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BOUNDARY-TRANSMISSION DYNAMICAL PROBLEMS OF THE
THERMO-PIEZO-ELECTRICITY THEORY WITHOUT ENERGY DISSIPATION

ANIKA TOLORAIA

Abstract. The Dirichlet, Neumann and mixed type interaction dynamical problems between thermo-
elastic and thermo-piezo-elastic bodies are studied. The model under consideration is based on the
Green—Naghdi theory of thermo-piezo-electricity without energy dissipation. This theory allows the
thermal waves to propagate only with a finite speed. Using the Laplace transform, potential theory
and the method of boundary pseudodifferential equations, the existence and uniqueness of solutions
is proved and their smoothness is analyzed.

1. INTRODUCTION

In this paper, we investigate the boundary-transmission dynamical problems, i.e., the Dirichlet,
Neumann and mixed type interaction dynamical problems between thermo-elastic and thermo-piezo-
elastic bodies. The model under consideration is based on the Green—-Naghdi theory of thermo-piezo-
electricity without energy dissipation. This theory allows the thermal waves to propagate only with
a finite speed.

Other models of thermo-piezo-electricity, in particular, the Voigt and Mindlin model, are well
known. Our model is refined, it takes into account microrotation and microstretch of a particle.

Almost complete historical and bibliographical notes in this direction can be found in [23], where
the dynamical equations of the thermo-piezo-electricity without energy dissipation are derived on the
basis of the Green—Naghdi theory established in [21,22] and on Eringen’s results obtained in [19,20].
In the present paper, we consider the pseudo-oscillation equations obtained by the Laplace transform
from the dynamical equations derived by Iegan in [23] for homogeneous isotropic solids possessing
thermo-piezo-electricity properties without energy dissipation. The mixed and crack type pseudo-
oscillation problem of thermo-piezo-electricity without energy dissipation is investigated in [5].

The basic dynamical problems of the classical elasticity and thermo-elasticity with either the Dirich-
let or Neumann type boundary conditions on the whole boundary were developed in [24]. The mixed
type dynamical problems of the classical elasticity for anisotropic bodies were studied in [25]. The
mixed and crack type dynamical problems of the electro-magneto-elasticity can be found in [6] and the
mixed boundary-transmission dynamical problems of generalized thermo-electro-magneto-elasticity
theory for piecewise homogeneous composed structures are studied in [8].

In [16], a three-dimensional dynamical problem of fluid-solid interaction is considered, when an
anisotropic elastic body occupying a bounded region is immersed in an inviscid fluid occupying an un-
bounded region, and the generalized Green—Lindsay’s model of the thermo-electro-magneto-elasticity
theory is considered in a solid redion. In this direction, one can see [9-15].

Using the Laplace transform, the potential theory and the method of boundary pseudodifferential
equations, we prove the existence and uniqueness theorems of solutions in appropriate function spaces.
We prove regularity results of the Dirichlet and Neumann boundary-transmission dynamical problems.
Further, we analyze the regularity of solutions of a mixed type boundary-transmission dynamical
problem near the exceptional curve, where different type boundary conditions collide. This regularity
of solutions depends on the material constants and does not depend on the geometry of the exceptional
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curve. If these constants meet certain conditions, then the smoothness of solutions is C™ ([0, 0),C %),
m > 2 (see [2-5,7]). Definition of this class see in Section 3 of this paper.

The Dirichlet, Neumann and mixed type boundary-transmission pseudo-oscillation problems of
thermo-piezo-electricity without energy dissipation are studied in [17], and the mixed type boundary-
transmission pseudo-oscillation, thermo-piezo-electricity problem with interior cracks and without
energy dissipation can be found in [18].

2. THERMO-ELASTIC FIELD EQUATIONS AND THERMO-PIEZO-ELASTIC FIELD EQUATIONS
WITHOUT ENERGY DISSIPATION

The model under consideration is based on the Green—Naghdi theory of thermo-piezo-electricity
without energy dissipation.

Consider the disjoint bounded domains €; and €, in the Euclidean space R3 with sufficiently
smooth boundaries 9§21 = 57 and 9Qs = S1US3 (S1NS2 = ). Throughout the paper, n = (nq, n2,n3)
stands for the exterior unit normal vector to 9 = Sy, and v = (v, 19, v3) stands fot the exterior
unit normal vector to 9y = S U Ss.

Suppose the domain €, is filled with a homogeneous thermo-elastic material, then the system of
governing differential equations of dynamics with respect to the unknown vector function U =
(™, 9N T where u1) = (ugl), uél),ui(gl))—r is the displacement vector and 91 is temperature, has
the following form (see [24]):

(D 45N Au® + (AD 4 D) grad div u® — p; 920 —Bél) grad 9,9 = (Fl(l), Fz(l), F3(1))T7 (2.1)
ED A9 — W29 — g9, divu® = £V, (2.2)
where (Fl(l), F2(1)7 F3(1))T is a mass force density, Fil) is a heat source density, p; is the mass density,
p 5D \@) ﬁél), kM and o™ are the thermo-elastic constants satisfying the conditions
7N >0, 3 420 >0, xM 42, 4300 >0, kY >0, p >0, oV >0,
ﬁél) >0, T=0+iw, 0 >00>0, weR
The stress operator for a homogeneous isotropic system of equations is defined as follows:
T = TW(0,,1,0,) = [T} (00,1, 0)] .,

AVn,0; + pWn;0; + 6,5 (D + 5 )ng0k]3x3, [*551)71 Orlax1
[0]1x3 kM8,

4x4

We can write the above system (2.1)—(2.2) of equations for pseudo-oscillations of the theory of
homogeneous isotropic thermo-elasticity in the following matrix form:

AN (9, AU = pO),
where UM = (M) 9T 1) = (Fl(l),Fz(l),F?Sl),F4(1))T7 and AM(9,,8;) is the 4-dimensional
matrix differential operator of the generalized thermo-elasticity:

1
A(l)(amaat) = [Az(j)(ag“at)]4><4

[05;(™D) + 2NA + (AD + 1U)8,0; — p16; 0F)3x3, *ﬂ(()l) O [05]3x1
—B" 0 [0;]1x3 —aWoF +kWA]

)

where d;; is the Kronecker delta.

