2. Let A be an integral BL-algebra, X be a subset of A and 0 € X. Then
(i) X = D4(A).

(i) if X is closed under x, X¢ is a prime filter.

(iil) F© is a prime filter for any proper filter F' of A.

Proof. (i) Let x € X¢. Then =~ < a~, for some a € X. Hence 7 xa <0, i.e., 7 xa=0. As A is
an integral, we get x~ =0 or a = 0. If a = 0, then 0 € X. That is a contradiction. Hence = = 0.
Then it yeilds € Dgs(A). Therefore X¢ C D(A). By Theorem 3.2(2), we have Ds(A) C X°. Thus
the proof is complete.

(ii) X© is a proper filter of A. Assume that a Vb € X€, for a,b € A. Then there exists € X such
that (aVb)” xax =0. Thus (a” *xz) A (b~ xz)(a” Ab~)*xx =0. Hence (a~ xx) x (b~ xx) =0. As A
is an integral BL-algebra, a~ xx =0 or b~ * x = 0. Therefore a € X° or b € X°.

(iii) It is clear by Part (ii). O

Lemma 3.3. Let F be an integral filter of A. Then F¢ C D(F).

Proof. Assume that x € F¢. Then there exists a € F such that 2~ xa = 0. So, (z~ *a)” € F and
thus a= € Fora™~ € F. Since a € F, a~ ¢ F and therefore z € D(F). O

In the following lemma, we study the image and inverse image of the extension of a nonempty
subset under a BL-homomorphism:

Lemma 3.4. Let f : A — B be a homomorphism of BL-algebras and @ # X C A and @ #Y C B.
Then we have:

(1) if fHY)#0, (FHY)° C fHYe);
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(2) f(X°) € f(X)%
(3) if f is a monomorphism, then f(X¢) = f(X)¢;
(4) if f is a monomorphism and Y C f(A), then f~1(Y*) = (f~1(Y))*.

Proof. (1) Let y € (f~*(Y))¢. Then y~ < b, for some b € f~1(Y). Thus we obtain f(y~) < f(b™)
and f(b) € Y. Hence f(y)~ < f(b)~ and f(b) € Y, i.e., f(y) € Y°. And so, y € f~1(Y®). Therefore
() € 1 (re).

(2) Let b € f(X°). So, there exists z € X¢ such that b = f(z). Since x € X°, we get z~ < a~, for
some a € X. Hence f(z)” < f(a)” and f(a) € f(X). Thus it yields f(z) € f(X)® and so, b € f(X)°.
Therefore f(X€¢) C f(X)e.

(3) Suppose f is a monomorphism. Let z € f(X)¢. So, there exists a € f(X) such that = <a~.
As a € f(X), there exists b € X such that a = f(b). Hence 2~ < f(b)~ and so, f~1(x™) < f~Lf(b7).
As f is a monomorphism, we get f~'(z7) < b~. Thus (f~(z))~ < b~, for some b € X. It
yields f~!(z) € X and so, z € f(X¢), and hence f(X)®¢ C f(X¢). Therefore by part (2), we get
F(X%) = F(X).

(4) Let y € f~1(Y®). Then f(y) € Y¢, ie., f(y)~ < b, for some b € Y. Hence f~1f(y™)
(f~1(b))~. Since f is a monomorphism, therefore y~ < (f~1(b))~. Now, as b € Y, we get f~1(b)
F7YY). Therefore y € (f~1(Y))¢, ie., f1(Y?) C (f~1(Y))¢ And so, by part (1), (f~1(Y))®
).

In the next proposition, we study the extension of some sets with special properties.

Ol miIA

Proposition 3.1. Let X be a nonempty subset of A. Then
(i) 1 € X¢;
(ii)) 0 € X¢ if and only if for some a € X, a= =1;
(iil) if X s closed under A, then X¢ is closed under A;
(iv) if X is closed under V, then X°¢ is closed under V;
(v) if X is closed under x, then X¢ is closed under x.

