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ON ONE PROBLEM FOR A VISCOELASTIC QUADRANGULAR PLATE

(RHOMBUS) WITH A CIRCULAR HOLE

GOGI KAPANADZE1,2 AND LIDA GOGOLAURI1

Abstract. A plane problem for a viscoelastic quadrangular plate (rhombus) with a circular hole

is considered. It is assumed that the inner boundary of the plate is under the action of uniformly

distributed normal compressive forces (pressure or the values of constant normal displacements are
prescribed), while to the outer boundary are applied absolutely rigid smooth linear stamps with the

principal vectors of compressive forces; the stamps move only vertically relative to the boundary.
Using the methods of conformal mappings and the theory of boundary value problems of analytic

functions, the problem is reduced to the Riemann–Hilbert boundary value problem for a circular

ring and, using the Kelvin–Voigt model, the complex potentials, characterizing equilibrium of the
plate, are constructed effectively (in analytical form). The limiting case for a rhombus that turns

into a strip, is considered.

Introduction

Contact problems of the plane theory of elasticity are well developed (in the sense of effective
solution) by the methods of conformal mappings and the theory of boundary value problems of an-
alytic functions for a fairly large class of simply connected domains, which conformal mapping onto
a unit disk is carried out by the rational functions. However, these methods (we mean the Kolosov–
Muskhelishvili methods (see [6]) are less suitable for multiply connected (including doubly connected)
domains. Formulas similar to the Christoffel–Schwartz formulas for the conformal mapping of doubly
connected domains, bounded by polygons, onto a circular ring (see [4]) enable one to solve effectively
the contact problems of the plane theory of elasticity for the above-mentioned domains and for their
modifications obtained by passing to the limit. This approach is also efficient for solving the plane
problems of the theory of viscoelasticity according to the Kelvin–Voigt model (see [3,7]). In addition,
it should be noted that in these cases, using the methods mentioned above, one can decompose the
stated problems (with respect to the unknown complex potentials) into two Riemann–Hilbert prob-
lems for a circular ring. By solving the latter problems, the potentials are constructed in analytical
form.

Statement of the problem. Let S be a viscoelastic quadrangular plate (rhombus) with a circular
hole. By L0 we denote the internal boundary L0 = {|z| = R0}, and by L1 = A1A2A3A4 the rhombus

L1 =

4⋃
j=1

L
(j)
1

(
L
(j)
1 = AjAj+1; j = 1, 4, A5 = A1

)
. Assume that the sides l

(j)
1 (j = 1, 4) of the rhombus are

under the action of rigid rectilinear smooth stamps with the known principal vectors of external
compressive forces N (we consider the symmetric case). We also assume that L0 is under the action of
constant normal compressive forces (pressure) of intensity P0 (or the constant normal displacements
are prescribed). By α0

jπ we denote the angles at the vertices Aj (j = 1, 4), i.e., α0
1 = α0

3; α
0
2 = α0

4 =

1 − α0
1 (see Figure 1), and by α(σ) and β(σ) the angles lying between the Ox-axis and the outer
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normal to the contour L = L0 ∪ L1, i.e.,

α(σ) = −π
2

(
1 + α0

1

)
, σ ∈ L

(1)
1 ; α(σ) =

π

2

(
−1 + α0

1

)
, σ ∈ L

(1)
2 ;

α(σ) =
π

2

(
1− α0

1

)
, σ ∈ L

(1)
3 ; α(σ) =

π

2

(
1 + α0

1

)
, σ ∈ L

(1)
4 ;

β(σ) = π + arg σ, σ ∈ L0.

Figure 1

The purpose of the present work is to determine the complex potentials characterizing the distribu-
tion of stresses and displacements in the plate according to the Kelvin–Voigt model. Similar problems
of the plane theory of elasticity have been considered in [1, 2].