The domain €25 is filled with a thermo-electro-elastic material. The corresponding system of differ-
ential equations of pseudo-oscillations with respect to the sought vector function U has the following
form (see [23]):

(1@ + 519,002 + (A + 1®)9,0,u? — p20? ul® + 3P eij0;0)

+ /\62)3190(2) - 5(82)5% 99 = —10291(2), i=1,2,3, (2:3)
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K2 9;0;0? — a2 9@ — P9, 0,ul? — 0, 0@ + 1P 9;0,0®

1

150,00 = —7- p2Q), (2.4)

7(2)3j5j¢(-2) + (a® +6(2))6-8i¢>(2) _ 132)83 ¢§2) + %(z)eijkajul(f)
— 2P = —py x| i =1,23, (2.5)

(00,0, — €)@ — 22 0@ — AP p,0.4® + 1P 9,0,0

+e) 00 = A\Pou? = —p, ), (2.6)
/\82)53'3]‘90(2) +x®@0;0,0 + 570,00 = @, (2.7)
where U®) = (u; 2 ué U 19(2) , 1 2 ¢(2 ¢(2 0@ YT 42 = (ug ),u(;),ugz)) is the displace-
ment vector, 19(2) is temperature, $? = (¢§2),¢52) (2)) is the vector of microrotation, ¢(® is the

microstretch, 1(?) is the electric field potential and (gg ), gé ), gé )) is the external body force per unit

mass, Q) is the external rate of heat supply per unit mass, X Z( ) is the external body couple per unit

mass, F(? is the microstretch body force, ¢(?) is the density of free charge, Tp is the initial reference
temperature, €5 is the Levi-Civita symbol and ps is the mass density.

Due to the positiveness of internal energy, the coefficients of system (2.3)—(2.7) must satisfy the
following conditions:

7P >0, P 42u® >0, 2?4+ 2u® 430 >0,
&7 + 2u® 1302 > 3(\)?,
4@ 5 8@, 0@ — (@) 50, 5@ 443 430 5,
X® >0, a® >0, kP >0, o >0, o’y - ) > 20657)?,
(v = BD)[aP kP — wP)?) + abg? f” P — 20 (Wf7)? = 2@ (07)? > 0,
p2>0, I¥ >0, ;>0 s >0
Denote by
A®(0,,01) = [A] (9, D)oo
the matrix differential operator generated by the left-hand side expressions in (2.3)—(2.7),
Aﬁf)(amat) = 8;; (1 + )00, + (A + 10,0, — p26:;07,
Al('i) (0z,0r)) = —562)@ i, A J+4(8:mat) = — P10,
AR (02, 00) = 2P 0i, AG(9,00) =0,
A2 (0,,0) = —pP0,0;, AL (0,,0) = kDA, - a2,
AP 00,0) =0, AD(0,,0) = V00 — P, AR(0,,0) =~V aa,
A, (00, 00) = = Deidy, A, 1(04,0:) =0,
A, 440, 01) = 0,7 P0,0, + (o) + 8)0;0; — (252 + 1§ 92)5;,
Az(iz;,s(azvat) =0, AE-Z;-)AL,Q(amat) =0,
00,00 = =205, AR 02, 0) = vP 00, + o,
AéQJ’H(az, %) =0, AL (0:,0) = a? 010 — (&5 + 0 37),
AG(02,00) = 2P0, AG(0:,0) =0, AZ (0., 0,) = 1§70,
Aé?y)‘%(awvat) =0 A (0:,80) =200, AS (0.,0) = xPad, i, =1,2,3.
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The stress differential operator of thermo-electro-elasticity is defined as follows:

T(z) = T(2) (ama v, at) = [71(]2) (am7 v, 6t)}9><9>

where
T (00,v,00) = AP vids 4+ n® vy + 63y (u® 4+ )wde, T Daiv,01) =~ 01 0y,
2(3)—1-4(8£E7V 0) = Ve, Ti(gg) (O, v,0p) = )ng)Vz, Ti(92) (Op,v,0r) = 0,
Tfj (0, v,0¢) =0, Tﬁ)(ax, v,0) = k@0,
Tfa+4(8z,V 9) = v eipnde, TiR) (00, v,0) = vi> vk,

T3 (00, 00) = —v§7 00k, T (00,0, 0) = 0,
T2 1(arv,00) = V) 1iniO, Tfiimﬂ(am v,0;) = a®v;0; + BP0, + 6,7 P vy,
ﬂ(izx,s(am, v,0p) = bSZ)EZileak, 7}(3,9(5‘95, v, 8,5) = AgQ)glikylak7

T8 (0w, v,0) = 0, T (D0, v,00) = 1" 4y,
Ts(?j)+4(3ml/, 8y) = =08 w0, TR(04,v,00) = alP i, T4, 0y) = —AP 10,

Tg(f‘)(axv% 0) =0, Ts; (8,1, 81) = V510,

132 (00,1, 00) = =NV erimdn,  Ti3 (Da,v,00) = A vy,
T2 (80, 1,00) = x Py, 1,5 =1,2,3.
The system of equations (2.3)—(2.7) can be written in a matrix form
A®(9,,0)UP =@

where

UD — (@ 0@ 4@, 9@ 6@ 4@ 43 @) )T

.
P = (ngi ) p2gs? p2gs ), 2 7 —2Q@, s X 3 X5 9y X5 sz(2)7g(2))

and A®(9,,7) is the 9-dimensional matrix differential operator corresponding to system (2.3)—(2.7).

