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TWO-WEIGHTED INEQUALITIES FOR MAXIMAL, SINGULAR INTEGRAL

OPERATORS AND THEIR COMMUTATORS IN GMp,θ,ω,φ(Rn) SPACES

AYSENUR AYDOGDU1, CANAY AYKOL1∗, JAVANSHIR J. HASANOV2,3, ALI M. MUSAYEV2

Abstract. In this paper, we prove the two-weighted boundedness of maximal operator, singular
integral operators and their commutators in weighted global Morrey-type spaces GMp,θ,ω,φ(Rn).

Furthermore, we give weighted global Morrey-type a priori estimates and a priori estimates for
non-divergent elliptic equations in GMp,θ,ω,φ(Rn) spaces as applications.

1. Introduction

The classical Morrey spaces were introduced by Morrey [32] to study the local behavior of solutions
to the second-order elliptic partial differential equations.

Moreover, various Morrey spaces have been defined in the process of study. Guliyev, Mizuhara and
Nakai [22,31,34] introduced generalized Morrey spaces Mp,φ(Rn) (see, also [23,24,39]).

Recently, Komori and Shirai [29] defined the weighted Morrey spaces Lp,κ
ω (Rn) and studied the

boundedness of some classical operators such as the Hardy–Littlewood maximal operator and the
Calderón–Zygmund operator on these spaces.

Also, Guliyev in [25] first introduced the generalized weighted Morrey spaces Mp,φ
ω (Rn) and stud-

ied the boundedness of the sublinear operators and their higher order commutators generated by
Calderón–Zygmund operators and Riesz potentials in these spaces. Note that Guliyev [25] gave the
concept of generalized weighted Morrey space which could be viewed as an extension of bothMp,φ

ω (Rn)
and Lp,κ

ω (Rn) spaces.
Recall that in 1994, in his doctoral thesis [22, pp. 75-76] (see also [23, pp. 123]), Guliyev in-

troduced the local Morrey-type space LMpq,ω(·)(Rn) and complementary local Morrey-type spaces
∁LMpq,ω(·)(Rn) given by

∥f∥LMpq,ω(·) = ∥ω (r) ∥fχB(0,r)∥Lp∥Lq(R+) < ∞

and

∥f∥∁LMpq,ω(·)
= ∥ω (r) ∥fχRn\B(0,r)∥Lp

∥Lq(R+) < ∞,

respectively, where ω is a positive measurable function defined on (0,∞). In [22] (see also [23]), the
author found the sufficient conditions for the boundedness of the singular and potential operators
in the local Morrey-type spaces LMpq,ω(·)(Rn) and in the complementary local Morrey-type spaces
∁LMpq,ω(·)(Rn).

During the last decades, various classical operators, such as maximal, singular and potential oper-
ators were widely investigated both in the classical and in local Morrey-type spaces. In [6, pp. 157],
V. I. Burenkov and H. V. Guliyev introduced the space GMp,θ,ω(·)(Rn). Here and below, we denote
B(x, r) = {x+ y : y ∈ B(0, r)}.

Definition 1.1. Let 0 < p, θ ≤ ∞ and let ω be a non-negative Lebesgue measurable function on
(0,∞).
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1. [22, pp.75-76]. Denote by LMp,θ,ω(·)(Rn) the local Morrey-type space, the space of all functions
f Lebesgue measurable on Rn with a finite quasi-norm

∥f∥LMp,θ,ω(·) = ∥ω(r)∥fχB(0,r)∥Lp∥Lθ(0,∞).

2. [6–8]. Denote by GMp,θ,ω(·)(Rn) the global Morrey-type space, the space of all functions f
Lebesgue measurable on Rn with a finite quasi-norm

∥f∥GMp,θ,ω(·) = sup
x∈Rn

∥f (x+ ·) ∥LMp,θ,ω(·) = sup
x∈Rn

∥ω(r)∥fχB(x,r)∥Lp
∥Lθ(0,∞).

Note that if ω (r) = 1, then LMp,∞,1(Rn) = GMp,∞,1(Rn) = Lp(Rn).
If ∥ω(r)∥Lθ(t,∞) = ∞ for all t > 0, then LMp,θ,ω = GMp,θ,ω = ∅, where ∅ is the set of all functions,

equivalent to 0 on Rn.
If ∥ω(r)rn/p∥Lθ(0,t) = ∞ for all t > 0, then f(0) = 0 for all f ∈ LMp,θ,ω, continuous at 0, and

GMp,θ,ω = ∅ for 0 < p < ∞.
Furthermore,

GMp,∞,r−λ (Rn) ≡ Mp,λ(Rn), 0 < p ≤ ∞, 0 ≤ λ ≤ n

p
.

The spaces LMpq,ω(·)(Rn) and ∁LMpq,ω(·)(Rn) are denoted, respectively, as local Morrey-type spaces
and complementary local Morrey-type spaces, though from the point of view of the role in the de-
velopment of these spaces they may be also called local and complementary Morrey–Guliyev
spaces, respectively (see, e.g., [36]).

The local Morrey-type space LMpq,λ = LMpq,t−λ(Rn) first appeared in 1981 by D. R. Adams
in [1, p. 44] and it also may be called as the local Morrey–Adams spaces (see, e.g., [36, 37]).

