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A STUDY OF FANTASTIC FILTERS IN BL-ALGEBRAS

JAVAD MOGHADERI1 AND SOMAYEH MOTAMED2∗

Abstract. In this article, we first introduce the concept of the extension of a non-empty subset

X in BL-algebras and by an example we see that this set is not a filter, in general. So, by adding
a condition, we prove that the concept of the extension of X becomes a filter and with the help

of an example, we show the necessity of this condition. Then we examine and study the concept

of the extension of X completely. After that, we check this definition in different algebras such as
integral BL-algebras, linear SBL-algebras, implication BL-algebras and MV -algebras. Also, with

the help of this new concept, we obtain an equivalent property for fantastic filters, which makes
checking MV -algebras faster. In fact, we prove some new properties for fantastic filters in BL-

algebras. In addition, a new filter in BL-algebras is introduced and characterized. We state and

prove some theorems to determine the relationships between this notion and the other types of filters
in BL-algebras.

1. Introduction

Various problems in system identification involve characteristics that are essentially non-probabilistic
in nature [17]. In response to this situation, L. A. Zadeh introduced in 1965 fuzzy set theory as an
alternative to probability theory. His fundamental idea consists in understanding lattice-valued maps
as generalized characteristic functions of some new kind of subsets, the so-called fuzzy sets, of a given
universe. For historical reasons we quote the original definition (cf. [8] and [18]). Fuzzy logic grows as
a new discipline from the necessity to deal with vague data and imprecise information caused by the
indistinguishability of objects in certain experimental environments. As a set of mathematical tools,
fuzzy logic is only using [0, 1]-valued maps and certain binary operations ∗ on the real unit interval
[0, 1] known also as left-continuous t-norms. It took some time to understand that partially ordered
monoids of the form ([0, 1],≤, ∗) as algebras for [0, 1]-valued interpretations of a certain type of non-
classical logic, is the so-called monoidal logic. BL-algebras arise naturally in the analysis of the proof
theory of propositional fuzzy logic. Indeed, Basic fuzzy logic (BL for short) and its corresponding
BL-algebras were introduced by Hájek (see [9] and references therein) with the purpose of formal-
izing the many-valued semantics induced by the continuous t-norms on the real unit interval [0, 1].
BL-algebras are the algebraic structures for Hájek’s Basic logic [9]. BL-algebras rise as Lindenbaum
algebras from certain logical axioms in a similar manner that Boolean algebras or MV -algebras do
from the Classical logic or Lukasiewicz logic, respectively. Filters theory plays an important role in
studying these logical algebras. From a logical point of view, various filters correspond to various
sets of provable formulas. Hájek introduced the concepts of filters and prime filters in BL-algebras.
Turunen studied some properties of the prime filters of BL-algebras in [15]. Haveshki et al. in [10]
continued the algebraic analysis of BL-algebras and introduced (positive) implicative and fantastic
filters of BL-algebras. After that we defined the notions of normal filters and obstinate filters in [2]
and [4], respectively.

This paper aims to analyze the structure of BL-algebras by fantastic filters. In previous research,
the concept of the fantastic filters has been used to classify BL-algebras in such a way that the
researchers showed that a BL-algebra is MV if and only if the filter {1} is fantastic. Since filters
play a very important role in examining different structures of BL-algebras, in this article we tried to
introduce and study a new filter for studying BL-algebras as much as possible. Our motivation was
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to study filters as possible in BL-algebras, to be able to obtain new relationships between filters as
well as different structures of BL-algebras, including MV -algebras, Boolean algebras, etc. Therefore
we defined the concept of Ds-filter and proved that every filter of MV -algebras is a Ds-filter. In this
paper, we define a new concept and with its help we obtain new properties for fantastic filters that
are used for the study of MV -algebras.

The structure of the paper is as follows:
In Section 2, we recall the basic definitions and put in evidence many rules of calculus in BL-

algebras which we need in the rest of the paper. In this paper, we introduced the notion of the
extension of a nonempty subset of BL-algebras and described it. Also, we obtained a new equivalence
property for fantastic filters with the help of the new concept of extension of a set in BL-algebras.
Finally, we defined the notion of the Ds-filter of BL-algebras and investigated some of its properties.

2. Preliminaries

Definition 2.1 ([9]). A BL-algebra is an algebra (A,∧,∨, ∗,→, 0, 1) with four binary operations
∧,∨, ∗,→ and two constants 0, 1 such that:

(BL1) (A,∧,∨, 0, 1) is a bounded lattice L(A),
(BL2) (A, ∗, 1) is a commutative monoid,
(BL3) ∗ and → form an adjoint pair, i.e, c ≤ a → b if and only if a ∗ c ≤ b, for all a, b, c ∈ A,
(BL4) a ∧ b = a ∗ (a → b),
(BL5) (a → b) ∨ (b → a) = 1.

