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PROPER EMBEDDING FOR MORREY–LORENTZ SPACES

NAOYA HATANO

Abstract. The embeddings for the Morrey–Lorentz spaces have been previously introduced by

M. A. Ragusa. This paper describes the major differences between these embedding types.

1. Introduction

In an extant study, Ragusa [5] has described the embeddings for the Morrey–Lorentz spaces. These
function spaces can be defined as follows by recalling the expressions for the Lorentz spaces.

Definition 1.1. When t > 0 and f is a measurable function on Rn, the rearrangement function f∗(t)
can be expressed as

f∗(t) := inf{λ > 0 : |{x ∈ Rn : |f(x)| > λ}| ≤ t}.
In the above expression, it is understood that inf ∅ = ∞. Let 0 < p, q ≤ ∞. The Lorentz space
Lp,q(Rn) can be defined as the linear space comprising all measurable functions f with a finite quasi-
norm given by

∥f∥Lp,q :=





( ∞∫

0

[
t
1
p f∗(t)

]q dt

t

) 1
q

, 0 < p, q < ∞,

sup
t>0

t
1
p f∗(t), 0 < p ≤ q = ∞.

Notably, the space L∞,q(Rn) for 0 < q < ∞ (for details, refer to [1, Example 1.4.8]) is not considered
in the above expression.

The Morrey–Lorentz spaces can be expressed as follows.

Definition 1.2. Let 0 < q ≤ p < ∞ and 0 < r ≤ ∞. Accordingly, the Morrey–Lorentz space
Mp

q,r(Rn) can be expressed as the space comprising all measurable functions f with the finite quasi-
norm

∥f∥Mp
q,r

:= sup
Q∈Q(Rn)

|Q| 1p− 1
q ∥fχ

Q
∥Lq,r ,

where Q(Rn) is denoted by the set of all cubes in Rn that are parallel to the coordinate axes, and χ
E

is an indicator function for a measurable set E.

Additionally, the function spaces can be considered extensions of the Lorentz and Morrey spaces
as follows.

Remark 1.3. By definition, it is observed that

Mp
p,r(Rn) = Lp,r(Rn) and Mp

q,q(Rn) = Mp
q(Rn)

with coincidence quasi-norms for 0 < q ≤ p < ∞ and 0 < r ≤ ∞. Moreover, Mp
q(Rn) represents a

Morrey space, which is endowed with the quasi-norm

∥f∥Mp
q
:= sup

Q∈Q(Rn)

|Q| 1p− 1
q

(∫

Q

|f(x)|q dx
) 1

q

.
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G. Lorentz [3] defined the Lorentz spaces, and the separability of Lorentz spaces is proven. The
Morrey spaces were introduced by Morrey [4] to investigate the solutions of second-order elliptic partial
differential equations.

Ragusa introduced the embeddings for the Morrey–Lorentz spaces (see [5, Theorem 3.1]) as follows.

Proposition 1.4. The following assertions hold:

(1) If 0 < q ≤ p < ∞ and 0 < r1 ≤ r2 ≤ ∞,

Mp
q,r1(R

n) ↪→ Mp
q,r2(R

n).

(2) If 0 < q2 < q1 ≤ p < ∞ and 0 < r1, r2 ≤ ∞,

Mp
q1,r1(R

n) ↪→ Mp
q2,r2(R

n).

The main result obtained in this study can be expressed as follows.

Theorem 1.5. Let 0 < q < p < ∞ and 0 < r < r̃ ≤ ∞. Moreover, let R > 1, thereby satisfying
(1 +R)n/p−n/q2n/q = 1. Consider

F :=

∞⋃

m=1

Fm, Fm :=
⋃

a∈A(R,m)

{y + a ∈ Rn : y ∈ [0, 1]n}, (1.1)

A(R,m) :=

{
a ∈ Rn : a =

m∑

k=1

R(1 +R)k−1ek for some {ek}mk=1 ∈ ({0, 1}n)m
}

and

Vk :=

{
∅, k = 0,

{x ∈ Rn : (1 +R)−kx ∈ F}, k ∈ N,
(1.2)

and define

f :=





∞∑

k=1

1

k
1
r (1 +R)

nk
p

χ
Vk\Vk−1

, r̃ < ∞,

∞∑

k=1

1

(1 +R)
nk
p

χ
Vk\Vk−1

, r̃ = ∞.

(1.3)

Thence

f ∈ Mp
q,r̃(R

n) \Mp
q,r(Rn).