Let f be a locally integrable function on Rn. The so-called Hardy–Littlewood maximal function is
defined by the formula

Mf(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)|dy,

where |B(x, r)| is the Lebesgue measure of the ball B(x, r).
The Calderón–Zygmund type singular operator is defined as

Tf(x) =

∫
Rn

K(x, y)f(y)dy,

where K(x, y) is a “standard singular kernel”, that is, a continuous function defined on {(x, y) ∈
Rn × Rn : x ̸= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x ̸= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

Let

T ∗f(x) = sup
ε>0

|Tεf(x)|

be the maximal singular operator, where Tεf(x) is the usual truncation

Tεf(x) =

∫
{y∈Rn:|x−y|≥ε}

K(x, y)f(y)dy.

It is well known that T ∗f exists almost everywhere whenever f is a step function. The almost
everywhere existence of the limit (of certain integral averages) was known for a dense subset of L1 and
the result was extended to all of L1 by establishing control over the corresponding maximal operators.

In this paper our aim is to define weighted global Morrey-type spaces and prove the two-weighted
boundedness of a maximal operator, singular integral operators and their commutators in these spaces.
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We also aim to give weighted global Morrey-type a priori estimates and a priori estimates for non-
divergent elliptic equations as applications.

2. Preliminaries

Let Lp,φ(B(x, r)) denote the weighted Lp-space of measurable functions f for which

∥f∥Lp,φ(B(x,r)) ≡ ∥fχB(x,r)
∥Lp,φ(Rn) =

( ∫
B(x,r)

|f(y)|pφ(y)dy
) 1

p

.

Even though theAp class is well-known, for completeness, we offer the definition ofAp weight functions.

Definition 2.1. The weight function φ belongs to the class Ap(Rn) for 1 ≤ p < ∞ if the following
statement:

sup
x∈Rn,r>0

(
1

|B(x, r)|

∫
B(x,r)

φp(y)dy

) 1
p
(

1

|B(x, r)|

∫
B(x,r)

φ−p′
(y)dy

) 1
p′

is finite and φ belongs to A1(Rn), if there exists a positive constant C such that for any x ∈ Rn and
r > 0,

|B(x, r)|−1

∫
B(x,r)

φ(y)dy ≤ C ess sup
y∈B(x,r)

1

φ(y)
.

The weight function (φ1, φ2) belongs to the class Ãp(Rn) for 1 ≤ p < ∞, if the following statement:

sup
x∈Rn,r>0

(
1

|B(x, r)|

∫
B(x,r)

φp
2(y)dy

) 1
p
(

1

|B(x, r)|

∫
B(x,r)

φ−p′

1 (y)dy

) 1
p′

is finite.

Lemma 2.2. Let 1 ≤ p < ∞ and (φ1, φ2) ∈ Ãp(Rn), then (φ−1
2 , φ−1

1 ) ∈ Ãp′(Rn), with 1
p + 1

p′ = 1.

The following theorem has been proved in [33].

Theorem 2.3. Let 1 ≤ p < ∞, then
1) M : Lp,φ(Rn) → Lp,φ(Rn) if and only if φ ∈ Ap(Rn),

2) M : L1,φ(Rn) → WL1,φ(Rn) if and only if φ ∈ A1(Rn).

Theorem 2.4 ([20]). Let 1 < p < ∞ and (φ1, φ2) ∈ Ãp(Rn), then the operator M is bounded from
Lp,φ1(Rn) to Lp,φ2(Rn).

The following theorem has been proved in [19].

Theorem 2.5. Let 1 < p < ∞ and (φ1, φ2) ∈ Ãp(Rn), then the singular integral operator T is
bounded from Lp,φ1(Rn) to Lp,φ2(Rn).

Corollary 2.6. Let 1 < p < ∞ and φ ∈ Ap(Rn), then the singular integral operator T is bounded in
Lp,φ(Rn).

Definition 2.7. Let 0 < p, θ ≤ ∞, ω(r) be a non-negative measurable function on (0,∞), φ(r) be
a measurable function, and f ∈ Lloc

p,φ(Rn). The weighted global Morrey-type spaces GMp,θ,ω,φ are
defined by the norm

∥f∥GMp,θ,ω,φ(Rn) = sup
x∈Rn

( ∞∫
0

ω(t)∥f∥θLp,φ(B(x,t))dt

)1/θ

.

If φ(r) = 1, then we obtain global Morrey-type spaces GMp,θ,ω defined in [6].
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Let M ♯ be the sharp maximal function defined by

M ♯f(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)− fB(x,r)|dy,

where fB(x,r)(x) = |B(x, r)|−1
∫
B(x,r)

f(y)dy.

Definition 2.8. We define the BMO(Rn) space as the set of all locally integrable functions f such
that

∥f∥BMO = sup
x∈Rn, r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)− fB(x,r)|dy < ∞

or

∥f∥BMO = inf
C

sup
x∈Rn, r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)− C|dy < ∞.

Definition 2.9. Given a measurable function b, the maximal commutator is defined by

Mb(f)(x) = sup
x∈Rn, r>0

|B(x, r)|−1

∫
B(x,r)

|b(x)− b(y)||f(y)|dy,

for all x ∈ Rn.

This operator plays an important role in the study of commutators of singular integral operators
with BMO symbols.

Definition 2.10. Given a measurable function b, the commutator of the Hardy–Littlewood maximal
operator M and b are defined by

[M, b]f(x) = M(bf)(x)− b(x)Mf(x)

for all x ∈ Rn.

