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ON ONE PROBLEM FOR A VISCOELASTIC QUADRANGULAR PLATE
(RHOMBUS) WITH A CIRCULAR HOLE

GOGI KAPANADZE"2 AND LIDA GOGOLAURI*

Abstract. A plane problem for a viscoelastic quadrangular plate (rhombus) with a circular hole
is considered. It is assumed that the inner boundary of the plate is under the action of uniformly
distributed normal compressive forces (pressure or the values of constant normal displacements are
prescribed), while to the outer boundary are applied absolutely rigid smooth linear stamps with the
principal vectors of compressive forces; the stamps move only vertically relative to the boundary.

Using the methods of conformal mappings and the theory of boundary value problems of analytic
functions, the problem is reduced to the Riemann-Hilbert boundary value problem for a circular
ring and, using the Kelvin—Voigt model, the complex potentials, characterizing equilibrium of the
plate, are constructed effectively (in analytical form). The limiting case for a rhombus that turns
into a strip, is considered.

INTRODUCTION

Contact problems of the plane theory of elasticity are well developed (in the sense of effective
solution) by the methods of conformal mappings and the theory of boundary value problems of an-
alytic functions for a fairly large class of simply connected domains, which conformal mapping onto
a unit disk is carried out by the rational functions. However, these methods (we mean the Kolosov—
Muskhelishvili methods (see [6]) are less suitable for multiply connected (including doubly connected)
domains. Formulas similar to the Christoffel-Schwartz formulas for the conformal mapping of doubly
connected domains, bounded by polygons, onto a circular ring (see [4]) enable one to solve effectively
the contact problems of the plane theory of elasticity for the above-mentioned domains and for their
modifications obtained by passing to the limit. This approach is also efficient for solving the plane
problems of the theory of viscoelasticity according to the Kelvin—Voigt model (see [3,7]). In addition,
it should be noted that in these cases, using the methods mentioned above, one can decompose the
stated problems (with respect to the unknown complex potentials) into two Riemann—Hilbert prob-
lems for a circular ring. By solving the latter problems, the potentials are constructed in analytical
form.

Statement of the problem. Let S be a viscoelastic quadrangular plate (rhombus) with a circular
hole. By Ly we denote the internal boundary Lo = {|z| = Ry}, and by L1 = A; A3 A3 A4 the rhombus

4
Ly =] L
j=1

(ng) = AjAj41; j = 1,4, As = Ay). Assume that the sides lgj) (j = 1,4) of the thombus are
under the action of rigid rectilinear smooth stamps with the known principal vectors of external
compressive forces N (we consider the symmetric case). We also assume that Lg is under the action of
constant normal compressive forces (pressure) of intensity Py (or the constant normal displacements
are prescribed). By 04971' we denote the angles at the vertices 4; (j = 1,4), i.e.,, o = af; af = af =

1 — a? (see Figure 1), and by «a(o) and (o) the angles lying between the Oz-axis and the outer
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normal to the contour L = Ly U Ly, i.e.,
™

alo) = 2(1—}—@?)7 JELgl); alo) =
a(a):g(l—a?), aGLél); a(a):g

(—1 + a(l)) , O€ Lgl);

l-l-a(l)), U€L511);
B(o) =n+argo, o € L.

FIGURE 1

The purpose of the present work is to determine the complex potentials characterizing the distribu-
tion of stresses and displacements in the plate according to the Kelvin—Voigt model. Similar problems
of the plane theory of elasticity have been considered in [1,2].

Solution of the problem. Let us mention some results from [4-6, 8].