We remark the sets A(R,m), Fm and Vk as follows.

Remark 1.6. (1) The set A(R,m) is increasing for the parameter m ∈ N, that is,

A(R, 1) ⊂ A(R, 2) ⊂ · · · ⊂ A(R,m) ⊂ · · · .
(2) It follows from (1) that {Fm}∞m=1 is also an increasing family, that is,

[0, 1]n ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊂ · · · .
(3) The family {Vk}∞k=0 stands for the expansion of F and satisfies

V0 ⊂ F ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ · · · .
The following figure is the family {Fm}∞m=1 in the case n = 1:
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and define

(1.3) f :=





∞∑

k=1

1

k
1
r (1 + R)

nk
p

χVk\Vk−1
, r̃ < ∞,

∞∑

k=1

1

(1 + R)
nk
p

χVk\Vk−1
, r̃ = ∞.

Thence,

f ∈ Mp
q,r̃(R

n) \Mp
q,r(Rn).

We remark the sets A(R,m), Fm and Vk as follows.

Remark 1.6. (1) The set A(R,m) is increasing for the parameter m ∈ N,
that is,

A(R, 1) ⊂ A(R, 2) ⊂ · · · ⊂ A(R,m) ⊂ · · · .
(2) It follows from (1) that {Fm}∞m=1 is also increasing family, that is,

[0, 1]n ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊂ · · · .
(3) The family {Vk}∞k=0 stands for the expansion of F , and satisfies

V0 ⊂ F ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ · · · .

The following figure is the family {Fm}∞m=1 in the case n = 1:

F1

F2

0 1 R (1 + R)R (1 + R)R +R

Contrary to what the family {Vk}∞k=0 stands for the expansion of F , the family
{Ej}∞j=0, which is defined in [9, Proposition 2.1], stands for the reduction of F ,
that is,

Ej = {x ∈ Rn : (1 + R)jx ∈ Fj} ⊂ [0, 1]n.

The above Theorem 1.5 represents the proper embedding expressed as

Mp
q,r(Rn) ↪→ Mp

q,r̃(R
n)

for 0 < q < p < ∞ and 0 < r < r̃ ≤ ∞. The other cases have been explored
previously.

Remark 1.7. (1) The embedding Lp,r1(Rn) ↪→ Lp,r2(Rn) is proper for cases
wherein 0 < p < ∞ and 0 < r1 < r2 ≤ ∞ (see, e.g., [2, Exercise 1.4.8]).

(2) Gunawan et al. [1] reported the proper embedding expressed as Mp
q(Rn) ↪→

Mp
q,∞(Rn) for 0 < q < p < ∞.
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Contrary to what the family {Vk}∞k=0 stands for the expansion of F , the family {Ej}∞j=0, which is
defined in [9, Proposition 2.1], stands for the reduction of F , that is,

Ej = {x ∈ Rn : (1 +R)jx ∈ Fj} ⊂ [0, 1]n.

The above Theorem 1.5 represents the proper embedding expressed as

Mp
q,r(Rn) ↪→ Mp

q,r̃(R
n)

for 0 < q < p < ∞ and 0 < r < r̃ ≤ ∞. The other cases have been explored previously.

Remark 1.7. (1) The embedding Lp,r1(Rn) ↪→ Lp,r2(Rn) is proper for the cases, where 0 < p < ∞
and 0 < r1 < r2 ≤ ∞ (see, e.g., [1, Exercise 1.4.8]).

(2) Gunawan et al. [2] reported the proper embedding expressed as Mp
q(Rn) ↪→ Mp

q,∞(Rn) for
0 < q < p < ∞.

(3) In cases, where 0 < q̃ < q ≤ p < ∞, Sawano [6] revealed that Mp
q(Rn) represents a non-dense

subspace in Mp
q̃(Rn). Therefore, if 0 < q2 < q1 ≤ p < ∞ and 0 < r1, r2 ≤ ∞, by virtue of the

embedding

Mp
q1,r1(R

n) ↪→ Mp
2q1+q2

3

(Rn) ↪→ Mp
q1+2q2

3

(Rn) ↪→ Mp
q2,r2(R

n),

the embedding Mp
q1,r1(R

n) ↪→ Mp
q2,r2(R

n) is proper.

From this perspective, this study attempts to validate Theorem 1.5.
Here and below, we employ the notation A ∼ B instead of c−1B ≤ A ≤ cB for some c ≥ 1.
We organize the remaining part of the paper as follows: To prove Theorem 1.5, we prepare two

lemmas in Section 2. In Section 3, we provide the proof of Theorem 1.5.

