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THE INFLUENCE OF BOUNDARY CONDITIONS OF RIGID FASTENING ON

THE DYNAMICAL THERMOSTABILITY OF SHELLS OF REVOLUTION, WITH

AN ELASTIC FILLER

SERGO KUKUDZHANOV

Abstract. The aim of the present paper is to investigate the influence of boundary conditions of

rigid fastening on the boundaries of regions of dynamical instability of closed shells of revolution,

close by their forms to cylindrical ones, with an elastic filler. It is assumed that a shell is under the
action of external pressure which varies in time and temperature. We consider the shells of average

length whose shape of generatrix of the middle surface is a parabolic function. We consider the shells

of positive and negative Gaussian curvature. The formulas are obtained for finding eigenfrequencies
and boundaries of regions of dynamical instability depending on the boundary conditions, Gaussian

curvature, initial stressed state, temperature and amplitude of a shell deviation from cylindrical

form. The focus is on finding the moot dangerous area of dynamical instability and on the lowest
eigenfrequencies of shells under consideration.

We consider the problem of influence of boundary conditions of a rigid fastening, temperature,
external pressure (depending on time) and elastic filler on the boundaries of regions of dynamical
instability of closed shells of revolution which by their form are close to cylindrical ones. The shell
is assumed to be thin and elastic. The filler is light for which the influence of tangential stresses
on the contact surface and inertia forces may be neglected. Temperature is uniformly distributed in
the shell body. An elastic filler is simulated by Winkler’s base, its heat expansion does not taken
into account. We investigate the shells of average length whose shape of the midsurface generatrix
is a parabolic function. The shells of positive and negative Gaussian curvature are also considered.
Formulas and universal curves of dependence of the least frequency, shape of wave formation and
boundaries of regions of dynamical instability on Gaussian curvature, type of boundary conditions,
temperature, rigidity of elastic filler, as well as on the amplitude of shell deviation from a cylinder,
are obtained. The focus is on finding the most dangerous area of dynamical instability and on the
least eigenfrequencies which are practically most important.

A shell is considered whose middle surface is formed by the rotation of a square parabola around
the z-axis of a rectangular system of coordinates z, y, z with the origin in the middle of the segment
of the axis of rotation. It is assumed that radius R of the midsurface cross-section is determined by

the equality R = r + δ0
[
1 − ξ2

(
r
l

)2]
, where r is the radius of the edge cross-section, δ0 is maximal

deviation from a cylindrical form (the shell is convex for δ0 > 0 and concave for δ0 < 0); L = 2l is the
shell length, ξ = z

r .
We consider the shells of middle length [8] and assume that(δ0

r

)2

,
(δ0

l

)2

≪ 1. (1.1)

For the shells of average length, the forms of oscillations corresponding to the lowest frequencies have
weak variability in the longitudinal direction compared to the circumferential, therefore the relation

∂2f

∂ξ2
≪ ∂2f

∂φ2
(f = u, v, w) (1.2)

holds true; here, u, v, w are, respectively, meridional, circumferential, radial components of displace-
ment characterizing a mode of oscillation. According to V. V. Novozhilov’s statement [4], as the
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basic equations of oscillations, one can take those corresponding to V. Z. Vlasov’s semi-momentless
theory [7]. As a result, a simplified system of equations (due to the adopted assumption, temperature
terms are equal to zero [5]) takes the form

∂2u

∂φ2
= −[1 + 2(2 + ν)δ]

∂w

∂ξ
,

∂2v

∂φ2
= (1 + 2νδ)

∂w

∂φ
,

ε
∂8w

∂φ8
+

∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2∂φ2
+ 4δ2

∂4w

∂φ4
− t01

∂6w

∂ξ2∂φ4

−t02
∂6w

∂φ6
− 2s

∂6w

∂ξ∂φ5
+ γ0

∂4w

∂φ4
+

ρr2

E

∂2

∂t2

(∂4w

∂φ4

)
= 0, (1.3)