Definition 2.11. We define the BMOp,φ(Rn) (1 ≤ p < ∞) space as the set of all locally integrable
functions f such that

∥f∥BMOp,φ = sup
x∈Rn, r>0

∥(f(·)− fB(x,r))χB(x,r)∥Lp,φ(Rn)

∥φ∥Lp(B(x,r))

or

∥f∥BMOp,φ
= sup

x∈Rn, r>0

1

|B(x, r)|
∥(f(·)− fB(x,r))χB(x,r)∥Lp,φ(Rn)∥φ−1∥Lp′ (B(x,r)) < ∞.

Theorem 2.12 ([26]). Let 1 ≤ p < ∞ and φ be a Lebesgue measurable function. If φ ∈ Ap(Rn), then
the norms ∥ · ∥BMOp,φ

and ∥ · ∥BMO are mutually equivalent.

We will need the following lemma while proving our main theorems.

Lemma 2.13 ([27]). Let b ∈ BMO(Rn). Then there is a constant C > 0 such that∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C∥b∥BMO ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r and t.

We will use the standard notation for Sobolev spaces and for derivatives, namely, if α is a multi-

index, α = (α1, α2, . . . , αn) ∈ Zn
+, we denote |α| =

n∑
j=1

αj , D
α = ∂α1

x1
· · · ∂αn

xn
and

W k
p (Ω) = {v ∈ Lp(Ω) : D

αv ∈ Lp(Ω), ∀ |α| ≤ k}
and the generalized weighted Sobolev-Morrey spaces

W k
p,ω(Ω, φ) = {v ∈ Mp,ω

φ (Ω) : Dαv ∈ Mp,ω
φ (Ω), ∀ |α| ≤ k}.
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Let Γ be the standard fundamental solution of the Laplacian operator, namely,

Γ(x) =

{
1
2π log |x|−1, n = 2,

1
n(n−2)ωn

|x|2−n, n ≥ 3,

with ωn the area of the unit sphere in Rn.
Given a function f ∈ C∞

0 (Rn), it is a classic result that the potential ϕ given by

ϕ(x) =

∫
Γ(x− y)f(y)dy

is a solution of −△ϕ = f in Rn and satisfies the estimate

∥ϕ∥W 2
p (Rn) ≤ C∥f∥Lp(Rn) (2.1)

for 1 < p < ∞. Indeed, this estimate is a consequence of the Calderón–Zygmund theory of singular
integrals (see, e.g., [40]).

On the other hand, a priori estimates like (2.1) for solutions of the Dirichlet problem{
−△ϕ = f in Ω,

ϕ = 0 on ∂Ω,
(2.2)

on smooth bounded domains Ω are also well known (see, e.g., the classic paper by Agmon, Douglis
and Nirenberg [4], where a priori estimates for general elliptic problems are proved).

3. Two-weighted Inequalites for the Maximal Operator and its Commutator in the
Spaces GMp,θ,ω,φ(Rn)

In this section we prove the two-weighted boundedness of the maximal operator and maximal
commutators in the GMp,θ,ω,φ(Rn) weighted global Morrey-type spaces. We need the following two
generalized Hardy inequalities which are to be used in the proof of our theorems.

Lemma 3.1. Let 1 ≤ r ≤ s ≤ ∞ and let v and w be two functions such that measurable and positive
a.e. on (0,∞). Then there exists a constant C independent of the function h such that( ∞∫

0

( t∫
0

h(τ)dτ

)s

w(t)dt

)1/s

≤ C

( ∞∫
0

h(t)rv(t)dt

)1/r

, (3.1)

if and only if

K = sup
t>0

( ∞∫
t

w(τ)dτ

)1/s( t∫
0

v(τ)1−r′dτ

)1/r′

< ∞, (3.2)

where r + r′ = rr′. Moreover, if C is the best constant in (3.1) and K is defined by (3.2), then

K ≤ C ≤ k(r, s)K. (3.3)

Here, the constant k(r, s) in (3.3) can be written in various forms. For example (see [35]):

k(r, s) = r1/s(r′1/r
′
or k(r, s) = s1/s(s′1/r

′
or k(r, s) =

(
1 + s/r′

)1/s(
1 + r′/s

)1/r′
.

Lemma 3.2. Let 1 ≤ r ≤ s ≤ ∞ and let v and w be two functions such that measurable and positive
a.e. on (0,∞). Then there exists a constant C independent of the function h such that( ∞∫

0

( ∞∫
t

h(τ)dτ

)s

w(t)dt

)1/s

≤ C

( ∞∫
0

h(t)rv(t)dt

)1/r

(3.4)

if and only if

K1 = sup
t>0

( t∫
0

w(τ)dτ

)1/s( ∞∫
t

v(τ)1−r′dτ

)1/r′

< ∞.

Moreover, the best constant C in (3.4) satisfies the inequalities K1 ≤ C ≤ k(r, s)K1.
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Note that Lemmas 3.1 and 3.2 were proved by G. Talenti [41], G. Tomaselli [42], B. Muckenhoupt
[33] for 1 ≤ r = s < ∞, and by J. S. Bradley [5], V. M. Kokilashvili [28], V. G. Maz’ya [30] for r < s.

Theorem 3.3. Let 1 < p < ∞ and (φ1, φ2) ∈ Ãp(Rn). Then

∥Mf∥Lp,φ2
(B(x,t)) ≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
(3.5)

for every f ∈ Lp,φ1
(Rn), where C does not depend on f, x and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χB(x,2t)(y), f2(y) = f(y)χ ∁B(x,2t)
(y), t > 0, (3.6)

and have

∥Mf∥Lp,φ2 (B(x,t)) ≤ ∥Mf1∥Lp,φ2 (B(x,t)) + ∥Mf2∥Lp,φ2 (B(x,t)).