It is easy to prove that if A is a BL-algebra and x, y, z ∈ A, we have the following rules of calculus
(for more details see [6, 7, 9, 16]):

(BL6) x ≤ y if and only if x → y = 1,
(BL7) 1 → x = x and x ≤ y → x,
(BL8) x → (y → z) = (x ∗ y) → z = y → (x → z),
(BL9) If x ≤ y, then y → z ≤ x → z, z → x ≤ z → y, x ∗ z ≤ y ∗ z and y− ≤ x−, where

x− = x → 0,
(BL10) y ≤ (y → x) → x and x ∨ y = ((x → y) → y) ∧ ((y → x) → x),
(BL11) x ∗ y ≤ x ∧ y ≤ x, y ≤ x ∨ y, x ≤ x−−, x−−− = x−, x ∗ 0 = 0 and x ∗ x− = 0,
(BL12) x → y− = y → x− = x−− → y− = (x ∗ y)−,
(BL13) x ∗ (y ∨ z) = (x ∗ y)∨ (x ∗ z). Hájek [9] defined a filter of a BL-algebra A to be a nonempty

subset F of A such that (i) a, b ∈ F implies a∗b ∈ F , and (ii) if a ∈ F , a ≤ b, then b ∈ F . Turunen [15]
defined a deductive system of a BL-algebra A to be a nonempty subset D of A such that (i) 1 ∈ D
and (ii) x ∈ D and x → y ∈ D imply y ∈ D. Note that a subset F of a BL-algebra A is a deductive
system of A if and only if F is a filter of A [15].

Let x ∈ A and F,G be the filters of A. We know that

[x) = {a ∈ A : a ≥ xn, for some n ∈ N},
⟨F ∪ [x)⟩ = {a ∈ A : a ≥ f ∗ xn, for some f ∈ F, n ∈ N},
⟨F ∪G⟩ = {a ∈ A : a ≥ f ∗ g, for some f ∈ F, g ∈ G}.

Let F be a filter of a BL-algebra A. F is proper if F ̸= A. A proper filter F of A is called a prime
filter of A if for all x, y ∈ A, x ∨ y ∈ F implies x ∈ F or y ∈ F . Equivalently, F is a prime filter of A
if and only if for all x, y ∈ A, either x → y ∈ F or y → x ∈ F . A filter of A is maximal if it is proper
and not contained in any other proper filter of A. If M is a maximal filter of A and x ̸∈ M , then
⟨M ∪ [x)⟩ = A. A proper filter F of a BL-algebra A is an obstinate filter if x, y ̸∈ F imply x → y ∈ F
and y → x ∈ F , [4].

Let F be a proper filter of A. The intersection of all maximal filters of A containing F is called
the radical of F and it is denoted by Rad (F ). We have proved that Rad (F ) = {a ∈ A : (an)− →
a ∈ F, for all n ∈ N}, for any filter F of A (for details, see [14]). It is clear that F ⊆ Rad (F ),
for any filter F of A. Throughout this paper, it is assumed that (A,∧,∨, ∗,→, 0, 1) (in short A) is a
BL-algebra (unless we write otherwise).
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3. Extension of a Set in BL-algebras

In this section, the concept of extension of a set in BL-algebras is introduced and also characterized.

Definition 3.1. For any nonempty subset X of A, define an extension of X as the set Xe = {x ∈
A : x− ≤ a−, for some a ∈ X}. Note that Xe is not a filter, in general, see the following example.

Example. Let A = {0, a, b, c, d, 1}, where 0 < b < a < 1 and 0 < d < a, c < 1. Define ∗ and → by
the following table.

∗ 1 a b c d 0
1 1 a b c d 0
a a b b d 0 0
b b b b 0 0 0
c c d 0 c d 0
d d 0 0 d 0 0
0 0 0 0 0 0 0

→ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

The Hasse diagram of this table looks as follows:

0

b

d

a

c

1

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra, [11]. Clearly, Xe = {a}e = {a, 1} is not a filter of A.
Also, {a, b}e = {a, b, 1}, {b}e = {b, 1}, {c}e = {c, d, 1}, {d}e = {d, 1} and so, {a}e, {b}e, {c}e, {d}e
are not filters.

Remark 3.1. For any nonempty subset X of A, we have

x ∈ Xe ⇔ x− ≤ a−, for some a ∈ X;

⇔ x− ∗ a = 0, for some a ∈ X,by (BL3).

Therefore
Xe = {x ∈ A : x− ∗ a = 0, for some a ∈ X}.

In the following, we add a condition that Xe becomes a filter.

Theorem 3.1. Let X be a nonempty subset of A ∖ {0}, which is closed under ” ∗ ”. Then Xe is a
filter of A.

Proof. Assume that a ≤ b, for a, b ∈ A such that a ∈ Xe. Then there exists x ∈ X such that
a− ∗ x = 0. So, b− ∗ x = 0 and therefore b ∈ Xe. Now, let a, b ∈ Xe. Thus there exist x, y ∈ X such
that a− ∗ x = b− ∗ y = 0. Hence x ≤ a−− and y ≤ b−−. Then x ∗ y ≤ a−− ∗ b−− = (a ∗ b)−− and so,
(a ∗ b)− ∗ (x ∗ y) = 0 , for x ∗ y ∈ X. Therefore a ∗ b ∈ Xe. Thus Xe is a filter of A. □

Remark 3.2. Note that in Example 3, X is not closed under ” ∗ ”, and Xe is not a filter of A.
Therefore the condition of being closed under ” ∗ ” is necessary so that Xe becomes a filter of A.