ε =
h2

12
r2(1− ν2), δ =

δ0r

l2
, ti =

T 0
i

Eh
(i = 1, 2), s0 =

S0

Eh
, γ0 =

β0r
2

Er
,

where E and ν are, respectively, elasticity modulus and Poisson coefficient; T 0
1 and T 0

2 are meridional
and circumferential stresses of the initial state; S0 is shearing force of the initial state; ρ is the material
density of the shell; β0 is a “bed” coefficient of an elastic filler (characterizing elastic rigidity of the
filler); φ is angular coordinate and t is time.

1. Let us consider first the case, where q = q0. Assuming the initial state is momentless, we can
calculate internal stresses. When the shell edges are rigidly fixed, meridional displacements are absent.
Based on the corresponding solution and taking into account filler’s reaction and temperature and
also inequality (1.1), we get the following approximate expressions:

T 0
1 = −q0r

{
ν +

δ0
r

[1 + ν

3
+ 2(1− 2ν2)

(r
l

)2

− (1− ν)ξ2
(r
l

)2]}
− αTEh

1− ν
,

T 0
2 = −q0r

[
1− 2ν

δ0
r

(r
l

)2]
+ w0β0r, S0 = 0,

(1.4)

where w0 and β0 are deflection and “bed” coefficient of the filer in the initial state; α is coefficient of
linear extension; T is temperature; q0 is external pressure (q0 > 0).

Bearing in mind relations (1.1) and (1.2), we obtain

δ0
r

[1 + ν

3
+ 2(1− 2ν2)

(r
l

)2

− (1− ν)ξ2
(r
l

)2]∂2w

∂ξ2
≪ ∂2w

∂φ2
, ν

∂2w

∂ξ2
≪ ∂2w

∂φ2
.

Therefore relations (1.4) after substitution into equation (1.3) can be simpified and hence they take
the form

T 0
1 = − αTEh

(1− ν)
, T 0

2 = −q0r
[
1− 2ν

δ0
r

(r
l

)2]
+ w0β0r, T 0

1 = σ0
i h (i = 1, 2). (1.4′)

Taking into account the fact that in the initial state the shell deformation in circumferential direction
ε0φ is defined by the equality

ε0φ =
σ0
2 − νσ0

1

E
+ αT, ε0φ = −w0

r
,

we get

w0 =
(
− σ0

2 + νσ0
1

) r
E

− αTr. (1.5)

Substituting (1.5) into (1.4′), we obtain

T 0
1

Eh
=

σ0
1

E
= − αT

1− ν
,

T 0
2

Eh
=

σ0
2

E
= −q0r

Eh

[
1− 2ν

σ0

r

(r
l

)2]
+

β0r

Eh

[(
− σ0

2 + νσ0
1

) r
E

− αΓr
]
.

(1.6)

Introduce the notation

q =
qr

Eh
, δ =

δ0
r

(r
l

)2

, γ0 =
β0r

2

Eh
, g = 1 + γ0. (1.6′)
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Then (1.6) takes the form

σ0
1

E
= − αT

1− ν
,

σ0
2

E
= −q(1− 2νδ) +

[(
− σ0

2

E
+ ν

σ0
1

E

)
γ0 − αTγ0

]
, (1.7)

whence it follows that
σ0
2

E
(1 + γ0) = −q(1− 2νσ) + νγ0

σ0
1

E
− αTγ0. (1.8)

Substituting into (1.8) the first expression of (1.7), we have

σ0
2

E
= −

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1.