Solution of the problem. Let us mention some results from [4–6,8].
1. The conformal mapping of a doubly connected domain S0 bounded by convex polygons (A)

and (B), with internal angles πα0
k and πβ0

m at the vertices Ak (k = (1, p)) and Bm (m = (1, q)),
respectively, onto a circular ring D={1 < |ζ| < R∗} is carried out by the function z = ω∗(ζ), the
derivative of which under the condition

p∏
k=1

( ak
R∗

)α0
k−1 q∏

m=1

(bm)
α0

m−1
= 1

has the form [4]

ω′
∗(ζ) = K∗

∞∏
j=−∞

G
(
R2j

∗ ζ
)
g
(
R2j

∗ ζ
)
R2δj , (1)

where

G(ζ) =

p∏
k=1

(ζ − ak)
α0

k−1
; g(ζ) =

q∏
m=1

(ζ − bm)
α0

m−1
; δj =

{
0, j ≥ 0,

1, j ≤ −1.
(2)

Note that the function ω′
∗(ζ) for a circular ring D0 is a solution to the Riemann–Hilbert problem

Re
[
iηe−iα(η)ω′

∗(η)
]
= 0, η ∈ l1; Re

[
iηe−iβ(η)ω′

∗(η)
]
= 0, η ∈ l0, (3)

where l1 and l0 are the preimages of the boundaries L1 and L0; l1 = {|ζ| = R∗}; l0 = {|ζ| = 1}.
If we now consider a regular n-angle inscribed into a circle and denote by Sn the area thus obtained,

then as n→ ∞, for the function ω′(ζ), in view of (1) and (2), we obtain the formula

ω′(ζ) = K

4∏
k=1

(
1− ζ

ak

)α0
k−1 ∞∏

j=1

4∏
k=1

(
1− ζ

R2jak

)α0
k−1(

1− ak
R2jζ

)α0
k−1

,
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and the boundary conditions (3) will be written in the form

Re
[
iηe−iα(η)ω′(η)

]
= 0, η ∈ l1; Re [iω′(η)] = 0, η ∈ l0. (4)

2. The boundary conditions of the first and second basic problems for a viscoelastic plate S
according to the Kelvin–Voigt model have the form ( [5, 6, 8])

φ(σ, t) + σφ′(σ, t) + ψ(σ, t) = i

σ∫
0

(
Xn(σ, t) + iYn(σ, t)

)
ds+ c1 + ic2, (5)

Γφ(σ, t)−M
[
φ(σ, t) + σφ′(σ, t) + ψ(σ, t)

]
= 2µ∗(u(t) + iv(t)

)
, σ ∈ L = L0

⋃
L1, (6)

where t is the time parameter, and Γ and M are the operators

Γφ(σ, t) =

t∫
0

[
κ∗ek(τ−t) + 2em(τ−t)

]
φ(σ, τ)dτ,

M
[
φ(σ, t) + σφ′(σ, t) + ψ(σ, t)

]
= i

t∫
0

em(τ−t)
[
φ(σ, τ) + σφ′(σ, τ) + ψ(σ, τ)

]
dτ, σ ∈ L.

(7)

Since the domain S is doubly connected, it is advisable to use the functions Φ(z, t) = φ′(z, t) and
Ψ(z, t) = ψ′(z, t), which are single-valued in the case of a multiply connected domain, as well. Taking
into account the equality

Xn(σ, t) + iYn(σ, t) =
(
N(σ, t) + iT (σ, t)

)
eiα(σ) = −i

(
N(σ, t) + iT (σ, t)

dσ

ds

)
,

differentiating (5) with respect to σ and passing to the complex-conjugate value, we obtain

Φ(σ, t) + Φ(σ, t) + σ′ 2
s

[
σΦ′(σ, t) + Ψ(σ, t)

]
= N(σ, t)− iT (σ, t), σ ∈ L. (8)