Let X be a nonempty subset of A. The set of double complemented elements X is denoted by
D(X) = {x ∈ A : x−− ∈ X} (see [3]). An element a of A is said to be dense if and only if a− = 0.
We denote by Ds(A) the set of the dense elements of A.

The following theorem reveals some basic properties of Xe.
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Theorem 3.2. For any two nonempty subsets X and Y of A, we have the following:
(1) X ⊆ Xe = D(Xe).
(2) Ds(A) ⊆ Xe = (Xe)e, so X ⊆ (Xe)e.
(3) if X ⊆ Y then Xe ⊆ Y e.
(4) (X ∩ Y )e ⊆ Xe ∪ Y e = (X ∪ Y )e.
(5) 0 ̸∈ X if and only if 0 ̸∈ Xe.
(6) Xe = {a ∈ A : (a ∨ x)− = a−, for some x ∈ X} = {a ∈ A : (a ∧ x)− = x−, for some

x ∈ X} = {a ∈ A : x ≤ a−−, for some x ∈ X}.

Proof. (1) For any x ∈ X, we have x− ≤ x−. Hence x ∈ Xe. Therefore X ⊆ Xe. Now, we have

D(Xe) = {x ∈ A : x−− ∈ Xe};
= {x ∈ A : x−−− ≤ a−, for some a ∈ X};
= {x ∈ A : x− ≤ a−, for some a ∈ X} = Xe.

(2) Let a ∈ Ds(A). Then 0 = a− ≤ x−, for any x ∈ X. And so, a ∈ Xe, i.e., Ds(A) ⊆ Xe.
Now, by part (1), we have Xe ⊆ (Xe)e. Again, let x ∈ (Xe)e. Then, x− ≤ a−, for some a ∈ Xe.

Hence a− ≤ c−, for some c ∈ X. Hence x− ≤ a− ≤ c− and c ∈ X. Thus x ∈ Xe, i.e., (Xe)e ⊆ Xe.
Therefore (Xe)e = Xe. Now, by using (1), we get X ⊆ (Xe)e.

(3) Suppose X ⊆ Y . Let x ∈ Xe. Then we obtain x− ≤ a−, for some a ∈ X ⊆ Y . Hence it yields
x ∈ Y e. Therefore Xe ⊆ Y e.

(4) We know X ∩ Y ⊆ X,Y . So, by (3), we get (X ∩ Y )e ⊆ Xe and (X ∩ Y )e ⊆ Y e. Hence
(X ∩ Y )e ⊆ Xe ∪ Y e.

Now, we know X,Y ⊆ X ∪ Y . So, from (3), Xe ∪ Y e ⊆ (X ∪ Y )e. Now, let a ∈ (X ∪ Y )e. Thus
we obtain a− ≤ x−, for some x ∈ X ∪ Y . Hence we have three cases: x ∈ X, or x ∈ Y, or x ∈ X ∩ Y .

Case (1), if a− ≤ x−, for some x ∈ X. This implies that a ∈ Xe. And so, a ∈ Xe ∪ Y e. Case (2),
if a− ≤ x−, for some x ∈ Y . This implies that a ∈ Y e. And so, a ∈ Xe ∪ Y e. Case (3), if a− ≤ x−,
for some x ∈ X ∩ Y . This implies that a ∈ (X ∩ Y )e. As (X ∩ Y )e ⊆ Xe ∪ Y e, we get a ∈ Xe ∪ Y e.
Hence (X ∪ Y )e ⊆ Xe ∪ Y e. Therefore (X ∪ Y )e = Xe ∪ Y e.

(5) Assume that 0 ̸∈ X and 0 ∈ Xe. Then there exists x ∈ X such that 1 = 0− ≤ x−. Hence
x−− ≤ 1− = 0, i.e. x−− = 0. So, from (BL11), we have x ≤ x−−, and thus x = 0. That is a
contradiction, since 0 ̸∈ X. Therefore 0 ̸∈ Xe.

Conversely, the proof is straightforward, by using (1).
(6) We have

Xe = {a ∈ A : a− ≤ x−, for some x ∈ X};
= {a ∈ A : a− ∧ x− = a−, for some x ∈ X};
= {a ∈ A : (a ∨ x)− = a−, for some x ∈ X}.

Similarly, we have

Xe = {a ∈ A : a− ≤ x−, for some x ∈ X};
= {a ∈ A : a− ∨ x− = x−, for some x ∈ X};
= {a ∈ A : (a ∧ x)− = x−, for some x ∈ X}.

By using (BL3), we have

Xe = {a ∈ A : a− ≤ x−, for some x ∈ X};
= {a ∈ A : a− ∗ x = 0, for some x ∈ X};
= {a ∈ A : x ≤ a−−, for some x ∈ X}. □

In the following examples we show that the inverse inclusion of Theorem 3.2(1) may not hold, in
general.
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Example. Let A = {0, a, b, 1}, where 0 < a < b < 1. Define ∗ and → as follows:

∗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [11]. Take X = {1}. It is clear that Xe = {b, 1}. So,
Xe ⊈ X.