Consequently,

−σ0
1

E
=

αT

1− ν
, −σ0

2

E
=

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1. (1.9)

As a result, the third equation of system (1.3) takes the form

ε
∂8w

∂φ8
+

∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2∂φ4
+ 4δ2

∂4w

∂φ4
+

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1 ∂

6w

∂φ6

+
αT

1− ν

∂6w

∂ξ2∂φ4
+ γ0

∂4w

∂φ4
+

ρr2

E

∂2

∂t2

(∂4w

∂φ4

)
= 0. (1.10)

A solution of system (1.3) for harmonic oscillations will be sought in the form

u =U(ξ) sinnφ coswt,

v =V (ξ) cosnφ coswt,

w =W (ξ) sinnφ coswt.

The first two equations of system (1.3) yield

n2U =[1− 2(2− ν)δ]W ′, (1.11)

nV =(1 + 2νδ)W. (1.12)

Note some simplifications of boundary conditions of rigid fixing for the shells (when ξ = const)
which are written as follows:

u = v = w = w′
ξ = 0. (1.13)

By virtue of equality (1.12), we find that the fulfilment of the condition w = 0 implies that of the
condition v = 0. Thus relying now on (1.11), the fulfilment of the condition v = 0 results to that of
the condition u = 0.

Thus if the conditions w = w′
ξ = 0 (for ξ = const) are fulfilled, then all the conditions (1.13) are

fulfilled, as well.
Let the shell edges be rigidly fixed. In this case, a solution must satisfy the periodicity condition

with respect to φ and the following boundary conditions along the ξ coordinate:

w = 0
(
ξ = ±

( l

r

))
, w′

ξ = 0
(
ξ = ±

( l

r

))
. (1.14)

As it has been mentioned above, a solution w of equation (1.10) for harmonic oscillations (for
q = q0) is sought in the form

w = W (ξ) sinnφ cosωt. (1.15)

From (1.10) and (1.15), it follows that

W (4) −
(
45n2 − αT

1− ν
n4

)
W (2) − n4

{ρr2

E
ω2 +

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2 − εn4 − 4δ2

}
W = 0,

δ2 = δ2 +
(γ
4

)
. (1.16)
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Assuming W = Ceαξ, we obtain the characteristic equation

α4 −
(
4δn2 − αT

1− ν
n4

)
α2 − n4

{ρr2

E
ω2 +

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2 − εn4 − 4δ2

}
= 0

which can be written as follows:

p2 − ap− b = 0, Ω =
ρr2

E
(1.17)

p = α2, a = 4δn2 − αT

1− ν
n4, b = n4

{
Ωω2 +

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2 − εn4 − 4δ2

}
. (1.18)

We will proceed from the condition b > 0. Then from (1.17) and (1.18), we have

α1,2 = ±√
p1, α3,4 = ±

√
−p2,

p1 =
a

2
+

√
a2

4
+ b > 0, p2 =

a

2
−

√
a2

4
+ b < 0. (1.19)

A general solution of equation (1.16) takes the form

W = Achk1ξ +B sh k1ξ + C cos k2ξ +D sin k2ξ,

k1 =
√
p1, k2 =

√
−p2.

By satisfying the boundary conditions (1.14), we obtain a system of four homogeneous equations.
From the condition that the determinant of this system is equal to zero, we obtain

th k1l =
k1
k2

tg k2l =
k2
k1

tg k2l, l =
l

r
. (1.20)

Consequently, this system splits into two independent systems and, accordingly, the solution splits
into odd and even functions. An even function corresponds to the ξ-symmetric oscillations and an
odd function corresponds to the skew-symmetric oscillations. Thus we obtain

W = D
(
sin k2ξ −

sin k2l

sh k1l
sh k1ξ

)
,

W = C
(
cos k2ξ −

cos k2l

ch k1l
ch k1ξ

)
.

Consider first the case δ = 0, q = γ = T = 0. For p1 = −p2 =
√
b, k1 = k2 = 4

√
b = k. Equation

(1.20) corresponding to the skew-symmetric modes of oscillations, admits the form

th kl = tg kl.

The lowest root of this equation corresponds to the value

k = 3, 927
r

l
.