1. The conformal mapping of a doubly connected domain S° bounded by convex polygons (A)
and (B), with internal angles ma? and 732, at the vertices Ay (k = (1,p)) and B,, (m = (1,q)),
respectively, onto a circular ring D_{1 < |[{| < R.} is carried out by the function z = w.(¢), the
derivative of which under the condition

11(3)

has the form [4]

WL (Q) =K. [[ G(R¥¢)g(RYC)R™, (1)
Jj=—00

where

G(C) = H (C - ak)a271§ Q(C) = H (C - bm)ag”il; 5 = {0’ J=0, (2>

k=1 m=1 13 .] <-1
Note that the function w/(¢) for a circular ring Dy is a solution to the Riemann—Hilbert problem
Re {ine*m(”)w’*(n)} =0, n €l Re [ine*iﬁ(")w’*(n)] =0, n€lo, (3)

where I; and [y are the preimages of the boundaries Ly and Lo; I3 = {|¢{| = R.}; lo = {|¢| = 1}.
If we now consider a regular n-angle inscribed into a circle and denote by .S,, the area thus obtained,
then as n — oo, for the function w’(¢), in view of (1) and (2), we obtain the formula

o 4 _£ -1 < 4 ~ ¢ _ak af—-1
W(C)—Kkl:ll(l ak) HH(l szak) (1 R?jg) ’

j=1k=1

0 0
ay, ap—1
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and the boundary conditions (3) will be written in the form
Re [ine*m(”)w/(n)] =0, n€ly; Reliw'(n)] =0, n € lo. (4)

2. The boundary conditions of the first and second basic problems for a viscoelastic plate S
according to the Kelvin—Voigt model have the form ( [5,6,8])

g

oo ) + 0P (0 0) + DoD) =i / (Xn(0,1) + Y (0, 8))ds + e + ica, (5)
0
Lp(o,t) — M[p(o,t) + 0¢'(0,t) + ¢(o,t)] = 2u* (u(t) +iv(t)), o€ L=Lg U Ly, (6)

where t is the time parameter, and I' and M are the operators

t
Ty(o,t) = / [%*ek(T_t) + Zem(T_t)]go(a, T)dT,
0
. (7)

M|p(o,t) + o¢'(o,t) + m} = i/em("ft) [go(a, )+ oy (o,7)+ Y(o, 7')} dr, oe€lL.
0

Since the domain S is doubly connected, it is advisable to use the functions ®(z,t) = ¢'(z,t) and
U(z,t) = 9/(z,t), which are single-valued in the case of a multiply connected domain, as well. Taking
into account the equality

X (0,8) + iV (0,1) = (N(0,t) + iT(0, 1)) (@) = —z'(N(a, t) +iT (o, t)dﬁ),

ds
differentiating (5) with respect to o and passing to the complex-conjugate value, we obtain
®(0,t) + ®(0,t) + 0.* [0 (0,t) + ¥U(0,t)] = N(0,t) —iT(0,t), o€ L. (8)

Also, taking into account the equalities
w4 iv = i(v, +i0,;)e"); v =0 =const, T(o,t) =0, o€ Ly;
Vo, = vﬁlo) =const, v, =0, T(o,t)=0, N(o,t)=P,, o€ Ly,

from (6), by the differentiation with respect to o, in view of (8), we get

. 2/1*1}20)]%_1 o€ Ly
I'd(o,t) — M|N(o,t) —iT(o,t)| = 0 ’ 9
(0.8) = MIN(@:1) - iT (03 1) {0, T o)
Since N = Py, 0 € Lo; T =0, 0 € L1, we obtain from (9) the following boundary value problem:
ReT'®(o,t) = P(t), o€ Lp; ImI'®(0,t)=0, o€l (10)

where )
P(t) = PyF(t) + 2u* Ry 0®;  F(t) = ~ [1—e ™.

Mapping the domain S onto a circular ring D = {1 < |{|] < R} and introducing the notation
Dlw(C),t] = Po(¢,t), from (10), for the circular ring D, we obtain the following Riemann—Hilbert
boundary value problem:

Re [[®o(n,t) — P(t)] =0, n € ly; Im [[®y(n,t) — P(t)] =0, n €l (11)
Since the boundary problem (11) has only a trivial solution, from (7) and (11), we obtain the integral
equation with respect to ®o((, 1),
¢
/ [57 ek =0 4 2em (=D (¢, 7)dT = P(t). (12)
0
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From (12), by the differentiation with respect to ¢, we have
t t
—ke ™kt / 5 R T B (C, T)dT + 3B (C, 1) — Qme*mt/emT@o(g,T)dT +280(¢,t) = P(t),  (13)
0 0

here, P(t) denotes a derivative with respect to t.
Multiplying (12) by m and summing with (13), we get