3. FORMULATION OF THE BOUNDARY-TRANSMISSION DYNAMICAL PROBLEMS

3.1. Formulation of the Dirichlet boundary-transmission dynamical problem (7'D);. We
are looking for a solution

U = (W 9T = (u(l),uil))T,
U® = u® 93 ¢ o) CHT = (u(z),uf),uéz), o ,ug(f))
of the dynamical equations
AN, 0,) UM =d; in Q) x[0,00),
AP (0,,0,)UP = ®5 in Q3 x [0,00),
which satisfy on the surface S; the following boundary-transmission conditions:
{u — Py = £ on Sy x [0,00), j=1,4,
(TO(8,,n,8) UV} 4+ {T@(0,,1,0)UP}F = £ on 8y x [0,00), j=T1,4, v=-n,

and the boundary conditions

WPy =@, Six[.00), j=59,
while on the surface S5, the Dirichlet boundary condition

{U(Z)}+ = p(Q) on Sy x [0, 00),
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and the initial conditions
WD (2,0) =0, 9u(z,00=0, zeQ, j=T7
@ (,00=0, 9ulP(2,00=0, zeQ, j=T13

uj

3.2. Formulation of the Neumann boundary-transmission dynamical problem (T'N);. We
are looking for a solution

UM = @ 9T = (u(l),uil))T,

U® = (0@ 9@ 3@ @ T = (u(2),uf),ué2), o ’qu))T
of the dynamical equations

AN (D,,8,) UM =d; in Q) x[0,00),
AP (9,,0,)UP =dy in Qy x[0,00),
which satisfy on the surface S; the following boundary-transmission conditions:
{uf 1 — (Y = £ on i x [0,00), j=T4,
{0 @,.0,0)U Y] + TP (0, 0,0)UP)] = ;7 on 81 x[0,00), j=TA v="-n,

and the boundary conditions

(W3 =@, 81 x[0,00), j=509,
while on the surface S, the Neumann boundary condition
(TP (0, v,0)UPD}F =¢®  on Sy x [0,00),

and the initial conditions

V(@,0)=0, gul’(z,0)=0, zeQ, j=T11
2)(x,0)=0, 8tu;2)(x,0)=O, x €, j=1,8.

u

oL~ L~

u

3.3. Formulation of the mixed boundary-transmission dynamical problem (TM),. We are
looking for a solution

00 = (@, 90)T = (W, )T,

U@ — (u(2)7 AN 90(2), 11)(2))'r - (u(2)7 uf), uéQ), o ,Ug(f))—r

of the dynamical equations
AN (D, 0,) UM =d; in Q) x[0,00),
AP (9,,0)UP =, in Qy x [0,00),
which satisfy on the surface S; the following boundary-transmission conditions:
S e T S on S x [0,00), j=T1,4,
(TN (0p,m, 0) UMY +{TP(0,,v,0)UP}T = fj@) on Si x [0,00), j=1,4, v=—n,

and the boundary conditions

(W =Q® on S x[0,00), j=5,09,
while on the surface S, the mixed boundary conditions
U =p” on 857 x [0,00),
(TP (8, 0,0) U} = ¢ on S5V x [0, 00),
and the initial conditions

u(2,00=0, gu(z,00=0, ze, j=171,
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u§2) (x,0) =0, O ugz)(x,()) =0, ze€Q, j=138,
where
So=8Pus™M s AN =g =05 = a5 e o,

Remark 3.1. Taking into account the homogeneous initial conditions of the boundary-transmission
dynamical problems (DT)¢, (NT)¢, (MT),, from the 9-th equation of the basic dynamical system of
equations, when t = 0, and the corresponding boundary condition, we can find the function (2 (z,0)
for € Q3. Note that in formulating the boundary-transmission dynamical problems (DT, (NT)q,
(MT);, we can consider the homogeneous initial conditions without loss of generality (see [4,16]).

By H* with s € R, we denote the Sobolev-Slobodetsky space. Let My be a smooth surface without
boundary. For a proper sub-manifold .# C .4, we denote by H*(.#) the subspace of H*(.4,),

H* (M) ={g : g€ H (M), supp g C A},

while H* () stands for the space of restriction on .# of functions from H®(.#).
Let B be some Banach space and let @ > 0 and m € NUO.

Definition 3.2. By C7"([0,00),B) we denote the set of all B—valued functions, which are m-times
continuously differentiable on [0, 00) and satisfying the conditions

0'u(0)

ot! ot!

Definition 3.3. By (", ([0,00),B) we denote the set of all B-valued functions, which are m-times
continuously differentiable on [0, 00) and satisfying the conditions

0'u(0)

ott ot

We will study the solvability of the above-formulated dynamical boundary-transmission problems

in the spaces

—0, 1= H H = 0(e), Ya>a>0, 1=0,...,m.

—0, 1=0,....m—2, H H 1=0,....m.

Cir([0,00), [HH(Q)]*) x ([0, 00), [H'(22))°) with m > 2 and a >0,
assuming that
®; € C1([0,00), [La()]1), @2 € CYL([0,00), [L2(22)]°), £ € CALF([0, 00), %<sl>>,
f<2>ecM“<[o,oo>7H*%<sl>>, j=14, QQ)GCM“([ ), H?(S))), j=
p@ € CLF2([0,00), [HE (S))), ¢ € CILF2([0,00), [H™2(S1)]°),
s € CHLF([0, 00), [HE (S57)))9), qémecéff;?([o 00), [H%(8M9),

where M is an appropriately chosen natural number. Further, note that the initial conditions are
satisfied automatically.