A BL-algebra A is called an implication BL-algebra if (x → y) → x = x, for all x, y ∈ A such that
y ̸= 0, see [1].

Theorem 3.3. Let A be an implication BL-algebra, X be a nonempty subset of A and 0 ̸∈ X. Then
Xe = A∖ {0}.

Proof. Let A be an implication BL-algebra. Then by using Theorem 4.6 [1], we get Ds(A) = A∖{0}.
By Theorem 3.2(2), we have Ds(A) ⊆ Xe. As 0 ̸∈ X and by applying Theorem 3.2(5), we conclude
that Xe ⊆ A∖ {0}. Therefore Ds(A) = A∖ {0} ⊆ Xe ⊆ A∖ {0}, i.e., Xe = A∖ {0}. □

We recall that a SBL-algebra A is a BL-algebra that satisfies x− ∧ x = 0, for all x ∈ A.

Lemma 3.1. Let A be a linear SBL-algebra, X be a subset of A and 0 ̸∈ X. Then Xe = A∖ {0}.

Proof. Let A be a linear SBL-algebra. Then by part (2) of Proposition 3.3 [13], A is a special BL-
algebra. So, Ds(A) = A ∖ {0}, it follows from Proposition 3.1 [13]. By the proof of Theorem 3.3,
Xe = A∖ {0}. □

A BL-algebra A is called an integral BL-algebra if x ∗ y = 0, then x = 0 or y = 0, for all x, y ∈ A.
A proper filter F of a BL-algebra A is called an integral filter if for all x, y ∈ A, (x ∗ y)− ∈ F implies
x− ∈ F or y− ∈ F (see [5]).

Lemma 3.2. Let A be an integral BL-algebra, X be a subset of A and 0 ̸∈ X. Then
(i) Xe = Ds(A).
(ii) if X is closed under ∗, Xe is a prime filter.
(iii) F e is a prime filter for any proper filter F of A.

Proof. (i) Let x ∈ Xe. Then x− ≤ a−, for some a ∈ X. Hence x− ∗ a ≤ 0, i.e., x− ∗ a = 0. As A is
an integral, we get x− = 0 or a = 0. If a = 0, then 0 ∈ X. That is a contradiction. Hence x− = 0.
Then it yeilds x ∈ Ds(A). Therefore Xe ⊆ Ds(A). By Theorem 3.2(2), we have Ds(A) ⊆ Xe. Thus
the proof is complete.

(ii) Xe is a proper filter of A. Assume that a ∨ b ∈ Xe, for a, b ∈ A. Then there exists x ∈ X such
that (a ∨ b)− ∗ x = 0. Thus (a− ∗ x) ∧ (b− ∗ x)(a− ∧ b−) ∗ x = 0. Hence (a− ∗ x) ∗ (b− ∗ x) = 0. As A
is an integral BL-algebra, a− ∗ x = 0 or b− ∗ x = 0. Therefore a ∈ Xe or b ∈ Xe.

(iii) It is clear by Part (ii). □

Lemma 3.3. Let F be an integral filter of A. Then F e ⊆ D(F ).

Proof. Assume that x ∈ F e. Then there exists a ∈ F such that x− ∗ a = 0. So, (x− ∗ a)− ∈ F and
thus a− ∈ F or x−− ∈ F . Since a ∈ F , a− /∈ F and therefore x ∈ D(F ). □

In the following lemma, we study the image and inverse image of the extension of a nonempty
subset under a BL-homomorphism:

Lemma 3.4. Let f : A −→ B be a homomorphism of BL-algebras and ∅ ̸= X ⊆ A and ∅ ̸= Y ⊆ B.
Then we have:

(1) if f−1(Y ) ̸= ∅, (f−1(Y ))e ⊆ f−1(Y e);
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(2) f(Xe) ⊆ f(X)e;
(3) if f is a monomorphism, then f(Xe) = f(X)e;
(4) if f is a monomorphism and Y ⊆ f(A), then f−1(Y e) = (f−1(Y ))e.

Proof. (1) Let y ∈ (f−1(Y ))e. Then y− ≤ b−, for some b ∈ f−1(Y ). Thus we obtain f(y−) ≤ f(b−)
and f(b) ∈ Y . Hence f(y)− ≤ f(b)− and f(b) ∈ Y , i.e., f(y) ∈ Y e. And so, y ∈ f−1(Y e). Therefore
(f−1(Y ))e ⊆ f−1(Y e).

(2) Let b ∈ f(Xe). So, there exists x ∈ Xe such that b = f(x). Since x ∈ Xe, we get x− ≤ a−, for
some a ∈ X. Hence f(x)− ≤ f(a)− and f(a) ∈ f(X). Thus it yields f(x) ∈ f(X)e and so, b ∈ f(X)e.
Therefore f(Xe) ⊆ f(X)e.