Also, taking into account the equalities

u+ iv = i(vn + ivτ )e
iα(σ); vτ = v(j)n = const, T (σ, t) = 0, σ ∈ L1;

Vn = v(0)n = const, vτ = 0, T (σ, t) = 0, N(σ, t) = P0, σ ∈ L0,

from (6), by the differentiation with respect to σ, in view of (8), we get

ΓΦ(σ, t)−M
[
N(σ, t)− iT (σ, t)

]
=

{
2µ∗v

(0)
n R−1

0 , σ ∈ L0,

0, σ ∈ L1.
(9)

Since N = P0, σ ∈ L0; T = 0, σ ∈ L1, we obtain from (9) the following boundary value problem:

ReΓΦ(σ, t) = P (t), σ ∈ L0; ImΓΦ(σ, t) = 0, σ ∈ L1 (10)

where

P (t) = P0F (t) + 2µ∗R−1
0 v(0)n ; F (t) =

1

m

[
1− e−mt

]
.

Mapping the domain S onto a circular ring D = {1 < |ζ| < R} and introducing the notation
Φ[ω(ζ), t] = Φ0(ζ, t), from (10), for the circular ring D, we obtain the following Riemann–Hilbert
boundary value problem:

Re
[
ΓΦ0(η, t)− P (t)

]
= 0, η ∈ l0; Im

[
ΓΦ0(η, t)− P (t)

]
= 0, η ∈ l1. (11)

Since the boundary problem (11) has only a trivial solution, from (7) and (11), we obtain the integral
equation with respect to Φ0(ζ, t),

t∫
0

[
κ∗ek(τ−t) + 2em(τ−t)

]
Φ0(ζ, τ)dτ = P (t). (12)
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From (12), by the differentiation with respect to t, we have

−ke−kt

t∫
0

κ∗ekτΦ0(ζ, τ)dτ + κ∗Φ0(ζ, t)− 2me−mt

t∫
0

emτΦ0(ζ, τ)dτ + 2Φ0(ζ, t) = Ṗ (t), (13)

here, Ṗ (t) denotes a derivative with respect to t.
Multiplying (12) by m and summing with (13), we get

(m− k)κ∗
t∫

0

ekτΦ0(ζ, τ)dτ + (κ∗ + 2)ektΦ0(ζ, t) =
(
P0 + 2µ∗mR−1

0 v(0)n

)
ekt. (14)

From (14), by the differentiation with respect to t, for the function Φ0(ζ, t), we arrive at the differential
equation

Φ̇0(ζ, t) + aΦ0(ζ, t) = b, (15)

where

a =
mκ∗ + 2k

κ∗ + 2
; b =

k(P0 + 2µ∗mR−1
0 v

(0)
n )

κ∗ + 2
. (16)

In addition, from (12), in view of (14), we have the following initial condition:

Φ0(ζ, 0) =
b

k
. (17)

The solution of equation (15) for the initial condition (17) takes the form

Φ0(ζ, t) = b
[ 1

a
+
(1
k
− 1

a

)
e−at

]
, (18)

where a and b are defined by formula (16).
Having defined Φ0(ζ, t), to find the function Ψ0(ζ, t) = Ψ[ω(ζ), t], we take advantage of equality

(8) which after the conformal mapping is written in the form

Φ0(η, t) + Φ0(η, t)−
η2

ρ2ω′(η)

[
ω(η) Φ′

0(η, t) + ω′(η)Ψ0(η, t)
]

= N(η, t)− iT (η, t), η ∈ l = l0 ∪ l1, (19)

where ρ = R, η ∈ l1 and ρ = 1, η ∈ l0. Relying on (9) and (19), we get

ΓΦ0(η, t)−M
{
Φ0(η, t) + Φ0(η, t)−

η2

ρ2ω′(η)

[
ω(η)Φ′

0(η, t) + ω′(η)Ψ0(η, t)
]}

=

{
2µ∗R−1

0 v
(0)
n , η ∈ l0,

0, η ∈ l1.
(20)