4. BOUNDARY-TRANSMISSION PROBLEMS OF PSEUDO-OSCILLATIONS

Using the Laplace transform
o0
f(T) :/e’th(t)dt, T=0+iw, oc=RerT>a>0, weR,
0
the Dirichlet, Neumann and mixed boundary-transmission dynamical problems can be reduced to the
following boundary-transmission problems of pseudo-oscillation equations (T'D),, (T'N), and (T M),
depending on the complex parameter 7.
We are looking for a solution

g — (a(1)7{9'(1))'l' _ (ﬂ(l),ﬂil))'l' e [H(Q1)]%,
7@ — (a(2)75(2),$(2)7¢(2)’1Z(2)) = (@®, ~(2) ~g ) ...,ﬂ§,2))T e [H'()]°
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of the pseudo-oscillation equations
AN (0, 1Y UD =@y in Q,
AP (0, 1V UP =dy in Q,
which satisfy on the surface S; the following boundary-transmission conditions:
{ﬂgl)}+ {~(2)}+ f(l) on Sy, j=T1,4,
{T(l)(ﬁx,n,T)U(l)}j +{T®(8,,v,7)U 2)}+ Am) on S;, j=1,4, v=-n,

and the boundary conditions

@ =Qf on 51, j=59,
while on the surface Ss, the Dirichlet boundary condition for the Dirichlet boundary-transmission
problem (TD),,

{UC =5®) on S,

or the Neumann boundary condition for the Neumann boundary-transmission problem (T'N).,

{T@ (3, v, 7)6(2)}4' =3? on S,
or the mixed boundary conditions for the mixed boundary-transmission problem (T'M).,

U@+ = ]3{2[)) on SgD), {T®(0,,v, 1) UD} = &{QN) on SéN),

where ReT > a > 0,

Dy € [La()]}, @y € [La(2)]°,

e B (S)), }}2) ~2(8y), j=1,4,

QY e H3(

)
S1), j= P e [H?(S:))°,
i e [H3(S:))°, By e [H%<S§D>>19, g™ e [HE (S5,
and
(1)
AV (8, 7) = (A (00, 7)] 4

—[5713‘()\(1) + M)A + (A(l) +21)0;0; — 72p16i5]3%3, *Tﬁél)[ai]sxl
—7'60 [ il1x3 —72a®M + kWA

)

4x4

TN = 7W(H,,n,7) = [Tm (390»"77)]“4

(A0 + Mo + 655 (nD + 3D )]s, [—Tﬁél)n]sm]
[0]1x3 KYmoy |,

the matrix differential pseudo-oscillation operator of thermo-electro-elasticity is defined as follows:
AR(0,,7) = [AY (B2, 7)]oxo,
D (001) = 05 (1P + 3180, + (AP + )9,0; — 72p28,
AR 0p, 1) = =880 AP, 4(05,7) = — P,
AR (0, ) =Y, AQD0,,7) =0,
AR (0s,7) = —7820;, AR (02,7) = kP00, — 72a®),
4]+4(6w,7') =0, Ag) (0, 7) = V12)8l8 7'662), Ag)(am,r) = —Véz)ﬁlal,
AR, (04,7) = —Pear, AR, (0s,7) =0,
A§?4,j+4(5x, ) = 6,7 200, + (0@ + 20,0, — (25 + 72125,
AR, 5(00,m) =0, AF, 4(02,7) =0,
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AD(0,,m) = AP0y, AL 00, m) = vP 010, + e,
AY) L (0e,m) =0, AR (00,7) = i 00 — (€ + 72](5”),
A 0a.7) = NP0, AT (00,7) =0, AR (07) = 17010,
Aé?g)'+4(6w77) =0 AR (0e7) = AD00, AR (02, 7) = XD 001, 0,5 =1,2,3,
the corresponding stress differential operator of thermo-electro-elasticity is defined as follows:

TC) = T (@,,0,7) := [T (02, v, Tloxo,

where
T30 (9, v.7) = X0 + 1030, 4 835 (n® + 8D )mde, T (0n,v,7) = =756,
Tz(g+4(az,V 7) = ey, Tis (Op,v,7) = )\62 Iz Ti(;)(ax,u, T) =0,
T2 (Dayv,7) =0, T (0r,v,7) = kP00,
132 On,v.7) = v cumnde, T3 (00, v,7) = {7 100,
Tig)(am,l/v T) = vy )Vkak, 71(4_%(5}, v,T) =0,

jﬁiﬁ(am,u T) = yéQ)Euleak, Tz(+4]+4(<97:,1/ 7) = al 1/18 + 8@ v;0; Jr(;w,y ) 11O,
Ter4 g(Op, v, T) = b(() €11V Ok, Ti+4’9(81., v, T) = )\g et O,
TSJ- (0x,v,7T) =0, Téz) (Og,v,7) = y§2)uk8k,
Ts(Qj+4(3mV 7) = —bPende, T2 0p,v,7) = aP b, T2 (0p,v,7) = =M\ P10k,
T3 (0x,v,7) =0, Ta3 (Buv,7) = V57 40,
1374 (Onsv,7) = AP erjimnd,  Ti3 (0w, v,7) = AP i,
T35 0z, v, 7) = XDk, i,j =1,2,3.

Now, let us formulate the existence and uniqueness, the regularity theorems of boundary-transmission
pseudo-oscillation problems (T'D),, (T'N), and (T'M),, proven in [17].

Theorem 4.1. Let S1,52, € C®, 1 =oc+iw, 0 > 09 >0, w € R, and = [La(9)]?, = [L2(22)]°,

[V e HE(Sy), [P e H73(S1), j = T4, QF € HE(S)), j = 5,9, B € [HE(S,)]°. Then the

Dirichlet boundary-transmission problem (T'D), has a unique solution
(O, TP) e [ (Qu)]* x [H'()]".
Theorem 4.2. Let 51,5 € C™% 0<f<a<l, m>2 meN, and
1 € [CFPPE)]Y, By € [OFH (@)
Ve cti sy, et s, j=T14
QW e chi(sy), =59, p? e[CP(S)]°, k=2m.

Then the Dirichlet boundary-transmission problem (T' D). has a unique solution
(W, T®) € [CHP (@) x [C*F ()],

Corollary 4.3. Let $1,5; € C™ and &, € [O®(Q)]!, &2 € [C®(@)]°, i) € C=(51), [
C=(81), j=T,4, Q¥ € C=(81), j = 5,9, 5 € [C(82)]°. Then the unique solution (UM, U?)
of the Dirichlet problem (T D), belongs to the class [C™(Q)]* x [C*°(Q2)]°, i.e.,

(UW,T®) e [C™ @) x [0 (@),
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Theorem 4.4. Let S1,5, € C®°, 1 =0 +iw, 0 > 09 >0, w € R, and
Oy € [La())!, D € [La(Q)]°,
[V e (s, fi7eH (S, j=14
QP e HE(S1), =59, 7 e [H H(S)

Then the Neumann boundary-transmission problem (T'N), has a unique solution
(W, 0®) e [H (Qu))* x [H' ()]
Theorem 4.5. Let 51,5 € C"™*, 0<f<a<1l,m>2 meN, and
Oy € [CF 2], @y € [CF 2P ()7,
iV eckh(sy), [P ech (s, j=14,
QP e CH(S)), j=59, § c[C* (), k=2m.