(3) Suppose f is a monomorphism. Let x ∈ f(X)e. So, there exists a ∈ f(X) such that x− ≤ a−.
As a ∈ f(X), there exists b ∈ X such that a = f(b). Hence x− ≤ f(b)− and so, f−1(x−) ≤ f−1f(b−).
As f is a monomorphism, we get f−1(x−) ≤ b−. Thus (f−1(x))− ≤ b−, for some b ∈ X. It
yields f−1(x) ∈ Xe and so, x ∈ f(Xe), and hence f(X)e ⊆ f(Xe). Therefore by part (2), we get
f(Xe) = f(X)e.

(4) Let y ∈ f−1(Y e). Then f(y) ∈ Y e, i.e., f(y)− ≤ b−, for some b ∈ Y . Hence f−1f(y−) ≤
(f−1(b))−. Since f is a monomorphism, therefore y− ≤ (f−1(b))−. Now, as b ∈ Y , we get f−1(b) ∈
f−1(Y ). Therefore y ∈ (f−1(Y ))e, i.e., f−1(Y e) ⊆ (f−1(Y ))e. And so, by part (1), (f−1(Y ))e =
f−1(Y e). □

In the next proposition, we study the extension of some sets with special properties.

Proposition 3.1. Let X be a nonempty subset of A. Then
(i) 1 ∈ Xe;
(ii) 0 ∈ Xe if and only if for some a ∈ X, a− = 1;
(iii) if X is closed under ∧, then Xe is closed under ∧;
(iv) if X is closed under ∨, then Xe is closed under ∨;
(v) if X is closed under ∗, then Xe is closed under ∗.

Proof. (i), (ii) These parts are easy.
(iii), (iv) Let X be closed under ∧, ∨ and a, b ∈ Xe, for a, b ∈ A. Then for some x, y ∈ X, a− ≤ x−

and b− ≤ y−. Hence

(a ∨ b)− = a− ∧ b− ≤ x− ∧ y− = (x ∨ y)−;

(a ∧ b)− = a− ∨ b− ≤ x− ∨ y− = (x ∧ y)−.

So, by the hypothesis, x ∧ y ∈ Xe and x ∨ y ∈ Xe.
(v) According to Theorem 3.1, this part is clear. □

4. Extension of a Filter

In this section, we study the extension of filters in BL- algebras with the aim of a more detailed
study of BL- algebras.

In Example 3, we show that for any nonempty subset X of A, Xe is not a filter of A, in general.
In the following, we prove that for any filter F of A, F e is a filter.

Theorem 4.1. For any filter F of A, F e is a filter of A.

Proof. Clearly, 1 ∈ F e. Let x, y ∈ F e, we have to show that x ∗ y ∈ F e. As x, y ∈ F e, there exist
a, b ∈ F such that x− ≤ a− and y− ≤ b−. Hence x−− → y− ≤ x−− → b− and so, by (BL12),
(x∗y)− ≤ (x−− ∗ b)−, (I). By x− ≤ a−, we have a−− ≤ x−−. Also, by a ∈ F and a ≤ a−−, we obtain
a−− ∈ F . And so, x−− ∈ F . Hence as b ∈ F , we get x−− ∗ b ∈ F . Therefore by (I), x ∗ y ∈ F e. Now,
let x ∈ F e and x ≤ y. Then y− ≤ x− ≤ a−, for some a ∈ F . Hence y ∈ F e. Therefore F e is a filter
of A. □

Note. In Example 3, {a, b}e = {a, b, 1} is a filter and, clearly, {a, b} is not a filter of A.

By Theorem 3.2(5), we can obtain the following
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Corollary 4.1. Let F be a filter of A. Then F is a proper filter of A if and only if F e is a proper
filter of A.

Proof. Let F be a filter of A and 0 ∈ F . As 0− ≤ 0−, then 0 ∈ F e. Now, let 0 ∈ F e. Then for some
a ∈ F , 0− ≤ a− and so, a− = 1. As a ∈ F , then a−− ∈ F . Therefore 0 ∈ F , since a−− = 0. □

A BL-algebra A is called an MV -algebra if x−− = x, for all x ∈ A. The MV -center of a BL-algebra
A denoted by MV (A), is defined as

MV (A) = {x ∈ A : x−− = x}.
The following theorem reveals some basic properties of F e.

Theorem 4.2. For any two filters F and G of A and x, a ∈ A, we have the following:
(1) (F ∩G)e = F e ∩Ge.
(2) {1}e = Ds(A) and Ae = A = {0}e.
(3) F e ∩MV (A) ⊆ F .
(4) {1}e ∩MV (A) = {1}, and so Ds(A) ∩MV (A) = {1}.
(5) x− ∈ F e if and only if x− ∈ F .
(6) x ∈ F e implies x−− ∈ F .
(7) {a}e = {x ∈ A : a ≤ x−−}.
(8) [a)e = {x ∈ A : x− ≤ (an)−,∃n ∈ N} = {x ∈ A : an ≤ x−−,∃n ∈ N}.
(9) x ∈ [a)e if and only if x−− ∈ [a).
(10) F = ∪a∈F [a), so, F

e = ∪a∈F [a)
e.

(11) (Ds(A))e = Ds(A).