2. Preliminaries

This section describes the lemma required to prove Theorem 1.5.

Lemma 2.1. Let 0 < q < p < ∞. Similar to (1.1) in Theorem 1.5 above, set F ⊂ Rn. Then
χ

F
∈ Mp

q(Rn). Moreover, when r̃ = ∞ in Theorem 1.5,

f ∼ sup
k∈N

χ
F
((1 +R)−k·)

∥χ
F
((1 +R)−k·)∥Mp

q

, (2.1)

where f can be expressed as described in (1.3).

The set F introduced by (1.1) in Theorem 1.5 satisfies the fact that χ
F

∈ Mp
q(Rn) given in [8].

Moreover, the indicator function χ
F

is not in the Mp
q(Rn)-closure of Mp

q̃(Rn) (see [6]). Especially,
the statement

χ
F
∈ Mp

q(Rn) \Mp
q̃(R

n)

holds when 0 < q < q̃ ≤ p < ∞.

Proof of Lemma 2.1. By [9, Proposition 2.1],

∥χ
Ej
∥Mp

q
∼ (1 +R)−

jn
p .

Then using the Fatou property for the Morrey (quasi-)norm ∥ · ∥Mp
q
, we obtain

∥χ
F
∥Mp

q
= lim

j→∞
∥χ

Fj
∥Mp

q

and

∥χ
Ej
((1 +R)−j ·)∥Mp

q
= (1 +R)

jn
p ∥χ

Ej
∥Mp

q
∼ 1,

as desired. □

In addition, to simplify the proof of Theorem 1.5, the Morrey–Lorentz quasi-norms for the functions
f given in (1.3) could be rewritten as follows.
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Lemma 2.2. Let 0 < q < p < ∞. Similar (1.2) in Theorem 1.5 above, set {Vk}∞k=0 and define

g :=

∞∑

k=1

bkχVk\Vk−1
,

where {bk}∞k=1 is a non-increasing positive sequence, where, for any r0 ∈ (0,∞], we have

∥g∥Mp
q,r0

∼ sup
j∈N∪{0}

|[0, (1 +R)j ]n| 1p− 1
q ∥gχ

[0,(1+R)j ]n
∥Lq,r0 ,

where the implicit constant in “∼” is independent of r0.

Proof. It is clear from the definition of ∥ · ∥Mp
q,r0

that

∥g∥Mp
q,r0

≥ sup
j∈N∪{0}

|[0, (1 +R)j ]n| 1p− 1
q ∥gχ

[0,(1+R)j ]n
∥Lq,r0 .

If Q ∈ Q(Rn) satisfies |Q| ≤ 1, based on the monotonicity of {bk}∞k=1, it follows that

|Q| 1p− 1
q ∥gχ

Q
∥Lq,r0 ≤ |Q| 1p− 1

q

∥∥∥∥
( ∞∑

k=1

b1χVk\Vk−1

)
χ

Q

∥∥∥∥
Lq,r0

≤ |Q| 1p− 1
q ∥b1χQ

∥Lq,r0 ≤ |[0, 1]n| 1p− 1
q ∥b1χ[0,1]n

∥Lq,r0

= |[0, 1]n| 1p− 1
q ∥gχ

[0,1]n
∥Lq,r0 . (2.2)

Meanwhile, considering j ∈ N, it can be supposed that Q ∈ Q(Rn) satisfies (1 + R)(j−1)n < |Q| ≤
(1 +R)jn. Note that for each k ∈ N ∩ [1, j],

Vk =

∞⋃

l=1

⋃

e∈{0,1}n

(R(1 +R)l−1+je+ V j
k ),

where

V j
k := Vk ∩ [0, (1 +R)j ]n. (2.3)

Considering the simple geometric observation, we see that

♯{k ∈ N : Q ∩ (Vk \ Vk−1) ̸= ∅} ≤ j.

In fact, since near the set V j
k is high density, if the cube Q ∈ Q(Rn) takes [0, (1 +R)j ]n, for example,

the left-hand side is larger, that is,

♯{k ∈ N : Q ∩ (Vk \ Vk−1) ̸= ∅} ≤ ♯{k ∈ N : [0, (1 +R)j ]n ∩ (Vk \ Vk−1) ̸= ∅} = j.