Taking into account that f1 ∈ Lp,φ1
(Rn), by virtue of Theorem 2.4,

∥Mf1∥Lp,φ2 (B(x,t)) ≤ ∥Mf1∥Lp,φ2 (Rn)

≤ C∥f2∥Lp,φ1
(Rn) = C∥f∥Lp,φ1

(B(x,2t)).

Then

∥Mf1∥Lp,φ2 (B(x,2t)) ≤ C∥f∥Lp,φ1 (B(x,2t)),

where a constant C is independent of f .
Taking into account

∥f∥Lp,φ1
(B(x,2t)) ≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1 (B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
,

we get

∥Mf1∥Lp,φ2
(B(x,t)) ≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1 (B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
. (3.7)

Now, observe that for z ∈ B(x, t), we get

Mf2(z) = sup
r>0

|B(z, r)|−1

∫
B(z,r)

|f2(y)|dy

≤ C sup
r≥2t

∫
∁B(x,2t)∩B(z,r)

|y − z|−n|f(y)|dy

≤ C sup
r≥2t

∫
∁B(x,2t)∩B(z,r)

|x− y|−n|f(y)|dy

≤ C

∫
∁B(x,2t)

|x− y|−n|f(y)|dy.

We prove the following inequality:∫
∁B(x,t)

|x− y|−n|f(y)|dy ≤ C

∞∫
t

s−n−1∥φ−1
1 ∥Lp′ (B(x,s))∥f∥Lp,φ1 (B(x,s))ds.
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Therefore

∥Mf2∥Lp,φ2
(B(x,t)) ≤ C

∥∥∥∥
∞∫
t

s−n−1∥φ−1
1 ∥Lp′ (B(x,s))∥f∥Lp,φ1

(B(x,s))ds

∥∥∥∥
Lp,φ2

(B(x,t))

≤ C

∞∫
t

s−n−1∥φ−1
1 ∥Lp′ (B(x,s))∥f∥Lp,φ1 (B(x,s))ds ∥χB(x,t)∥Lp,φ2 (Rn)

≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1 (B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
. (3.8)

From (3.7) and (3.8), we get

∥Mf2∥Lp,φ2
(B(x,t)) ≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
,

where a constant C is independent of f . □

In the following theorem we give the necessary condition for the two-weighted boundedness of
maximal operator in the spaces GMp,θ,ω,φ(Rn).

Theorem 3.4. Let 1 < p < ∞ and (φ1, φ2) ∈ Ãp(Rn), 1 ≤ θ1 ≤ θ2 < ∞ and the functions ω1 and
ω2 satisfy conditions

sup
t>0

( t∫
0

ω2(s)∥φ2∥θ2Lp(B(x,s))ds

) θ1
θ2
( ∞∫

t

ω1(r)
1−θ′

1r−θ′
1∥φ2∥

−θ′
1

Lp(B(x,r))dr

)θ1−1

< ∞, (3.9)

then the operator M is bounded from GMp,θ1,ω1,φ1
(Rn) to GMp,θ2,ω2,φ2

(Rn).

Proof. Let f ∈ GMp,θ1,ω1,φ1
(Rn). Hence by Theorem 3.3 and Lemma 3.2, we have

∥Mf∥GMp,θ2,ω2,φ2
= sup

x∈Rn

( ∞∫
0

ω2(t)∥Mf∥θ2Lp,φ2 (B(x,t))dt

) 1
θ2

≤ C sup
x∈Rn

( ∞∫
0

ω2(t)∥φ2∥θ2Lp(B(x,t))

( ∞∫
t

∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s

)θ2

dt

) 1
θ2

≤ C sup
x∈Rn

( ∞∫
0

∥f∥θ1Lp,φ1 (B(x,t))

∥φ2∥θ1Lp(B(x,t))

t−θ1ω1(t)t
θ1∥φ2∥θ1Lp(B(x,t))dt

) 1
θ1

= C sup
x∈Rn

( ∞∫
0

ω1(t)∥f∥θ1Lp,φ1
(B(x,t))dt

) 1
θ1

= C∥f∥GMp,θ1,ω1,φ1
. □

Lemma 3.5 ([2]). Let b be any non-negative locally integrable function. Then

|[M, b]f(x)| ≤ Mb(f)(x), x ∈ Rn,

holds for all f ∈ Lloc
1 (Rn).

Theorem 3.6 ([2]). Let b ∈ BMO(Rn). Suppose that X is a Banach space of measurable functions
defined on Rn. Assume that M is bounded on X. Then the operator Mb is bounded on X and the
inequality

∥Mbf∥X ≤ C∥b∥BMO∥f∥X
holds with a constant C, independent of f .

Corollary 3.7. Let 1 ≤ p < ∞, b ∈ BMO(Rn) and φ ∈ Ap(Rn), then the operator Mb is bounded in
Lp,φ(Rn).
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Theorem 3.8. Let 1 < p < ∞, b ∈ BMO(Rn) and (φ1, φ2) ∈ Ãp(Rn), φ1 ∈ Ap(Rn), then the
operator Mb is bounded from Lp,φ1

(Rn) to Lp,φ2
(Rn).