Proof. (i), (ii) These parts are easy.
(iii), (iv) Let X be closed under A, V and a,b € X€, for a,b € A. Then for some z,y € X, a~ <z~
and b~ < y~. Hence

(avVbd)™=a Ab” <a” Ay  =(xVy;
(anb)"=a" Vb <a"Vy =(zAy)".
So, by the hypothesis, z Ay € X€ and z Vy € X°.
(v) According to Theorem 3.1, this part is clear. O

4. EXTENSION OF A FILTER

In this section, we study the extension of filters in BL- algebras with the aim of a more detailed
study of BL- algebras.

In Example 3, we show that for any nonempty subset X of A, X€ is not a filter of A, in general.
In the following, we prove that for any filter F' of A, F¢ is a filter.

Theorem 4.1. For any filter F of A, F¢ is a filter of A.

Proof. Clearly, 1 € F¢. Let z,y € F°, we have to show that x xy € F°¢. As x,y € F°, there exist
a,b € F such that 2= < a” and y= < b~. Hence 2=~ — y~ < 27~ — b~ and so, by (BL12),
(x*xy)” < (z77xb)~, (). Byz~ <a,wehavea = <z~ . Also, by a € F and a < a™~, we obtain
a~~ €F. Andso,z7~ € F. Hence as b € F, we get £~ b € F. Therefore by (I), xxy € F°. Now,
let x € F© and x <y. Then y~— <z~ <a~, for some a € F. Hence y € F'¢. Therefore F€ is a filter
of A. O

Note. In Example 3, {a,b}° = {a,b, 1} is a filter and, clearly, {a,b} is not a filter of A.
By Theorem 3.2(5), we can obtain the following
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Corollary 4.1. Let F be a filter of A. Then F is a proper filter of A if and only if F© is a proper
filter of A.

Proof. Let I be a filter of Aand 0 € F. As 0~ <07, then 0 € F¢. Now, let 0 € F¢. Then for some
a€F,00 <a andso,a” =1. Asa € F, then a=— € F. Therefore 0 € F, since a—~ = 0. O

A BL-algebra A is called an MV-algebraif =~ = z, for all z € A. The MV -center of a BL-algebra
A denoted by MV (A), is defined as

MV(A)={xeAd: 27" =z}
The following theorem reveals some basic properties of F°.

Theorem 4.2. For any two filters F and G of A and x,a € A, we have the following:
1) (FNG)¢=FenNGe.
) {1}¢ = D4(A) and A° = A = {0}°.
) FE N MV (A) C F.
) {1} N MV (A) = {1}, and so Ds(A)N MV (A) = {1}.
)ax~ € F¢ if and only if x~ € F.
) x € F° implies x=~ € F.
Y{a}e={xeAd:a<z""}.
J[a)f={zred:z” <(a")",IneN}={zre€Ad:a" <z ~,In€ N}.
) x € [a)° if and only if x=~ € [a).
O) F = UaeF[a), so, Fe = UaeF[a)e.
1) (DS(A))E = DS(A)
Proof. (1) By Theorem 3.2(3), we have (F N G)¢ C F° N G°. Conversely, let z € F° N G° Then
- <a and z— < b, for some a € Fand b € G. Hence a=~ < 7~ and b=~ < x~—, where
a~€Fandb~ €G. Hencea " Vb~ ™ <z7 7. Thusz™ < (a”~ Vb ")  anda " Vb~ € FNG.
So, z € (FNG), ie, F*NG® C (FNG)°. Therefore (FNG)¢ = F°NG°.
(2) We have
{1} ={z€eA:27 <17 =0}={z € A: 27 =0} = Ds(A).
For any x € A, x= <0~ = 1. Hence x € A°, so, A C A°. Therefore A° = A. Now, we know that
{0}°={a€cA: a” <0 }={a€cA: a” <1} =A.

(3) Let z € Fe N MV(A). Then 2~ <a~, for some a € F. And so,a™~ <z~ ~,a ~ € F. Hence
xTT €EF. Asx € MV (A), we get =~ = . Therefore x € F, i.e., FENMV(A) C F.

(4) The proof is clear by parts (2) and (3).

(5) Let x= € F°. Then 2=~ < a~, for some a € F. So,a™~ <2~~~ =2z anda ~ € F.
Therefore 2~ € F.

Conversely, the proof is clear.