Then problem (T'N). has a unique solution
(@D, 0) € [C*@))* x (€™ @)
Corollary 4.6. Let the following conditions:
51,8, € C®, ®y € [C°()]Y, @y € [C=(Q)]°,
fec=(s), fFec=(sy), j=14
QW ec=(81), j=509, § €[0S,

be fulfilled, then the unique solution to problem (T'N). is infinitly differentiable, i.e.,

(W, 0@) € [C=@)])* x [C= ()],

Theorem 4.7. Let S1,5 € C®°, 1 =0 +iw, 0 > 09 >0, w € R, and
By € [La()]!, P2 € [La())°,

IV eH (S), [P eH (S, j=1.14

QP end(s)), j=59, B emd(siP)r, @V e

LT
Then the mized boundary-transmission problem (TM). has a unique solution
W, TP) e [H'(Q)]* x [H'(2)].

Let us introduce the notation
cbéz) +p )\§2) +q 1/2(2)

d:= 27(2) ’

where

1 1
c:= 5(1782)511 + AgQ)bm + Véz)b:n), D= §(b82)b12 + )\§2)b22 + V§2)532)>

1
q:= §<b82)b13 + )\§2)b23 + V£2)b33)’

-1
aéQ) _/\gz) y§2)

[bjklaxs == )\9) x® V?()2)
1/{2) 71/§2) E®

The following regularity theorem holds:
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Theorem 4.8. Suppose S1,S2 € C* and
By € [C(@))Y, B € [C™(D)),
firec=(s), [P ec=(s), j
(N)

~ . ooiD 0o /&
QW ec=(s1), j=509, iV elc=ESe, @ ee>=(Sy

|
—

).
Then:
1) Ifd < 0, then the unique solution (ﬁ(l),ﬁ(z)) to the mized boundary-transmission problem
(TM); belongs to [C*(21)]* x [C7(Q)]°, i.e.,
o, r7(2>> [C=@)]* x [C™ (@))%,
where y1 = l - = arctg 2v/—d, 1 depends on the material constants, does not depend on the
geometry of the e:meptwnal line ¢ = 8S§D) = 8S§N) and may take any values from the interval
(0.1).
2) Ifd > 0, then the unique solution to the corresponding boundary-transmission problem (T M)
(O, T®) e [C>@)' x [C (@))".

In order to perform the inverse Laplace transform of the solution (6(1), 5(2)) of boundary-transmi-
ssion problems (T D)., (I'N), and (T M), i.e.,

1 o400
U(q)(at) s / 6Tt(7(q)<'77-)d7-a q=12, a>a,
21 _
we need the estimates in 7 of
ITD ) i (074 TP ) a2 (2070

when |7] = oo (ReT > a).
Using the integration by parts formula for the data of the boundary-transmission pseudo-oscillation
problems (T'D).,(TN),; and (T'M)., for ReT > a > 0, we deduce the following inequalities:

12D D) za@op < ™M 18P (D) zanyp < Ol 7Y,
= (D =2 “M-2 .
Hf] (aT)H (S y = C|T‘ M= 2 ||f] (.77—)“H7%(S’1) < C|T| M 27 J = 1,4,
—~(2) “M—2 . -
1G5 g3 s, SCITITYM72 5=50 BP0 < O,
172yt g < T2 187 ) oo < Clrl ™72,

178Gy 3 ggooyge < CIF2, (4.1)

where C' is a constant, independent of 7.

Let us consider the Dirichlet boundary-transmission problem (7°D),.

To obtain the similar estimates (see (4.1)) for the corresponding solution (U1, U(®)) of the Dirichlet
boundary-transmission problem (7'D), we use the representation

r7 1 1 1 1 1
U(l):‘/l( )+V2( )? Vq(l) ( ((11)7'“7 ((I‘i) _( él)vvé,i) ’ q:1327
r7 2 2 2 2 2 2
U(2) = Wl( ) + WQ( )’ Wq(Q) = (w((l,l),,w((l,g;) = (w,(f),w;i, 7wf(1,sg)T7 q=12,

where (Vl(l),Wl(Q)) and (‘/2(1),W2(2)) are the solutions of the following boundary-transmission
Problem 4.1 and Problem 4.2, respectively.

Problem 4.1. Find a vector function (Vl(l),Wl(Q)) € [H1()]* x [H1(Q2)]° satisfying the pseudo-
oscillation differential equations

1)(3 T) () (I)l in Ql7
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AP (0, )W =By in Qy,
the boundary-transmission conditions on the surface S; :
{v (1)}+ {w (1)}+ (1) on S1, j=1,4,
{TW(8,, v, 7'0)V1(1 }+ +{T?(8,, v, 7'0)W(2)}‘Ir f(z) on S;, j=1,4, v=—n,

and the boundary conditions

{wl’J}—i_ ( )7 Sla ]:m7
while on the surface S5, the Dirichlet boundary condition for the Dirichlet boundary-transmission
problem (T'D),,
{Wl(z)}+ :]3(2) on S,
where 79 is a fixed complex number such that Re g > 0.
Problem 4.2. Find a vector function (Vi) W) € [HY(Q)]* x [H}(Q2)]° satisfying the pseudo-
oscillation differential equations
AV @, VY =3 in
A® (0, WP = 1@ in Q,,
the boundary-transmission conditions on the surface Sy :
(oS3t — {wiyt =0 on S, j=1,4,
{T(l)(aw,1/,7')‘/2(1)}3-+ + {7 (d,,v, T)VV2(2)}]-+ =G; on S, j=14, v=-—n,