Proof. Let f ∈ Lp,φ1(Rn), b ∈ BMO(Rn). The inequality [2, Corollary 1.11],

Mbf(x) ≤ C∥b∥BMOM
2f(x)

is valid. From this inequality, Theorem 2.4, Corollary 3.7 and the conditions (φ1, φ2) ∈ Ãp(Rn),
φ1 ∈ Ap(Rn), we have

∥Mbf∥Lp,φ2 (B(x,r)) ≤ C∥b∥BMO

∥∥M2f
∥∥
Lp,φ2

(B(x,r))

≤ C∥b∥BMO ∥Mf∥Lp,φ1
(B(x,r)) ≤ C1∥b∥BMO ∥f∥Lp,φ1

(B(x,r)) ,

where M2f(x) = M(Mf(x)). □

Theorem 3.9. Let 1 < p < ∞, b ∈ BMO(Rn) and (φ1, φ2) ∈ Ãp(Rn), φ1, φ2 ∈ Ap(Rn), then

∥Mbf∥Lp,φ2 (B(x,t)) ≤ C∥b∥BMO∥φ2∥Lp(B(x,t))

∞∫
t

(
1 + ln

s

t

) ∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
, (3.10)

for every f ∈ Lp,φ1
(Rn), where C does not depend on f, x and t.

Proof. We represent the function f as in (3.6) and have

∥Mbf∥Lp,φ2
(B(x,t)) ≤ ∥Mbf1∥Lp,φ2

(B(x,t)) + ∥Mbf2∥Lp,φ2
(B(x,t)).

By Theorem 3.8, we obtain

∥Mbf1∥Lp,φ2
(B(x,t)) ≤ ∥Mbf1∥Lp,φ2

(Rn)

≤ C∥b∥BMO∥f1∥Lp,φ1
(Rn) = C∥b∥BMO∥f∥Lp,φ1

(B(x,2t)), (3.11)

where C does not depend on f . From (3.11), we get

∥Mbf1∥Lp,φ2
(B(x,t)) ≤ C∥b∥BMO∥φ2∥Lp(B(x,t))

∞∫
t

(
1 + ln

r

t

) ∥f∥Lp,φ1
(B(x,r))

∥φ2∥Lp(B(x,r))

dr

r
, (3.12)

which is easily obtained from the fact that ∥f∥Lp,φ1 (B(x,2t)) is non-decreasing in t, therefore

∥f∥Lp,φ1
(B(x,2t)) on the right-hand side of (3.11) is dominated by the right-hand side of (3.12).

For z ∈ B(x, t), we get

Mbf2(z) = sup
r>0

|B(z, r)|−1

∫
B(z,r)

|b(z)− b(y)||f2(y)|dy

≤ C sup
r≥2t

∫
∁B(x,2t)∩B(z,r)

|y − z|−n|b(z)− b(y)||f(y)|dy

≤ C sup
r≥2t

∫
∁B(x,2t)∩B(z,r)

|x− y|−n|b(z)− b(y)||f(y)|dy

≤ C

∞∫
t

s−n−1

( ∫
{y∈Rn:2t≤|x−y|≤s}

|b(y)− bB(x,s)||f(y)|dy
)
ds

+ C

∞∫
t

s−n−1

( ∫
{y∈Rn:2t≤|x−y|≤s}

|b(z)− bB(x,s)||f(y)|dy
)
ds = I1 + I2.
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From Hölder’s inequality and Theorem 2.12, we obtain

I1 =

∞∫
t

s−n−1

( ∫
{y∈Rn:2t≤|x−y|≤s}

|b(y)− bB(x,s)||f(y)|dy
)
ds

≤ C∥b∥BMO

∞∫
t

s−n−1∥f∥Lp,φ1
(B(x,s))∥φ−1

1 ∥Lp′ (B(x,s))ds.

To estimate I2, by Lemma 2.13, we get

I2 =

∞∫
t

s−n−1|b(z)− bB(x,s)|
( ∫

{y∈Rn:2t≤|x−y|≤s}

|f(y)|dy
)
ds

≤ CMbχB(x,t)(z)

∞∫
t

s−n−1∥f∥Lp,φ1
(B(x,s))∥φ−1

1 ∥Lp′ (B(x,s))ds

+ C∥b∥BMO

∞∫
t

s−n−1 ln
s

t
∥f∥Lp,φ1 (B(x,s))∥φ−1

1 ∥Lp′ (B(x,s))ds.

By Theorem 3.8, we have

∥Mbf2∥Lp,φ2
(B(x,t)) ≤ ∥I1∥Lp,φ2

(B(x,t)) + ∥I2∥Lp,φ2
(B(x,t))

≤ C∥b∥BMO∥φ2∥Lp(B(x,t))

∞∫
t

(
1 + ln

s

t

) ∥f∥Lp,φ1 (B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
. (3.13)

Then from (3.12) and (3.13), we obtain (3.10). □

In the following theorem we give the necessary condition for the two-weighted boundedness of
maximal commutator in the spaces GMp,θ,ω,φ(Rn).

Theorem 3.10. Let 1 < p < ∞, b ∈ BMO(Rn), (φ1, φ2) ∈ Ãp(Rn), φ1, φ2 ∈ Ap(Rn), 1 ≤ θ1 ≤
θ2 < ∞ and the functions ω1 and ω2 satisfy the conditions

sup
t>0

( t∫
0

ω2(s)∥φ2∥θ2Lp(B(x,s))ds

) θ1
θ2

×
( ∞∫

t

(
1 + ln

r

t

)θ′
1

ω1(r)
1−θ′

1r−θ′
1∥φ2∥

−θ′
1

Lp(B(x,r))dr

)θ1−1

< ∞, (3.14)

then the operator Mb is bounded from GMp,θ1,ω1,φ1(Rn) to GMp,θ2,ω2,φ2(Rn).