Proof. (1) By Theorem 3.2(3), we have (F ∩ G)e ⊆ F e ∩ Ge. Conversely, let x ∈ F e ∩ Ge. Then
x− ≤ a− and x− ≤ b−, for some a ∈ F and b ∈ G. Hence a−− ≤ x−− and b−− ≤ x−−, where
a−− ∈ F and b−− ∈ G. Hence a−− ∨ b−− ≤ x−−. Thus x− ≤ (a−− ∨ b−−)− and a−− ∨ b−− ∈ F ∩G.
So, x ∈ (F ∩G)e, i.e., F e ∩Ge ⊆ (F ∩G)e. Therefore (F ∩G)e = F e ∩Ge.

(2) We have
{1}e = {x ∈ A : x− ≤ 1− = 0} = {x ∈ A : x− = 0} = Ds(A).

For any x ∈ A, x− ≤ 0− = 1. Hence x ∈ Ae, so, A ⊆ Ae. Therefore Ae = A. Now, we know that

{0}e = {a ∈ A : a− ≤ 0−} = {a ∈ A : a− ≤ 1} = A.

(3) Let x ∈ F e ∩MV (A). Then x− ≤ a−, for some a ∈ F . And so, a−− ≤ x−−, a−− ∈ F . Hence
x−− ∈ F . As x ∈ MV (A), we get x−− = x. Therefore x ∈ F , i.e., F e ∩MV (A) ⊆ F .

(4) The proof is clear by parts (2) and (3).
(5) Let x− ∈ F e. Then x−− ≤ a−, for some a ∈ F . So, a−− ≤ x−−− = x− and a−− ∈ F .

Therefore x− ∈ F .
Conversely, the proof is clear.
(6) Let x ∈ F e. Then x− ≤ a−, for some a ∈ F . So, a−− ∈ F and a−− ≤ x−−. And thus x−− ∈ F .
(7) Applying (BL3), we have

{a}e = {x ∈ A : x− ≤ a−} = {x ∈ A : x− ∗ a ≤ 0},
= {x ∈ A : a ∗ x− ≤ 0} = {x ∈ A : a ≤ x−−}.

(8) Assume that x ∈ [a)e. Then using (BL3), we have

x− ≤ b−, ∃b ∈ [a) ⇒ x− ≤ b− and b ≥ an, ∃n ∈ N ;

⇒ x− ≤ b− ≤ (an)−, ∃n ∈ N ;

⇒ x− ≤ (an)−, ∃n ∈ N ;

⇔ x− ∗ an ≤ 0, ∃n ∈ N ;

⇔ an ≤ x−−, ∃n ∈ N.

Therefore
[a)e ⊆ {x ∈ A : x− ≤ (an)−,∃n ∈ N} = {x ∈ A : an ≤ x−−,∃n ∈ N}.
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Conversely, let x− ≤ (an)−, for some n ∈ N . We know a ∈ [a) and so, by a filter property of [a),
we get an ∈ [a), for all n ∈ N . Hence x ∈ [a)e, i.e.,

{x ∈ A : x− ≤ (an)−,∃n ∈ N} ⊆ [a)e.

This completes the proof.
(9) Let x−− ∈ [a). Then x−− ≥ an, for some n ∈ N . So, x− ≤ (an)−, for some n ∈ N . As an ∈ [a),

for all n ∈ N , we get x ∈ [a)e. Conversely is proved in (6), so, the proof is complete.
(10) Let b ∈ F . Then b ∈ [b) ⊆ ∪a∈F [a). So, F ⊆ ∪a∈F [a). Now, let x ∈ ∪a∈F [a). So, there exists

b ∈ F such that x ∈ [b). Thus x ≥ bn, for some n ∈ N . As b ∈ F , we conclude that bn ∈ F , for all
n ∈ N . Hence x ∈ F , i.e., ∪a∈F [a) ⊆ F . Therefore F = ∪a∈F [a). Now, applying Theorem 3.2(4), we
conclude that F e = ∪a∈F [a)

e.
(11) Let x ∈ (Ds(A))e, for any x ∈ A. Then x− ≤ a−, for some a ∈ Ds(A). So, a− = 0,

and hence x− = 0, i.e., x ∈ Ds(A). Therefore (Ds(A))e ⊆ Ds(A). By Theorem 3.2(1), we get
(Ds(A))e = Ds(A). □

If F is a filter of A, then the relation ∼F defined on A by (x, y) ∈∼F if and only if x → y ∈ F and
y → x ∈ F is a congruence relation on A. The quotient algebra A/ ∼F denoted by A/F becomes a
BL-algebra in a natural way, with the operations induced from those of A. So, the order relation on
A/F is given by x/F ≤ y/F if and only if x → y ∈ F . Hence x/F = 1/F if and only if x ∈ F and
x/F = 0/F if and only if x− ∈ F .

In the following, we characterize fantastic filters.

Theorem 4.3. Let F be a filter of A. Then the following statements are equivalent:
(1) F = F e;
(2) x−− ∈ F implies x ∈ F , for all x ∈ A;
(3) For x, y ∈ A, x− = y− and x ∈ F imply that y ∈ F ;
(4) D(F ) = F ;
(5) Ds(A/F ) = {1/F}.
(6) F is a fantastic filter.