Whereas equation (1.20) corresponding to symmetric modes of oscillations takes for δ = 0, q = γ =
T = 0 the form

th kl = tg kl.

The lowest root of this equation corresponds to the value

k = 2, 365
r

l
= 0, 75

πr

l
(1.21)

that is, the lowest value k corresponds to symmetric modes of oscillation. Therefore, in the sequel,
we will consider oscillations with symmetric deflection with respect to ξ. Taking into account that for
δ = 0, q = γ = T = 0,

−p1p2 = b, b = n4(Ωω2 − εn4)

we obtain
k4 = n4(Ωω2 − εn4).

This implies that the lowest root (1.21) for fixed n corresponds to the smallest value of eigenfrequency
which is defined by the expression
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Ωω2 = εn4 + (d1λ1)
4n−4, d1 = 1, 55, λ1 =

πr

2l
. (1.22)

The least frequency value, depending on n, is realized for

n2
0 = d1λ1ε

−1/4. (1.23)

For n = n0, from (1.22), for the least frequency of cylindrical average length shell with rigidly fixed
edges, we obtain the well-known formula [2]

Ωω2
01 = 2d21λ

2
1ε

1/2.

For freely supported edges of cylindrical shell, the lowest frequency is defined, as is known, by the
formula

Ωω2
0 = 2λ2

1ε
1/2. (1.24)

Let us pass now to a general case and consider symmetric in axia direction forms of oscillation
corresponding to the lowest frequencies. On the basis of (1.19), we have

−p2 = p1 − a, a =
(
4δ − αT

1− ν
n2

)
n2,

which for x = l
√
p1 yield

−p2l
2 = x2 − β, β = 4n2 δ0

r
− αT

1− ν

( l

r

)2

n4. (1.25)

Then equation (1.20) corresponding to symmetric modes of oscillation can be represented as follows:

x thx = −
√
x2 − β tg

√
x2 − β. (1.26)

Relying on the first equality (1.19), it follows that p1(p1 − a) = b, from which we find that

Ωω2 = εn4 + x2(x2 − β)
(r
l

)4

n−4 + 4δ2 −
[
q(1− 2νδ) +

αTα0

1− ν

]
g−1n2. (1.27)

Consequently, in a general case, the eigenfrequencies ω for the shells under consideration are defined
by formula (1.27), where x is any root of equation (1.26). The least frequency ω is obtained as a result
of minimization of the right-hand side of equality (1.27) with respect to n when x is assumed to be a
smallest root of equation (1.26) which we denote by nω. Owing to (1.25) and (1.26), it is not difficult
to see that xω depends on δ0

r , T , γ0 as well as on n. Such a minimization is realized by sorting out
natural values n in the neighbourhood of n0, defined by equality (1.23). Below, we present the results
of calculations for the shell with geometric sizes l = r, h

r = 10−2, ν = 0, 3 under different values of
δ0
r (for q = γ0 = T = 0). In Figure 1, we can see the graph of dependence of xω on δ0

r (curve (1)
corresponds to the rigid fastening of the shell edges; straight line (0) corresponds to the free support
of the shell edges). Figure 2 presents the graph of dependence of xω on δ0

r ((1) corresponds to the
rigid fastening of the shell edges; (0) corresponds to the free support of the shell edges). Figure 3
shows the curves of dependence of the least dimensionless frequencies ω2/ω2

0nω on δ
r ((1) is the case

of rigidly fixed edges; (0) is the case of freely supported edges [3]; ω2
0 is defined by expression (1.24)).

For ω = 0, from equality (1.27), we obtain

q∗(1− 2νδ) =
[
εn2 + x2(x2 − β)n−6

(r
l

)4

+ 4δ2n−2
]
g − αTγ0

1− ν
, g = 1 + γ0. (1.28)

The least value q∗ is obtained by minimizing the right-hand side of equality (1.28) just as it has
been done for the frequency ω.

2. Consider now the case, where

q = q0 + qt cosΩt.