Proof. Let f ∈ GMp,θ1,ω1,φ1
(Rn), b ∈ BMO(Rn). Hence by Theorem 3.9 and Lemma 3.2, we obtain

∥Mbf∥GMp,θ2,ω2,φ2
= sup

x∈Rn

( ∞∫
0

ω2(t)∥Mbf∥θ2Lp,φ2
(B(x,t))dt

) 1
θ2

≤ C|b∥BMO sup
x∈Rn

( ∞∫
0

ω2(t)∥φ2∥θ2Lp(B(x,t))

( ∞∫
t

(
1 + ln

s

t

) ∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s

)θ2

dt

) 1
θ2

≤ C ∥b∥BMO sup
x∈Rn

( ∞∫
0

(
1 + ln

s

t

)θ1 ∥f∥θ1Lp,φ1
(B(x,t))

∥φ2∥θ1Lp(B(x,t))

t−θ1
(
1 + ln

s

t

)−θ1
ω1(t)t

θ1∥φ2∥θ1Lp(B(x,t))dt

) 1
θ1
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= C ∥b∥BMO sup
x∈Rn

( ∞∫
0

ω1(t)∥f∥θ1Lp,φ1
(B(x,t))dt

) 1
θ1

= C ∥b∥BMO∥f∥GMp,θ1,ω1,φ1
,

which completes the proof. □

4. Two-weighted Inequality for the Singular Operators and their Commutators in
the Spaces GMp,θ,ω,φ(Rn)

Let T be a Calderón–Zygmund singular integral operator and b ∈ BMO(Rn). A well known result
of Coifman, Rochberg and Weiss [13] states that the commutator operator [b, T ]f = T (bf) − b Tf
is bounded on Lp(Rn) for 1 < p < ∞. The commutator of Calderón–Zygmund operators plays an
important role in studying the regularity of solutions of elliptic partial differential equations of second
order (see, e.g., [10, 12,16–18]).

In this section, we prove the two-weighted inequalities for singular integral operators and their
commutators in the GMp,θ,ω,φ(Rn) weighted global Morrey-type spaces. We start with the following
lemma.

Lemma 4.1 ([17]). Let 1 < s < ∞, b ∈ BMO(Rn), then there exists C > 0 such that for all x ∈ Rn,
the following inequality:

|[b, T ]f |(x) ≤ M(|[b, T ]f |(x)) ≤ C∥b∥BMO

(
(M |Tf |s)

1
s (x) + (M |f |s)

1
s (x)

)
holds.

Theorem 4.2. Let 1 < p < ∞ and (φ1, φ2) ∈ Ãp(Rn). Then

∥Tf∥Lp,φ2
(B(x,t)) ≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s

for every f ∈ Lp,ω1
(Rn), where C does not depend on f, x and t.

Proof. We represent the function f as in (3.6) and have

∥Tf∥Lp,φ2
(B(x,t)) ≤ ∥Tf1∥Lp,φ2

(B(x,t)) + ∥Tf2∥Lp,φ2
(B(x,t)).

From Theorem 2.5, we obtain

∥Tf1∥Lp,φ2
(B(x,t)) ≤ ∥Tf1∥Lp,φ2

(Rn) ≤ C∥f1∥Lp,φ1
(Rn) = C∥f∥Lp,φ1

(B(x,2t)), (4.1)

where C does not depend on f . From (4.1), we get

∥Tf1∥Lp,φ2
(B(x,t)) ≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
, (4.2)

which is easily obtained from the fact that ∥f∥Lp,φ1 (B(x,2t)) is non-decreasing in t, therefore

∥f∥Lp,φ1
(B(x,2t)) on the right-hand side of (4.1) is dominated by the right-hand side of (4.2). To

estimate ∥Tf2∥Lp,φ2
(B(x,t)), we observe that

|Tf2(z)| ≤ C

∫
∁B(x,2t)

|f(y)| dy
|y − z|n

,

where z ∈ B(x, t) and the inequalities |x − z| ≤ t, |z − y| ≥ 2t imply 1
2 |z − y| ≤ |x − y| ≤ 3

2 |z − y|,
finally, we get

|Tf2(z)| ≤ C

∫
∁B(x,2t)

|x− y|−n|f(y)|dy.
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To estimate Tf2(z), for z ∈ B(x, t), choosing δ > 0 from Theorem 2.12, we have∫
∁B(x,t)

|x− y|−n|f(y)|dy

≤ C

∞∫
t

s−n−1

∫
{y∈Rn:2t≤|x−y|≤s}

|f(y)|dyds

≤ C

∞∫
t

s−n−1∥φ−1
1 χB(x,s)∥Lp′ (Rn)∥f∥Lp,φ1 (B(x,s))ds.

We prove the following inequality:∫
∁B(x,t)

|x− y|−n|f(y)|dy ≤ C

∞∫
t

s−n−1∥φ−1
1 ∥Lp′ (B(x,s))∥f∥Lp,φ1

(B(x,s))ds. (4.3)

Hence by inequality (4.3), we get

∥Tf2∥Lp,φ2
(B(x,t)) ≤ C∥χB(x,t)∥Lp,φ2

(Rn)

∞∫
t

s−n−1∥φ−1
1 ∥Lp′ (B(x,s))∥f∥Lp,φ1

(B(x,s))ds

≤ C∥φ2∥Lp(B(x,t))

∞∫
t

∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
. (4.4)

From (4.2) and (4.4), we arrive at (3.5). □

In the following theorem, we give the necessary condition for the two-weighted boundedness of
singular integral operators in the spaces GMp,θ,ω,φ(Rn).