Proof. (1) ⇒ (2) Let F = F e and x−− ∈ F , for any x ∈ A. Hence x−− ∈ F e. So, there exists a ∈ F
such that x− = (x−−)− ≤ a−. Thus x ∈ F e, and by the hypothesis, we get x ∈ F .

(2) ⇒ (3) Let x− = y− and x ∈ F , for any x, y ∈ A. So, x−− ∈ F , since x ≤ x−−. By the
hypothesis, we get x−− = y−−, so, y−− ∈ F . Hence by part (2), y ∈ F .

(3) ⇒ (1) Let x ∈ F e. Then x− ≤ a−, for some a ∈ F . And so, a− = x− ∨ a− = (x ∧ a)−. Hence
by part (3) and a ∈ F , we obtain x∧ a ∈ F . By x∧ a ≤ x, we get x ∈ F . And so, F e ⊆ F . Therefore
by Theorem 3.2(1), F = F e.

(2) ⇒ (4) Let x ∈ D(F ). Then x−− ∈ F . So, by (2), we get x ∈ F . Hence D(F ) ⊆ F . Now, let
x ∈ F . Since x ≤ x−−, we get x−− ∈ F . So, x ∈ D(F ). And thus F ⊆ D(F ). Therefore D(F ) = F .

(4) ⇒ (2) Let D(F ) = F and x−− ∈ F , for any x ∈ A. Then x ∈ D(F ) and by the hypothesis, we
get x ∈ F .

(4) ⇒ (5) Let D(F ) = F and x/F ∈ Ds(A/F ). Then (x/F )− = 0/F , so, x−− ∈ F . Thus
x ∈ D(F ). Hence by part (4), we get x ∈ F , i.e., x/F = 1/F . Therefore Ds(A/F ) = {1/F}.

(5) ⇒ (4) Let Ds(A/F ) = {1/F} and x ∈ D(F ). Then x−− ∈ F , so, (x/F )−− = 1/F . Thus
(x/F )− = 0/F , i.e., x/F ∈ Ds(A/F ). Hence x/F = 1/F and so, x ∈ F . Therefore D(F ) ⊆ F . As
F ⊆ D(F ), we get F = D(F ).

(2) ⇔ (6) This part is proved in Lemma 1 [12]. □

Lemma 4.1. Let F be a proper filter of A such that F = F e and x−− = 1, for any x ∈ A − {0}.
Then F = A− {0}.

Proof. Let x ∈ A − {0}. Then by the hypothesis, we get x−− = 1 ∈ F . So, from Theorem 4.3,
x ∈ F . Hence A∖ {0} ⊆ F . As F is a proper filter, we conclude that F ⊆ A− {0}. Thus we obtain
F = A− {0}. □
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Remark 4.1. According to (2) ⇔ (6) of Theorem 4.3 and Theorem 4.4 [10], if F and G are filters of
A, F = F e such that F ⊆ G, then G = Ge.

Proposition 4.1. Let F be a filter of A and [x)e = [x), for some x ∈ F . Then F e = F .

Proof. Let [x)e = [x), for some x ∈ F . By Theorem 4.2(10), we have F = ∪a∈F [a). Hence [x) ⊆ F .
Thus applying Remark 4.1 and [x) ⊆ F , we conclude that F e = F . □

Theorem 4.4. Let F be an integral filter and fantastic filter of A. Then F is an obstinate filter of A.

Proof. Let x, y ̸∈ F , for x, y ∈ A. We will show that x → y ∈ F and y → x ∈ F . We have
(x ∗ x−)− = 1 ∈ F . As F is an integral filter, we get x− ∈ F or x−− ∈ F . If x−− ∈ F , then x ∈ F .
That is a contradiction, so x− ∈ F . Now, by (BL9), 0 ≤ y, so, x → 0 ≤ x → y and since F is a filter
and x− ∈ F , we get x → y ∈ F . In a similar way, we can prove that y → x ∈ F . Therefore F is an
obstinate filter of A. □

Now, by Theorem 4.4 and Lemma 4.2 [14], we conclude the following

Corollary 4.2. Let F be an integral filter and fantastic filter of A. Then F is a semi-maximal filter
of A.

Now, by Proposition 4.6 [4] and Theorems 4.4, 4.18 [5], we conclude the following

Theorem 4.5. Let F be a filter of A. Then the following conditions are equivalent:
(1) F is a maximal and positive implicative filter,
(2) F is a maximal and implicative filter,
(3) F is an obstinate filter,
(4) F is an integral and fantastic filter.

Definition 4.1. A filter F of A is called a Ds-filter of A if Ds(A) ⊆ F .

The following example shows thatDs-filter in BL-algebras exists and any filter may not beDs-filter.

Example. Let A = {0, a, b, c, d, 1}, where 0 < a < c < 1 and 0 < b < c, d < 1 . Define ∗ and → as
follows:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 b b b b
c 0 a b c b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b a a 1 1 1 1
c 0 a d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [11], and clearly, Ds(A) = {c, 1}. Hence F = {a, c, 1} is a
Ds-filter and G = {d, 1} is not a Ds-filter of A.

The following theorem and corollary are direct consequences of Definition 4.1.