(6) Let x € F°. Thenaz~ <a ,forsomea € F. So,a™~ € Fanda™~ <z~ . And thusz~~ € F.

(7) Applying (BL3), we have

{a}¢={zecA: 27 <a}={zrcA: 27 %xa<0},
={recA: axaz” <0}={zred:a<a "}
(8) Assume that x € [a)®. Then using (BL3), we have

x” <b7,FeEfa)=2” <b” and b >a", In € N;
=z <b < (a")7, meEN;
=z~ <(a")7, IneN;
Sz xa” <0, In € N;
Sa"<ax”7,dneN.

Therefore
[ C{reAd: 2" <(a")",IneN}={ze€A:a" <2"7,In€ N}.
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Conversely, let = < (a™)~, for some n € N. We know a € [a) and so, by a filter property of [a),
we get a” € [a), for all n € N. Hence x € [a)¢, i.e.,

{reA:27 <(a")",Ine N} C [a)".

This completes the proof.

(9) Let 2=~ € [a). Then =~ > a”, for some n € N. So, 2~ < (a™), for some n € N. As a” € [a),
for all n € N, we get x € [a)¢. Conversely is proved in (6), so, the proof is complete.

(10) Let b€ F. Then b € [b) C Ugerla). So, F C Ugerla). Now, let & € Uger[a). So, there exists
b € F such that z € [b). Thus x > b", for some n € N. As b € F, we conclude that b™ € F, for all
n € N. Hence x € F, i.e., Uyerla) C F. Therefore F' = Uyer|a). Now, applying Theorem 3.2(4), we
conclude that F¢ = Ugep[a)®.

(11) Let x € (Dy(A)), for any x € A. Then 2z~ < a~, for some a € Dy(A). So, a= = 0,
and hence 2= = 0, i.e,, x € Ds(A). Therefore (Ds(A))¢ C Ds(A). By Theorem 3.2(1), we get
(Dé(A))e = Dé(A) O

If F is a filter of A, then the relation ~ defined on A by (x,y) €~ if and only if v — y € F and
y — ¢ € F is a congruence relation on A. The quotient algebra A/ ~p denoted by A/F becomes a
BL-algebra in a natural way, with the operations induced from those of A. So, the order relation on
A/F is given by z/F < y/F if and only if v — y € F. Hence 2/F = 1/F if and only if z € F and
x/F =0/F if and only if x~ € F.

In the following, we characterize fantastic filters.

Theorem 4.3. Let F be a filter of A. Then the following statements are equivalent:

)x~~ € F implies x € F, for all x € A;

) Forz,y € A, 2~ =y~ and x € F imply that y € F;
) D(F) = F;

) Dy(A/F) ={1/F}.

) F is a fantastic filter.

Proof. (1) = (2) Let F = F° and =~ € F, for any € A. Hence =~ € F*°. So, there exists a € F
such that = = (z77)~ < a~. Thus x € F¢, and by the hypothesis, we get x € F.

(2) = (3) Let x= =y~ and « € F, for any z,y € A. So, v~ € F, since x < 27 ~. By the
hypothesis, we get x™~ =y~ ~, so, y~~ € F. Hence by part (2), y € F.

(3) = (1) Let x € F°. Then 2~ < a~, for some a € F. And so, a~ =2~ Va~ = (x Aa)”. Hence
by part (3) and a € F, we obtain z Aa € F. By z Aa < z, we get € F. And so, F°* C F. Therefore
by Theorem 3.2(1), F = F°.

(2) = (4) Let x € D(F). Then z—~ € F. So, by (2), we get € F. Hence D(F) C F. Now, let
x € F. Since x < x~~, we get =~ € F. So, x € D(F). And thus F' C D(F). Therefore D(F) = F.

(4) = (2) Let D(F') = F and 2=~ € F, for any « € A. Then z € D(F') and by the hypothesis, we
get x € F.

( ) = (5) Let D(F) = F and z/F € Dy(A/F). Then (x/F)~ = 0/F, so, x=~ € F. Thus

€ D(F). Hence by part (4), we get « € F, i.e.,, z/F = 1/F. Therefore D,(A/F) = {1/F}.