and the boundary conditions

{wé?;}-i_ = 07 517 j = ma
while on the surface Ss, the Dirichlet boundary condition for the Dirichlet boundary-transmission
problem (TD),
W =0 on S,
where
v = (A9, 70) — AV (0, VY, @ = [AD) (9, 70) — AP (0, )W,
Gj = {[Tl)(am n, TO) - T(l)(am n, 7—)]‘/1(1)}3'+ + {[T(Q) (8067 v, TO) - T(2) (817 v, T)]WI(Q)}j’ J= m’
ie.,

pr (7% — ) 4 (1 = 70) B8V [0i] 5. 01

g — 3x1°1,4
(1 = 70)B" i) + (72 = m)aDol} |
p2< —Byw? + (1 = 10) 85 [01] 5 )
o (- )50 )8 w(22) (12 Tg)a(f))w@) (T—To)c((f)wfg
v - I ( T(J2) [wl ]+4}3><1 ’
P+ (2l

0

Gy = (1 —10)B" o) + (r — )8 v, j=1,2,3, Gy=0.

By Theorem 4.1, Problem 4.1 is uniquely solvable in [H'(21)]* x [H(€2)]°, then the following
estimates

1 2 I~ ~4
IV Nz s + W2 N gy < C'(H‘I’1||[L2(Ql)}4 + |92 (22 (2)°

4 9
71) #2) ~5(2) 2
3 U 3 o+ 150360 + 2@ 3 6y + 12N 3 )
j=1 j=5
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hold, where the constant C’ does not depend on 7. Taking into account estimates (4.1), we obtain

“‘/1(1)||[H1(Q1)]4 + ||W1(2)H[H1(Qz)]9 < Cl|T|7M, Rer>a> 0. (4.2)

where the constant C7 does not depend on 7.
It is clear that the estimates of the data of Problem 4.2 follow from (4.2) with respect to 7:

D 2,0 < CITI*M+2 1,0 < Clr~MH2,

1G5l -3 s,y < ClrITHH G =T4 (4.3)

Suppose (Vz(l), WQ(Q)) is a solution to Problem 4.2. Let us write Green’s formulas for the vector
functions ‘/2(1) and W2(2) in the domains ©; and 2, respectively:

/ A @, VY 1 W + / EO WO, %W de = ((TOVOY (v, Mg, (4.4)
Ql Q1
/ AP @, YW W, Pda + / EQ W, W, P)de = (TOWE (W@ g0, (45)
Qo Q2
where
1 1 1 1 1 1
Vi = (0§, oD T = e T, ol = (8 o), 0T,
2 2 2 2
WQ( )= (w(,l)r'wwg,g)—r = (wg )’wg,i’ 2 7w28 w Eg) )

(
2
wig wi)T,

Eﬁl)(V(l) Vs (1)) é”(vél) gt )) + 17 \ | /30 v2 4 ) divTg oM 4 k(1)| gradvé}if
-l-Tﬁol) div vél)@gi + T a(1)|1122| ,
(05" 7 M) = (1 4 3V) grad vy P+ A0 + uO)] divey P

Here and in what follows, a - b denotes the scalar product of two, in general, complex-valued vectors

()

2 2 2 2 2 2
wy = (wi wi wiy) T 98 = (wy3

N
a-b:Zakgk, a,beCV.
k=1

Obviously, éa(vél), vg )) >0,
EQ WP W) = Be®, 7)) + 2iAPe, 0 (0w 0,02, ) + 2002 Tm(9;w$D 0;w5%)
+2w5 2) Im(9; w(z) 0j @(223) + 22’750 2) Im(@-wg]) Eézi) + 2170((2) Im(wgzg Eézi)
+2 (2w [P+ 1571057 4 o7 w5l + a® s’y ?);
here, we assume that B(v?), 7)) is positive definite with respect to the vector 0(2) (esj, 75, Cj» @,

T,9;, E;), B(v®,53) > 0 Yo® #£ 0, where ¢;; = 8w2]) + eﬂkwé ,1+4, ;= 0; w2 ]+4, ¢ = @wéi%,

Y = wgg, T = nga, 19(2) = Jyw éQi, E; = f&wfg) (for the definition of this form see [5] formula
(2.19)).

Adding Green’s formulas (4.4) and (4.5) and taking into account the fact that (Vz(l),WQQ)) €
[H1(Q1)]* x [H'(22)]° is a solution to the boundary-transmission Problem 4.2, we get

/ g Vl)dx+/\ll(2) W, dz+/E1> v vl dz+/E(2 W2 wi?)da
Ql QZ

1 1 2
= <Z{T“>v§ N s, + <Z{T<2>W§ N W@ s,
Jj=1 j=1
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4 4
_ Z (r 1)V 1)}+ + {T(Q)W 2)}+) (W, 2)}+ Z G]’{W2(2)}+ Vs,
j=1 j=1
where

WY = {wyt, =19, ("} ={iht, j=T4

Therefore we obtain
/E<1> RCR7Y der/E(g) W D)0

4
= (G W )s, - / v vy — / v W, dg
=1 e Jd

Similarly, we get (see [5])

[ BT+ [ B0,

o Qs
4
=G (W) )s, - /\I/(l)~1/'2(1)dx—/\11(2) WP, (4.6)
J=1 Q4 Qo
where
E(2 (W(2) W 2)) B(z)( (2),@(2)) + 2i7ﬂ(()2) Im(@ w(Q) w2 )) + 2@7’6(2) Im(wégg *(2))

(2 2)) (2
+72 (palw? P + 15716871 + 367 w3 + a® i} P),
Now, let us first take the real part of equality (4.6) and then the imaginary part, where
T=0+4iw, 7°=(0%—-w?) 42w, o>00>0, weR.
Thus we obtain the following integral equalities:
J[E082,5) + (0% — wt)mlof ) - 28§ Tin(aS} div o) + KOV grad of
Ql