A solution of equation (1.3) will be sought in the form

w = F (ξ, t) sinnφ,

where F (ξ, t) = f(t)W (ξ).
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Substituting the above-obtained solution into (1.3) and introducing notation (1.6′), we get

εn8f(t)W (ξ) +W (4)(ξ)f(t)− 4δW (2)(ξ)f(t)n2 + 4δ2W (ξ)f(t)n4

−
(
q(t)(1− 2νδ) +

αTγ0
1− ν

)
g−1n6W (ξ)f(t) +

αT

1− ν
W (2)(ξ)f(t)n4

+γn4W (ξ)f(t) +W (ξ)f (2)(t)n4 ρr
2

E
= 0. (2.1)

Equation (2.1) can be divided with respect to the variables ξ and t. Thus we obtain

W (4)(ξ)−
(
4δn2 − αT

1−νn
4
)
W (2)(ξ)

W (ξ)

=
−
{

ρr2

E f (2)(t)n4 +
[
εn8 + 4δ2n4 −

(
q(t)(1− 2νδ) + αTγ0

1−ν

)
g−1n6

]
f(t)

}
f(t)

.

Introduce the parameter λ2. We have

W (4) −
(
4δn2 − αT

1−νn
4
)
W (2)

W
= λ2,

−
ρr2

E f (2)n4 +
[
εn8 + 4δ2n4 −

(
q(t)(1− 2νδ) + αTγ0

1−ν

)
g−1n6

]
f

f
= λ2,

whence we obtain

W (4) −
(
4δ − αT

1− ν
n2

)
n2W (2)(ξ)− λ2W (ξ) = 0, (2.2)

ρr2

E
f (2)(t) +

[
εn4 + 4δ2 − αTγ0

1− ν
g−1n2 − q(t)(1− 2νδ)g−1n2 + λ2n−4

]
f(t) = 0. (2.3)

Define now the value λ on the basis of equation (2.2). Letting W = Ceαξ, we get the corresponding
characteristic equation

α4 − aα2 − λ2 = 0, a = 4δn2 − αT

1− ν
n4,

which can be represented in the form

p2 − ap− λ2 = 0, p = α2. (2.4)

Then from (2.4) it follows that

α1,2 = ±√
p1, α3,4 = ±i

√
−p2,

p1 =
a

2
+

√
a2

4
+ λ2 > 0, p2 =

a

2
−

√
a2

2
+ λ2 < 0. (2.5)

A general solution of equation (2.2) takes the form

W = A ch k1ξ +B sh k1ξ + C cos k2ξ +D sin k2ξ

k1 =
√
p1, k2 =

√
−p2. (2.6)

Satisfying the boundary conditions (1.14), we obtain a system of four homogeneous equations. From
the condition that the determinant of this system is equal to zero, we obtain

th k1l =
k1
k2

tg k2l = −k2
k1

tg k2l, l =
l

r
. (2.7)

Equality (2.7) in its form coincides with (1.20), however, the expressions for k1 and k2 look differently
because of the presence of the parameter λ2, according to (2.5).
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In connection with the above-said, let us consider a solution corresponding to symmetric form of
deflection with respect to ξ. In addition,

th k1l = −k1
k2

tg k2l. (2.8)

In view of (2.5), we have

−p2 = p1 − a, a = 4δn2 − αT

1− ν
n4,

whence, letting x = l
√
p1, we obtain

−p2l
2 = x2 − β, β = al2, al2 = 4

δ0
r
n2 − αT

1− ν

( l

r

)2

n4.