¢
(m — k)" /el”@()((, T)dr + (3" + 2)eM P (¢, 1) = (P + 2u*mR0_1v,(10))ekt. (14)
0

From (14), by the differentiation with respect to ¢, for the function ®¢ (¢, t), we arrive at the differential
equation

(i)O(C7 t) + a(I)O (<7 t) = b7 (15)
where
ma* + 2k k(Py 4+ 2u*mR61v§:)))
= — b= (16)
w42 w42
In addition, from (12), in view of (14), we have the following initial condition:
b
®0(¢,0) = % (17)
The solution of equation (15) for the initial condition (17) takes the form
1 1 1
wo¢0=b 7+ (5-3)) !

oGt)=b| —+ )¢ (18)

where a and b are defined by formula (16).
Having defined ®4((,t), to find the function ¥y(¢,t) = P[w((),t], we take advantage of equality

(8) which after the conformal mapping is written in the form
2

@0(11,) + o1, 8) — <2 | @) ©'o(1,) + ' () ¥o (1. )]
p?w'(n)
:N(nﬂf)*iT(nat)v nel=1IlUl, (19)

where p=R, n €y and p =1, 5 € lp. Relying on (9) and (19), we get

- I 2 _
T@o(n, 1) = M{@o(n.t) + Bo(1, 1) — —m—= [ @'o(n, ) + ' (m) ¥o(, )] |

p*w'(n)
— 2N*R6107(10)a ne lOu (20)
0, nEl.

Taking into account (18), from (20), we obtain the following Riemann—Hilbert boundary value problem:

e [5? S8 wn.0)] = o(n.0), el
| n* W' (n) _ 2!
m M| = Wo(n,0)] =0, nen
where
fo(n,t) = —=T*®g(n,t) + 2uRy 0, nely (22)
t
*®0(C,t) = /%*e’f“*t)%(g,f)dr, CeD. (23)

0
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From (4) we get

W) =), nely, W) =-L W), neh,

and thus (21) will take form

Re [M[n*Uo(n,t)]] = fo(n.t); n€lo;  Im[MUo(n,t)] =0, nel.
Let us now consider the function

0= (-8 T i) "0 )

Jj=1

It is easy to check that the equalities hold

T T 2
ﬁzlanel()a ﬁz%anella
T(n) (n)
and, thus, conditions (21) regarding the function
_ <2\I/0(<7 t)
will be written in the form
_ fO(na t) . _
Re [MQq(n,t)] = () n € lo; Im [MQo(n,t)] =0, n € . (25)
The solution to problem (25) has the form (see [2])
M[QO(C7 t)] = fl (Cv t)a
where
1 o [ fon, )T *(n)
_ — —_— '] —
D S
J=—0o0 lo
and thus from (24) with respect to the function ¥(¢,t) we obtain the equation
M\pO(Ca t) = f(Ca t)v (26)
where )
)T

2
From (26) taking into account (7) we easily obtain
where f((,t) is defined by formula (27).

Remarks.

1. Since when formulating the problem there appears one of the values Py or vﬁo), but in the
expressions of the functions ®y(¢,t) and Vy((,t) there are both values Py and ’uéo), it is necessary to
write the dependence between these values. If at the initial moment on Ly there appears Py, then we
will have

P
X, =Y, =Py; X,+Y,=4Re[®y(0,0)]; Re[Py(0,0)] = 70 o€ Lo
and from (16) and (17) it follows that
Py Po+2u*mRy vl

2 n* 42

)

whence we have
’U(O) _ %*PQRO

2urm
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2. Let us consider a limiting case for the rhombus whose vertices A; and As tend to infinity, that
is, the domain S turns into a strip S* with a circular hole. In this case, for the numbers a? (j=1,4),
we have af = af = 0; a = o = 1 and by putting w(—00) = —R, w(cc) = R for the function w’((),
we obtain the formula

0= 5 T wb) ()

Consequently, the solution of the problem for the domain S* can be carried out in a way similar to
the one given above.
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