Theorem 4.6. Let F and G be two filters of A and F be a Ds-filter of A. If F ⊆ G, then G is a
Ds-filter of A.

Corollary 4.3. Let F and G be two Ds-filters of A. Then we have:
(1) F ∩G is a Ds-filter of A.
(2) ⟨F ∪G⟩ is a Ds-filter of A.
(3) ⟨F ∪ {x}⟩ is a Ds-filter of A, for each x ∈ A.
(4) Rad (F ) is a Ds-filter of A.

Theorem 4.7. Every fantastic filter of any BL-algebra is a Ds-filter.
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Proof. Let F be a fantastic filter of A. Then F e = F . Hence by Theorem 3.2(2), Ds(A) ⊆ F e. And
so, Ds(A) ⊆ F , i.e., F is a Ds-filter of A. □

Corollary 4.4. Let F be a filter of A. Then F e is a Ds-filter of A.

Proof. By Theorem 3.2(2) and Theorem 4.7, the proof is easy. □

Now, by Theorems 4.7 and 4.3, we conclude the following

Corollary 4.5. We have
(1) Every fantastic filter is a Ds-filter.
(2) Every positive implicative filter is a Ds-filter.
(3) Every obstinate filter is a Ds-filter.
(3) Every maximal filter is a Ds-filter.

Corollary 4.6. Any filter of Boolean algebra A is a Ds-filter of A.

Proof. The proof is straightforward from Corollary 4.5(2). □

We consider the set F e(A) = {F ∈ F (A) : F = F e}. By Theorem 4.3, F e(A) = {F ∈
F (A) : F is a fantastic filter of A}.

Corollary 4.7. Ds(A) is the smallest filter of F e(A).

Proof. Let F ∈ F e(A) and F ⊊ Ds(A). Then there exists a ∈ Ds(A), such that a ̸∈ F . As F = F e,
so, a ̸∈ F e. Hence a− ≰ b−, for all b ∈ F . Also, as a ∈ Ds(A), we get a− = 0. Thus 0 = a− ≰ b−, for
all b ∈ F , which is a contradiction. Therefore F = Ds(A). □

Theorem 4.8. Every filter of MV -algebra A is a Ds-filter.

Proof. Since any filter in MV -algebra is fantastic; by Theorem 4.7, the proof is completed. □

Theorem 4.9. Let F be a proper filter of A and A/F be an MV -algebra. Then F is a Ds-filter of A.

Proof. By the hypothesis, F is a fantastic filter and so, by Theorem 4.7, the proof is completed. □

Proposition 4.2. Let f : A −→ B be a monomorphism of BL-algebras and F be a Ds-filter of B.
Then f−1(F ) is a Ds-filter of A.

Proof. Let F be a Ds-filter of B. Then Ds(B) ⊆ F , so, f−1(Ds(B)) ⊆ f−1(F ). We have to show that
f−1(Ds(B)) = Ds(A). Let x ∈ f−1(Ds(B)), for x ∈ A. Then f(x) ∈ Ds(B), so, f(x)− = 0B = f(0A).
Hence f−1f(x−) = f−1f(0A). As f is a monomorphism, we get x− = 0A. And thus x ∈ Ds(A), i.e.,
f−1(Ds(B)) ⊆ Ds(A). Now, let x ∈ Ds(A). Then x− = 0A, so, f(x)

− = 0B . Thus f(x) ∈ Ds(B),
i.e., x ∈ f−1(Ds(B)). Therefore Ds(A) ⊆ f−1(Ds(B)), and hence f−1(Ds(B)) = Ds(A). Thus as
f−1(Ds(B)) ⊆ f−1(F ), we get Ds(A) ⊆ f−1(F ), i.e., f−1(F ) is a Ds-filter of A. □

5. Concluding Remarks and Future Works

BL-algebras have the most important algebraic structure among all the various logical algebras
that have been proposed as the semantic systems of non-classical logical systems. Also, they include
some important classes of algebras, like the MV . In this article, we tried to take a step towards a
more detailed study of BL-algebras by presenting new concepts. In this paper, we introduced the
concept of the extension of a nonempty subset X, (Xe), in BL-algebras and we checked this definition
in different algebras, such as integral BL-algebras, linear SBL-algebras, implication BL-algebras and
MV -algebras. In addition, we have provided the conditions for a filter to be fantastic and obtained
some conditions equivalent to them. In fact, we obtained interesting equivalence properties for easier
investigation of fantastic filters in BL-algebras and so, we were able to find an easier way to study
MV -algebras. Also, we have considered Ds-filters in BL-algebras. The results of this paper will be
devoted to studying the local BL-algebras, perfect BL-algebras and SBL-algebras which are different
extensions of Basic Logic. And since BL-algebras, MV -algebras and lattice implication algebras are
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closely related, all results in this paper will contribute much to studying ideals and filters (or, deductive
systems) of MV -algebras, lattice implication algebras and related algebraic systems.

Some issues for future work are:
– Study the relationship between Xe and other types of filters in BL-algebras.
– Introducing new topologies on BL-algebras based on Xe.
– Define and study Xe for sets with different properties.
– Introducing a new subclass of BL-algebras.
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