Then equation (2.8) can be presented as

x thx = −
√
x2 − β tg

√
x2 − β. (2.9)

Moreover, due to (2.5),

x2l−2 − a

2
=

√
a2

4
+ λ2

whence we find that

λ2 = x2l−2(x2l−2 − a) = x2(x2 − β)l−4, (2.10)

where x is any root of equation (2.9).
Next, we substitute λ2, according to (2.10), into equation (2.3) and obtain

f (2)(t) +
E

ρr2

{
εn2 + 4δ2 − αTγ0

1− ν
g−1n2 − q(t)(1− 2νδ)g−1n2 + x2(x2 − β)l−4n−4

}
f(t) = 0, (2.11)

where q(t) = q0 + qt cosΩt.
This equation (2.11) can be easily reduced to the Mathieu equation [6]

d2f

dτ2
+

4ω2

Ω2
(1− 2ε cos 2τ)f = 0, (2.12)

where

τ =
Ωt

2
, ε− qt

2(q∗ − q0)
; (2.13)

here, ω and q∗ are, respectively, frequency of eigenoscillations and critical pressure (their expressions
have been obtained above).

Frequency of eigenoscillations of the shells under consideration (for q = q0) is defined from equation
(2.11), if we assume that f(t) = C sinωt, and expressed by formula (1.27).

Critical pressure q∗ is defined from equation (2.11) under the assumption f(t) = const and expressed
by formula (1.28) which in expanded representation has the form

q∗ =
1 + γ0
1− 2νδ

[
εn2 + 4δ

2
n−2 + x2(x2 − β)

(r
l

)
n−6

]
− αTγ0

(1− ν)(1− 2νδ)
. (2.14)

The solution of equation (2.12) has been studied in a number of works, where it was noted that under
certain relations between ε, Ω, ω and t → ∞ this solution will infinitely increase in the regions of
instability. Generalizing the results of works [6] and [1] to the shell under consideration, we present
below the formulas to reveal the influence of boundary conditions of rigid fastening and temperature
on the location of redions of dynamical instability. First, consider the case, where qt → 0 (ε → 0).
We find that these regions lie in the vicinity of exciting frequencies

Ω∗ =
2ω

k
.

Depending on a number k, we distinguish the first, second, third and so on regions of dynamical
instability. The region of instability (k = 1) lying in the vicinity Ω∗ = 2ω when ω is expressed
by formula (1.27) and takes the lowest value, is the most dangerous and has therefore the greatest
practical importance. This region is called the principal region of dynamical instability.
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For qt, other than zero, for the boundaries of the principal region of instability, bounded by the
values of critical frequencies, we obtain the following formula:

Ω∗ = 2ω
√
1± ε.

Taking into account resistance forces, proportional to the first derivative of displacement in time
(with damping coefficient β), the formula for finding the boundaries of the principal region of instability
takes the form

Ω∗ = 2ω

√
1±

√
ε2 −

(∆
π

)2

, ∆ =
2πβ

ω
(2.15)

where the terms with higher powers ∆
π are discarded, given the damping decrement ∆ is usually very

small compared to unity.
The values ω, q∗, ε are determined by formulas (1.27), (2.14), (2.13), where xω and n correspond

to the least value ω.
It follows from formula (2.15) that the minimal (critical) value of the excitation coefficient ε for

which undamped oscillations are still possible, is determined by the equality

ε∗1 =
∆

π
.

For boundaries of the second region of instability (k = 2), the formula

Ω∗ = ω

√
1 + ε2 ±

√
ε4 −

(∆
π

)2

(1− ε2)

holds. In the given case, critical value of the excitation coefficient is determined approximately by the

equality ε∗2
=

(
∆
π

)1/2
. In a similar way, generalizing the results [1], we can derive formulas for the

boundaries of the third region of dynamical instability which is, practically, seldom realized.
Relying on the above-given formulas, it is not difficult to determine variation intervals of critical

frequencies Ω∗ (depending on δ, q0, qt, T ) which fall into the regions of dynamical instability under
rigid fastening of shell edges.

The above formulas allow one to determine easily how significantly temperature, rigid fastening of
shell edges and acting load may affect the boundaries of regions of dynamical instability.

Figure 1
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Figure 2

Figure 3
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