+a(1)(02 — w2)|v§2\2} dz,
+/pW%WWJWWM@ﬁM@%—%&mm@@%+w—MWW@P
Q2

+I(52)|¢)§2)‘ +]02)‘ (2) 244 2)|w(2) 2)}dm

4
=Re > (Gj, {WaP}T)s, — Re/\Il(l) ViV dx — Re/\If(2) WP da, (4.7)
i=1 o Q2
/ [20wp1\v§1)|2 + 2a(1)aw|v£2|2 + Qﬁél)alm(vz 1 div v(l))} dx
Q1
—|—/ [20662) Im(wéi)L div w(2)) + 20’0( ) Tm(w ég 5241) + 20w (pg\w§2)|2
Q2

FIPIP P + PR + @) |de

4
= Z(G],{ NHys, Im/\Il(l)-V2(1)d:r—1m/\11(2)-W2(2)dx. (4.8)
j=1
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Multiplying (4.8) by # and adding equality (4.7), we get

/ 6080, 5) + (0 + )i [l + KD grad of )2 + 0D (0% + w?)[ull) ] da
1951
+ [ [BO®,5) 4 (0% + o) (ol + 11657 + 57 P + D) da

Q2

4
=Re Y (G;, {W>*})s, — Re/\p(l) ViV da — Re/\p@) Wy Bdg
j=1

Q Qs
4
+27 G W@ g, — Zm [ 90 .V Vdz — L [ 0@ w24 1.9
sz< J’{ 2 }j>S1_0m * Vg x_am - Wao X. ()
Jj=1 o8

From equlity (4.9), we obtain for |7| — oo the following estimates:

(1)
(/g U2 ,U; )dx + ||U2 ||[L2(Q1 Bt ||U24||H1 Ql)>

(2
+02</B(v(2) 7)) dx + sz )||[L2 Q)2 T ||w2 ”LQ(QQ) + H% ||[L2 Q)2 T ||w2 8||L2(§22)>

o2
4
1
< Z; AN Ik ot PRPNIE S Ll [PRER 17 ) [PRENE
iz
|w]
HT o 2@ liza@ae + 1G5, g V2P 3 )
el |w|
— e Dl pa@yallVa ||[Lz(Q1)]4+7H\IJ Miza@2 V2 oo (4.10)
where ¢; := mln{Pl EW oM 1} and ¢y := min{py, ], (2),](()2),(1(2),1}.

Now, in the left part of inequality (4.10) we use the positive-definiteness of the form B(v(®,v(?)
and Poincaré’s inequality, and in the right part of the same inequality we use the trace theorem and
estimates (4.3). Thus we get

1 2 2 — 1 2
(||V2( Nz + I1Ws )HHl[(Qz)]9> <cl7| M+3(||V2( Nz anys + I1Ws )H[Hl[(ﬂz)]g)
and therefore, we obtain

1 2 _
Vil gy + WS ey < elr|™+2 for |7] = oo, (4.11)

where c is a positive number, not depending on the complex parameter 7.
Thus, in view of (4.2) and (4.11), we conclude

|7M+3

1Tz < el TN mganye < cr| ™M for |7] — oo (4.12)

Similarly, we can obtain the same estimates of (4.12) for the solutions of the (T'N), and (TM),
pseudo-oscillation boundary-transmission problems. In the case of the (T'N), pseudo-oscillation
boundary-transmission problem, the Dirichlet conditions in Problem 4.1 and Problem 4.2 on the
surface Sy should be replaced by the Neumann boundary conditions, and in the case of the (T'M),
pseudo-oscillation boundary-transmission problem, the Dirichlet conditions in Problem 4.1 and Prob-
lem 4.2 on the surface Sy should be replaced by the mixed boundary conditions.

In turn, from estimates (4.12) with M > m + 4 and the inverse Laplace transform

a+oo
1 ~
U(l)(-7t) - o / eTtU(l)(-,T)dT, a>a>0,
T

a—100
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a—+oo
1 ~
)= — eTtU(Q)(-,T)dT, a>a>0

U2 (. ¢
( ’ 211

a—100

of the solution (17' U (2)) of the boundary-transmission pseudo-oscillation problems, we have found

that
UM e Cr ([0, +00), [H'(21)]%),
U@ e ([0, +00), [H' (2)]°) with m > 2.
Therefore we arrive at the following existence and uniqueness results for the original boundary-
transmission dynamical problems (T'D):, (TN)¢, (TM);.
Theorem 4.9. Let S1,S55 € C* and
1 € O ([0, +00), [La()]"), 2 € ([0, +00), [La(22)]”),

1;" € CrgT (0, +00), HE(SY), 1} € CLT ([0, 400), HE(S) j = T4,

QY € O ([0, +00), HE(S1), §=5.9. p® € CI7 ([0, +00), [H2(52)]").
Then the boundary-transmission dynamical problem (TD); has a unique solution (UM U®) in the
space
Cr ([0, +00), [H'(21)] ") x € ([0, +00), [H'(22)]°)  for m>2.

)]

Theorem 4.10. Let S1,S; € C* and
®, € CT([0,+00), [La()] "), (
2 e (0, +00), HE (S1)) j =
(

mﬁ»

T,
7).

€ C7°(10,400), [L2

£V e CrdT ([0, +00), HZ (S1)),
QW € o ([0,+00), H(S1)) =59, ¢@ €07 ([0,+c0), [H3(Sy)
Then the boundary-transmission dynamical problem (TN); has a unique solution (UM U®)) in the
space
C7 ([0, +00), [H ()] ") x € € ([0, +00), [H (2)]°)  for m > 2.
Theorem 4.11. Let Sq,55 € C* and
€ CI ([0, 4+00), [La(21)] ),

F e amT ([0, +00), HE(S1)),  f}
Q¥ e ([0, +00), HE(S1)) j =59, pi” e

™) € CIET ([0, 00), [HE(Sn)P).