Taking into account (18), from (20), we obtain the following Riemann–Hilbert boundary value problem:

ReM
[
η2
ω′(η)

ω′(η)
Ψ0(η, t)

]
= f0(η, t), η ∈ l0

ImM
[ η2
R2

ω′(η)

ω′(η)
Ψ0(η, t)

]
= 0, η ∈ l1

(21)

where

f0(η, t) = −Γ∗Φ0(η, t) + 2µR−1
0 v(0)n , η ∈ l0 (22)

Γ∗Φ0(ζ, t) =

t∫
0

κ∗ek(τ−t)Φ0(ζ, τ)dτ, ζ ∈ D. (23)
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From (4) we get

ω′(η) = ω′(η), η ∈ l0, ω′(η) =
η2

R2
ω′(η), η ∈ l1,

and thus (21) will take form

Re
[
M [η2Ψ0(η, t)]

]
= f0(η, t); η ∈ l0; Im [MΨ0(η, t)] = 0, η ∈ l1.

Let us now consider the function

T (ζ) =
(
1− ζ

R

)−2 ∞∏
j=1

(
1− ζ

RR2j

)−2(
1− R

R2jζ

)−2

.

It is easy to check that the equalities hold

T (η)

T (η)
= 1, η ∈ l0,

T (η)

T (η)
=
η2

R2
, η ∈ l1,

and, thus, conditions (21) regarding the function

Ω0(ζ, t) =
ζ2Ψ0(ζ, t)

T 2(ζ)
(24)

will be written in the form

Re [MΩ0(η, t)] =
f0(η, t)

T 2(η)
, η ∈ l0; Im [MΩ0(η, t)] = 0, η ∈ l1. (25)

The solution to problem (25) has the form (see [2])

M [Ω0(ζ, t)] = f1(ζ, t),

where

f1(ζ, t) =
1

πi

∞∑
j=−∞

(−1)j
∫
l0

f0(η, t)T
−2(η)

η −R2jz
dη

and thus from (24) with respect to the function Ψ0(ζ, t) we obtain the equation

MΨ0(ζ, t) = f(ζ, t), (26)

where

f(ζ, t) =
f1(ζ, t)T

2(ζ)

ζ2
. (27)

From (26) taking into account (7) we easily obtain

Ψ0(ζ, t) = mf(ζ, t) + ḟ(ζ, t),

where f(ζ, t) is defined by formula (27).

Remarks.

1. Since when formulating the problem there appears one of the values P0 or v
(0)
n , but in the

expressions of the functions Φ0(ζ, t) and Ψ0(ζ, t) there are both values P0 and v
(0)
n , it is necessary to

write the dependence between these values. If at the initial moment on L0 there appears P0, then we
will have

Xx = Yy = P0; Xx + Yy = 4Re [Φ0(σ, 0)] ; Re [Φ0(σ, 0)] =
P0

2
, σ ∈ L0

and from (16) and (17) it follows that

P0

2
=
P0 + 2µ∗mR−1

0 v
(0)
n

κ∗ + 2
,

whence we have

v(0)n =
κ∗P0R0

2µ∗m
.
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2. Let us consider a limiting case for the rhombus whose vertices A1 and A3 tend to infinity, that
is, the domain S turns into a strip S∗ with a circular hole. In this case, for the numbers α0

j (j = 1, 4),

we have α0
1 = α0

3 = 0; α0
2 = α0

4 = 1 and by putting ω(−∞) = −R, ω(∞) = R for the function ω′(ζ),
we obtain the formula

ω′(ζ) = K∗

(
1− ζ2

R2

)−1 ∞∏
j=1

(
1− ζ2

R4jR2

)−1(
1− R2

R4jη2

)−1

.

Consequently, the solution of the problem for the domain S∗ can be carried out in a way similar to
the one given above.
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