Theorem 4.3. Let 1 < p < ∞ and (φ1, φ2) ∈ Ãp(Rn), 1 ≤ θ1 ≤ θ2 < ∞ and the functions ω1 and
ω2 satisfy condition (3.9).

Then the operator T is bounded from GMp,θ1,ω1,φ1(Rn) to GMp,θ2,ω2,φ2(Rn).

Proof. Let f ∈ GMp,θ1,ω1,φ1(Rn). From Theorem 4.2 and Lemma 3.2, we get

∥Tf∥GMp,θ2,ω2,φ2

≤ C sup
x∈Rn

( ∞∫
0

ω2(t)∥φ2∥θ2Lp(B(x,t))

( ∞∫
t

∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s

)θ2

dt

) 1
θ2

≤ C sup
x∈Rn

( ∞∫
0

∥f∥θ1Lp,φ1 (B(x,t))

∥φ2∥θ1Lp(B(x,t))

t−θ1ω1(t)t
θ1∥φ2∥θ1Lp(B(x,t))dt

) 1
θ1

= C sup
x∈Rn

( ∞∫
0

ω1(t)∥f∥θ1Lp,φ1
(B(x,t))dt

) 1
θ1

= C∥f∥GMp,θ1,ω1,φ1
. □

The following theorem gives the two-weighted boundedness of the operator [b, T ] in the Lp,φ(Rn)
spaces.

Theorem 4.4. Let 1 < p < ∞, b ∈ BMO(Rn) and (φ1, φ2) ∈ Ãp(Rn), φ1 ∈ Ap(Rn). Then the
operator [b, T ] is bounded from Lp,φ1

(Rn) to Lp,φ2
(Rn).
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Proof. Let f ∈ Lp,φ(Rn), b ∈ BMO(Rn) and (φ1, φ2) ∈ Ãp(Rn), φ1 ∈ Ap(Rn). From Lemma 4.1,
Theorem 2.3, Theorem 2.4 and Corollary 2.6, we have

∥[b, T ]f∥Lp,φ2
(Rn) ≤ ∥M([b, T ]f)∥Lp,φ2

(Rn) ≤ C∥b∥BMO

∥∥∥(M |Tf |s)
1
s + (M |f |s)

1
s

∥∥∥
Lp,φ2

(Rn)

≤ C∥b∥BMO

[ ∥∥∥(M |Tf |s)
1
s

∥∥∥
Lp,φ2

(Rn)
+

∥∥∥(M |f |s)
1
s

∥∥∥
Lp,φ2

(Rn)

]
≤ C∥b∥BMO

[ ∥∥∥(|Tf |s) 1
s

∥∥∥
Lp,φ1

(Rn)
+
∥∥∥(|f |s) 1

s

∥∥∥
Lp,φ1

(Rn)

]
≤ C∥b∥BMO ∥f∥Lp,φ1

(Rn) . □

We can easily get the following

Theorem 4.5. Let 1 < p < ∞, b ∈ BMO(Rn) and (φ1, φ2) ∈ Ãp(Rn), φ1, φ2 ∈ Ap(Rn). Then

∥[b, T ]f∥Lp,φ2 (B(x,t)) ≤ C∥b∥BMO∥φ2∥Lp(B(x,t))

∞∫
t

(
1 + ln

r

t

) ∥f∥Lp,φ1 (B(x,r))

∥φ2∥Lp(B(x,r))

dr

r
(4.5)

for every f ∈ Lp,φ1(Rn), where C does not depend on f, x and t.

Proof. We represent the function f as in (3.6) and have

∥[b, T ]f∥Lp,φ2
(B(x,t)) ≤ ∥[b, T ]f1∥Lp,φ2

(B(x,t)) + ∥[b, T ]f2∥Lp,φ2
(B(x,t)).

By Theorem 4.4, we obtain

∥[b, T ]f1∥Lp,φ2 (B(x,t)) ≤ ∥[b, T ]f1∥Lp,φ2 (Rn)

≤ C∥b∥BMO∥f1∥Lp,φ1
(Rn) = C∥b∥BMO∥f∥Lp,φ1

(B(x,2t)), (4.6)

where C does not depend on f . From (4.6), we obtain

∥[b, T ]f1∥Lp,φ2 (B(x,t)) ≤ C∥b∥BMO∥φ2∥Lp(B(x,t))

∞∫
t

(
1 + ln

s

t

) ∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s
(4.7)

which is easily obtained from the fact that ∥f∥Lp,ω1 (B(x,2t)) is non-decreasing in t, therefore

∥f∥Lp,ω1
(B(x,2t)) on the right-hand side of (4.6) is dominated by the right-hand side of (4.7). To

estimate ∥[b, T ]f2∥Lp,ω2
(B(x,t)), we observe that

|[b, T ]f2(z)| ≤ C

∫
Rn\B(x,2t)

|b(z)− b(y)| |f(y)|
|y − z|n

dy,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z− y| ≥ 2t imply 1
2 |z− y| ≤ |x− y| ≤ 3

2 |z− y|, and
therefore

|[b, T ]f2(z)| ≤ C

∫
Rn\B(x,2t)

|x− y|−n|b(z)− b(y)| |f(y)|dy.