(5) = (4) Let Dy(A/F) = {1/F} and ¢ € D(F). Then 2=~ € F, so, (x/F)~~ = 1/F. Thus
(x/F)~ =0/F, ie., ¢/F € Dy(A/F). Hence z/F = 1/F and so, x € F. Therefore D(F') C F. As
F C D(F), we getF D(F).

(2) < (6) This part is proved in Lemma 1 [12]. O

Lemma 4.1. Let F be a proper filter of A such that F = F¢ and x=~ = 1, for any x € A — {0}.
Then F = A — {0}.

Proof. Let © € A — {0}. Then by the hypothesis, we get =~ = 1 € F. So, from Theorem 4.3,
x € F. Hence A~ {0} C F. As F is a proper filter, we conclude that F' C A — {0}. Thus we obtain
F=A-{0}. O
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Remark 4.1. According to (2) < (6) of Theorem 4.3 and Theorem 4.4 [10], if F' and G are filters of
A, F = F° such that F' C G, then G = G°.

Proposition 4.1. Let F be a filter of A and [x)¢ = [z), for some x € F. Then F¢ =F.

Proof. Let [z)¢ = [z), for some z € F. By Theorem 4.2(10), we have F' = Uger[a). Hence [z) C F.
Thus applying Remark 4.1 and [z) C F', we conclude that F¢ = F. O

Theorem 4.4. Let F' be an integral filter and fantastic filter of A. Then F is an obstinate filter of A.

Proof. Let z,y € F, for x,y € A. We will show that + — y € F and y — =z € F. We have
(x*27)” =1€ F. As F is an integral filter, we get 2= € Foraz™~ € F. If 7~ € F, thenz € F.
That is a contradiction, so =~ € F. Now, by (BLg), 0 <y, so, x = 0 < 2 — y and since F is a filter
and 7 € F, we get x — y € F. In a similar way, we can prove that y — x € F. Therefore F is an
obstinate filter of A. O

Now, by Theorem 4.4 and Lemma 4.2 [14], we conclude the following

Corollary 4.2. Let F' be an integral filter and fantastic filter of A. Then F is a semi-maximal filter
of A.

Now, by Proposition 4.6 [4] and Theorems 4.4, 4.18 [5], we conclude the following

Theorem 4.5. Let F' be a filter of A. Then the following conditions are equivalent:
(1) F is a maximal and positive implicative filter,
(2) F is a maximal and implicative filter,
(3) F is an obstinate filter,
(4) F is an integral and fantastic filter.

Definition 4.1. A filter F of A is called a Dg-filter of A if Ds(A) C F.
The following example shows that D,-filter in B L-algebras exists and any filter may not be D-filter.

Example. Let A = {0,a,b,¢,d, 1}, where 0 <a <c¢<1land 0 <b < ¢,d<1. Define * and — as
follows:

— Q0 e O %
[N oNoNoN oo No)
T O O
Q Qoo O Ol
— Q0 o Ol
a0 o ol
O Q O Q Qo
S0 Q- Qo
QU M Q- Qe
e e

Q O O OoOe
QO T 0 TR OO0

QL Q 2 2 e
A0 ==~ F)a

Then (A, A,V,*,—,0,1) is a BL-algebra [11], and clearly, Ds(A) = {¢,1}. Hence F' = {a,c,1} is a
D-filter and G = {d, 1} is not a Ds-filter of A.

The following theorem and corollary are direct consequences of Definition 4.1.

Theorem 4.6. Let F' and G be two filters of A and F be a Dg-filter of A. If FF C G, then G is a
D,-filter of A.

Corollary 4.3. Let F and G be two Dg-filters of A. Then we have:
(1) FNG is a Ds-filter of A.
(2) (FUQG) is a Dg-filter of A.
(3) (FU{x}) is a Ds-filter of A, for each x € A.
(4) Rad (F') is a Ds-filter of A.