On the other hand, by the mapping g : Rn → {bk}∞k=1 ∪ {0} and the monotonicity of {bk}∞k=1, we let
a subsequence {bk(l)}∞l=1 ⊂ {bk}∞k=1 by

bk(1) := max
x∈Q

g(x) ≤ b1,

bk(l+1) :=




maxx∈Q\g−1({bk(l̃)}l

l̃=1
) g(x), Q \ g−1({bk(l̃)}ll̃=1

) ̸= ∅,

0, Q \ g−1({bk(l̃)}ll̃=1
) = ∅

≤ bl+1

for each l ∈ N, and then for all l > j, bk(l) = 0 by the previous observation. Therefore,

∥gχ
Q
∥Lq,r0 ≤

∥∥∥∥
(
b1χg−1({bk(1)})

+

j∑

l=1

bl+1χ
g−1({b

k(l̃)
)}l+1

l̃=1
)
\g−1({bk(l̃)}

l+1

l̃=1
)

)
χQ

∥∥∥∥
Lq,r0

≤ ∥gχ[0,(1+R)j ]n∥Lq,r0 ,

where we use the translation invariant for the Lorentz quasi-norm ∥ · ∥Lq,r0 . It follows that

|Q| 1p− 1
q ∥gχQ∥Lq,r0 ≤ |[0, (1 +R)j−1]n| 1p− 1

q ∥gχ[0,(1+R)j ]n∥Lq,r0 . (2.4)
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By gathering the estimates described in (2.2) and (2.4), it can be inferred that

|Q| 1p− 1
q ∥gχQ∥Lq,r0 ≤ (1 +R)−

n
p +n

q sup
j∈N∪{0}

|[0, (1 +R)j ]n| 1p− 1
q ∥gχ[0,(1+R)j ]n∥Lq,r0 ,

for all Q ∈ Q(Rn). □

3. Proof of Theorem 1.5

First, the case r̃ < ∞ can be proved as follows. In accordance with Lemma 2.2,

sup
j∈N

|[0, (1 +R)j ]n| 1p− 1
q ∥fχ[0,(1+R)j ]n∥Lq,r0 ∼ ∥f∥Mp

q,r0

for all r0 ∈ (0,∞). Next, considering V j
k as in (2.3) for j, k ∈ N, it follows that

|V j
k | = ∥χF ((1 +R)−k·)χ[0,(1+R)j ]n∥L1 = (1 +R)nk∥χFχ[0,(1+R)j−k]n∥L1

= (1 +R)nk2(j−k)n

for all k ∈ N ∩ [1, j]. In accordance with [1, Example 1.4.2],

(
fχ[0,(1+R)j ]n

)∗
=

( j∑

k=1

1

k
1
r (1 +R)

nk
p

χV j
k \V j

k−1

)∗

=

j∑

k=1

1

k
1
r (1 +R)

nk
p

χ[|V j
k−1|,|V

j
k |)

for j ∈ N. Therefore,

∥fχ[0,(1+R)j ]n∥r0Lq,r0 =

∞∫

0

[
t
1
q

j∑

k=1

1

k
1
r (1 +R)

nk
p

χ[|V j
k−1|,|V

j
k |)

]r0 dt

t

∼ {(1 +R)n2(j−1)n}
r0
q

r0(1 +R)
nr0
p

+

j∑

k=2

{(1 +R)nk2(j−k)n}
r0
q − {(1 +R)n(k−1)2(j−k+1)n}

r0
q

r0k
r0
r (1 +R)

nkr0
p

=
2

njr0
q

r0

[
1 +

j∑

k=2

1− 2
nr0
q−p

k
r0
r

]
,

for all j ∈ N \ {1} and r0 ∈ (0,∞). Hence

∥f∥Mp
q,r0

∼
( ∞∑

k=1

1

k
r0
r

) 1
r0

=





∞, r0 = r,

ζ

(
r̃

r

) 1
r̃

, r0 = r̃,

where ζ(s) (s > 1) denotes the Riemann zeta function. This proves that

f ∈ Mp
q,r̃(R

n) \Mp
q,r(Rn).

Next, we prove the case r̃ = ∞. Similar to the approach followed in the case r̃ < ∞, we have

∥fχ[0,(1+R)j ]n∥rLq,r ∼
j∑

k=1

2
jnr
q = j2

jnr
q

for all j ∈ N. Subsequently,
∥f∥Mp

q,r
= ∞.

Meanwhile, in accordance with (2.1) and [7, Example 17], it follows that

f ∈ Mp
q,∞(Rn).

This proves Theorem 1.5.
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