Then the boundary-transmission dynamical problem (TM); has a unique solution (UM, UP)) in the

@y € O (0, 400), [L2<Q2>]9),
e C ([0, +o0), H2(Sl>) j=1
CrdT ([0, +00), [H? (SP)))°

space

C7 ([0, +00), [H ()] ") x € C ([0, +00), [H' ()]°)  for m > 2.

Let us introduce the notation
Calo ([0, +00), C* (), a=1.2,

DL

Ca ([0, +00), C=(Q)) =

1

e
Il

Cilo([0,400),C*(5,)), ¢=1,2,

D)

7o ([0,+00),C®(8,)) ==

~
Il
-

C;”([O,—i—oo),ck(ﬁq)).

[
DX

C7 ([0, +00),C> () :

=
Il
—



306 A. TOLORATA
The following regularity results for the solutions of the dynamical boundary-transmission problems
(T'D); and (T'N), follow directly from Theorems 4.2, 4.5, Corollaries 4.3, 4.6 and Theorems 4.9, 4.10.
Theorem 4.12. Let S1,5, € C™ with 0 < 8 < a <1, and let
(UM, UP) e ([0, +00), [H' ()] ") x € CI([0,+00), [H(22)]°)
form > 2, a > 0 be a solution of the dynamical problem (T'D); for the data &, € CSTJS([O,—FOO),
(CR20(@)]Y), By € O ([0, +00), [CF2A@))°), k22, k€N, m > 2,
£V e ([0, +00), CR(S1)), [ € O ([0, +00), CFLA(S))), j=T,4,
Q™ € CrT([0,+00),C*P(S1)), §=59, p® €T ([0,400),[C*P(S2)]°), k=27, r €N
Then the Dirichlet boundary-transmission dynamical problem (T'D)y has a unique solution
UM, U®) e cm ([0, +00), [CFP(1)]*) x C™ ([0, +00), [C*(02)]°).
Corollary 4.13. Let S1,5, € C* and
@y € CU([0,400), [C(Q)]*), @2 € CLFP([0,+00), [C™(Q)]°),

£;7 € G (10, 400),€%(80), - £ CIT (0, 400),C=(S2), j =14,
QY € (10, 400),C=(S1)), =59, p@ € CriT([0,+00),[C=(5)))

forallk>2, ke N, andm >2,a>0.
Then the unique solution (U(l),U(Q)) of the Dirichlet boundary-transmission dynamical problem
(TD), belongs to the class CI([0,+00), [C*°(Q1)]*) x CI ([0, 4+00), [C°(92)]°) i.e.,

(WD, U®) € O ([0, +00), [C%()]*) x €7 ([0, +00), [C* (D)%)
Theorem 4.14. Let S1,5; € C™* with0 < f < a <1, and let
(UM, UP) e ([0, +00), [H' ()] ") x € CI([0,+00), [H(22)]°)
form >2,a >0 be a solution of the dynamical problem (TN); for the data
@1 € O ([0, 4+00), [CH2P()]Y), @2 € CFFP([0,+00), [CF2P(Q)]°), k>2, kEN, m>2,
F e cmdT([0,+00), CRP(SY)), £ € Oy ([0, +00), CETLA(SY)), j=T4,
Q¥ € CriT((0,+00),C*P(S1)), j=59, ¢® €T ([0,+00),[C* 1 (S2))°), k=27, reN.
Then the Neumann boundary-transmission dynamical problem (T'N); has a unique solution
WM, UP) e €7 ([0, +00), [CHF(Q)]*) x C7 ([0, +00), [C™F (22))°).
Corollary 4.15. Let S1,55 € C* and
®, € Cg735([07 +00), [Cm(gl)]4)7 ®, € C’Z‘J5([O, +00), [Coo(ﬁg)]g)7
Y € G (10, 400),0%(51)), £ O (10, 400), C(S2)), j =T.4,
QY € CrT([0,+00),C=(S1)), =59, ¢® €Cr([0,+00),[C=(S2)]%)

forallk>2, keN, and m>2,a>0.
Then the unique solution (U(l), U®) of the Neumann boundary-transmission dynamical problem
(TN)¢ belongs to the class C2* ([0, +00), [C>(Q21)]*) x C2* ([0, +00), [C>=(Q2)]°) i.e.,

U, U®) € G ([0, +00), [C=(Q)]!) x C([0, +00), [C=(22))°).

From the asymptotic formula of the solution of the pseudo-oscillation problem (cf. formula (8.9)
in [5] and also (5.26) in [6]) and the approach developed in paper [6], we can obtain the estimates of
the first coefficients and the remainder term of the asymptotic expansion with respect to the complex
parameter 7. Then, using the inverse Laplace transform in the asymptotic expansion of a solution, we
can obtain the following optimal regularity result for the boundary-transmission dynamical problem
(TM); near the line £ = 955" = as{™).
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Theorem 4.16. Suppose S1,S52 € C*° and

@y € O ([0, + oo),[C’oo(ﬁl)]4), Py € O ([0, 400), [C™=(22)]%),
£V e ([0, +00),C%(S)), £ eO’””([ +00), € C™(81)), j=T.4,
Q”e@"“([ﬂwoo),c“(&)% =59, 17 € CIT(10,+00). [0 (S5 )).
e (o, +00), [C™(Sy" )}9),

form >2,a>0. Then:

1.

10.

11.

12.

13.

14.

15.

16.

17.

1) Ifd <0, then the unique solution (U(l), U(2))7t0 the mized boundary-transmission dynamical
problem (T'M), belongs to Ci™ ([0, +00), [C™°()]*) x C*([0, +00), [C7 (2)]7), i.e.,

UM, U®) € G ([0, +00), [C=(Q)]*) x G ([0, +00), [C7 (D2))°),

where y1 = % — %arctg 2v/—d, 1 depends on the material constants, does not depend on the
geometry of the exceptional line £ = 8S§D) = 3S§N) and may take any values from the interval

(0.1).
2) Ifd > 0, then the unique solution to the corresponding mized boundary-transmission dynamical
problem (T'M ),

(UD,UP) e Cm ([0, +00), [C=()]*) x C([0,+00), [C'Z(22)]°).
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