Theorem 4.7. Every fantastic filter of any BL-algebra is a Dg-filter.
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Proof. Let F be a fantastic filter of A. Then F¢ = F. Hence by Theorem 3.2(2), Ds(A) C F°. And
so, Ds(A) C F, ie., F is a D,-filter of A. O

Corollary 4.4. Let F be a filter of A. Then F*€ is a Ds-filter of A.
Proof. By Theorem 3.2(2) and Theorem 4.7, the proof is easy. O

Now, by Theorems 4.7 and 4.3, we conclude the following

Corollary 4.5. We have
(1) Every fantastic filter is a Dg-filter.
(2) Every positive implicative filter is a D-filter.
(3) Ewvery obstinate filter is a Ds-filter.
(3) Every mazimal filter is a Ds-filter.

Corollary 4.6. Any filter of Boolean algebra A is a Ds-filter of A.
Proof. The proof is straightforward from Corollary 4.5(2). O

We consider the set F'¢(A) = {F € F(A) : F = F°. By Theorem 4.3, F¢(A) = {F €
F(A): Fis a fantastic filter of A}.

Corollary 4.7. Dy (A) is the smallest filter of F¢(A).

Proof. Let F' € F¢(A) and F C D,(A). Then there exists a € Ds(A), such that a ¢ F. As F = F©,
so, a & F°. Hence a= £ b, for all b € F. Also, as a € D4(A), we get a= =0. Thus 0 =a~ £ b, for
all b € F, which is a contradiction. Therefore F' = D4(A). O

Theorem 4.8. FEvery filter of MV -algebra A is a Dg-filter.

Proof. Since any filter in MV -algebra is fantastic; by Theorem 4.7, the proof is completed. 0
Theorem 4.9. Let F be a proper filter of A and A/F be an MV -algebra. Then F is a Ds-filter of A.
Proof. By the hypothesis, F' is a fantastic filter and so, by Theorem 4.7, the proof is completed. [

Proposition 4.2. Let f : A — B be a monomorphism of BL-algebras and F be a Dg-filter of B.
Then f~Y(F) is a Ds-filter of A.

Proof. Let F be a Dyfilter of B. Then Ds(B) C F, so, f~1(Ds(B)) C f~1(F). We have to show that
f~YUDs(B)) = Ds(A). Let x € f~1(D4(B)), for x € A. Then f(z) € Ds(B), so, f(z)~ =0 = f(04).
Hence f~1f(x~) = f~1f(04). As f is a monomorphism, we get x~ = 04. And thus z € D4(4), i.e.,
FY(Ds(B)) C Ds(A). Now, let z € Ds(A). Then = = 04, so, f(z)~ = 0. Thus f(x) € Ds(B),
ie, x € f71(Ds(B)). Therefore Ds(A) C f~1(Ds(B)), and hence f~1(Ds(B)) = Ds(A). Thus as
F~UDs(B)) C f~YF), we get Dy(A) C f=H(F), i.e., f~1(F) is a DsAfilter of A. O

5. CONCLUDING REMARKS AND FUTURE WORKS

BL-algebras have the most important algebraic structure among all the various logical algebras
that have been proposed as the semantic systems of non-classical logical systems. Also, they include
some important classes of algebras, like the MV. In this article, we tried to take a step towards a
more detailed study of BL-algebras by presenting new concepts. In this paper, we introduced the
concept of the extension of a nonempty subset X, (X¢), in BL-algebras and we checked this definition
in different algebras, such as integral BL-algebras, linear SBL-algebras, implication B L-algebras and
MV -algebras. In addition, we have provided the conditions for a filter to be fantastic and obtained
some conditions equivalent to them. In fact, we obtained interesting equivalence properties for easier
investigation of fantastic filters in BL-algebras and so, we were able to find an easier way to study
MV -algebras. Also, we have considered D-filters in BL-algebras. The results of this paper will be
devoted to studying the local B L-algebras, perfect BL-algebras and S BL-algebras which are different
extensions of Basic Logic. And since BL-algebras, MV -algebras and lattice implication algebras are
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closely related, all results in this paper will contribute much to studying ideals and filters (or, deductive
systems) of MV -algebras, lattice implication algebras and related algebraic systems.

Some issues for future work are:

— Study the relationship between X ¢ and other types of filters in BL-algebras.
— Introducing new topologies on BL-algebras based on X°.

— Define and study X°¢ for sets with different properties.

— Introducing a new subclass of BL-algebras.
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