To estimate [b, T ]f2, we first prove the following auxiliary inequality:∫
Rn\B(x,t)

|x− y|−n|b(z)− b(y)||f(y)|dy

≤ C∥b∥BMO

∞∫
t

s−n
(
1 + ln

s

t

)
∥ω−1

1 ∥Lp′ (B(x,s))∥f∥Lp,ω1
(B(x,s))

ds

s
. (4.8)
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To estimate [b, T ]f2(z), we observe that for z ∈ B(x, t), we have∫
Rn\B(x,t)

|x− y|−n|b(z)− b(y)||f(y)|dy

≤
∫

Rn\B(x,t)

|x− y|−n|b(y)− bB(x,t)||f(y)|dy

+

∫
Rn\B(x,t)

|x− y|−n|b(z)− bB(x,t)||f(y)|dy = J1 + J2.

Now, we choose δ > 0 and by Theorem 2.12 and Lemma 2.13, we obtain

J1 =

∫
Rn\B(x,t)

|x− y|−n|b(y)− bB(x,t)||f(y)|dy

≤ C∥b∥BMO

∞∫
t

s−n−1∥ω−1
1 ∥Lp′ (B(x,s))∥f∥Lp,ω1 (B(x,s))ds

+ C∥b∥BMO

∞∫
t

s−n−1 ln
s

t
∥ω−1

1 ∥Lp′ (B(x,s))∥f∥Lp,ω1 (B(x,s))ds.

To estimate J2, we have

J2 =|b(z)− bB(x,t)|
∫

Rn\B(x,t)

|x− y|−n|f(y)|dy

≤ CMbχB(x,t)(z)

∞∫
t

s−n∥ω−1
1 ∥Lp′ (B(x,s))∥f∥Lp,ω1 (B(x,s))

ds

s
,

where C does not depend on x, t.
Hence by inequality (4.8), we get

∥[b, T ]f2∥Lp,ω2
(B(x,t)) ≤ C∥χB(x,t)∥Lp,ω2

(Rn)∥b∥BMO

×
∞∫
t

s−n
(
1 + ln

s

t

)
∥ω−1

1 ∥Lp′ (B(x,s))∥f∥Lp,ω1
(B(x,s))

ds

s

≤ C∥b∥BMO∥ω2∥Lp(B(x,t))

∞∫
t

(
1 + ln

s

t

) ∥f∥Lp,ω1
(B(x,s))

∥ω2∥Lp(B(x,s))

ds

s
. (4.9)

From (4.7) and (4.9), we arrive at (4.5). □

In the following theorem we prove the two-weighted boundedness of commutators of singular integral
operators in the spaces GMp,θ,ω,φ(Rn).

Theorem 4.6. Let 1 < p < ∞, b ∈ BMO(Rn), (φ1, φ2) ∈ Ãp(Rn), φ1, φ2 ∈ Ap(Rn), 1 ≤ θ1 ≤
θ2 < ∞ and the functions ω1 and ω2 satisfy condition (3.14).

Then the operator [b, T ] is bounded from GMp,θ1,ω1,φ1(Rn) to GMp,θ2,ω2,φ2(Rn).

Proof. Let f ∈ GMp,θ1,ω1,φ1
(Rn), b ∈ BMO(Rn). Hence by Theorem 4.5 and Lemma 3.2, we obtain

∥[b, T ]f∥GMp,θ2,ω2,φ2
= sup

x∈Rn

( ∞∫
0

ω2(t)∥[b, T ]f∥θ2Lp,φ2
(B(x,t))dt

) 1
θ2
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≤ C∥b∥BMO sup
x∈Rn

( ∞∫
0

ω2(t)∥φ2∥θ2Lp(B(x,t))

( ∞∫
t

(
1 + ln

s

t

) ∥f∥Lp,φ1
(B(x,s))

∥φ2∥Lp(B(x,s))

ds

s

)θ2

dt

) 1
θ2

≤ C sup
x∈Rn

( ∞∫
0

(
1 + ln

s

t

)θ1 ∥f∥θ1Lp,φ1
(B(x,t))

∥φ2∥θ1Lp(B(x,t))

t−θ1
(
1 + ln

s

t

)−θ1
ω1(t)t

θ1∥φ2∥θ1Lp(B(x,t))dt

) 1
θ1

= C sup
x∈Rn

( ∞∫
0

ω1(t)∥f∥θ1Lp,φ1 (B(x,t))dt

) 1
θ1

= C∥f∥GMp,θ1,ω1,φ1
,

which completes the proof. □

5. Weighted Global Morrey-type a Priori Estimates

In this section, we consider the Dirichlet problem (2.2) in the bounded domains Ω. We assume that
∂Ω is of the class C2.

ϕ(x) =

∫
Ω

G(x, y)f(y)dy (5.1)

is the solution of this problem, where G(x, y) is the Green function that can be written as

G(x, y) = Γ(x− y) + h(x, y)

with h(x, y) satisfying, for each fixed y ∈ Ω,{
△xh(x, y) = 0 x ∈ Ω,

h(x, y) = −Γ(x− y) x ∈ ∂Ω.

If P (y,Q) is the Poisson kernel, then h(x, y) is given by

h(x, y) = − 1

(n− 2)ωn

∫
∂Ω

1

|x−Q|n−2
P (y,Q)dS(Q),

where dS denotes the surface measure on ∂Ω.
The inequalities

G(x, y) ≤

{
C log |x− y| if n = 2,

C|x− y|2−n if n ≥ 3,

and

|Dxi
G(x, y)| ≤ C|x− y|1−n

are satisfied by the Green function (see [43]). Thus

Dxiϕ(x) =

∫
Ω

DxiG(x, y)f(y)dy.

We need the following lemma to get the second derivatives of ϕ from the representation (5.1). We
denote by d(x) the distance to the boundary, d(x) = inf

Q∈∂Ω
|x−Q|.

Lemma 5.1. Given α ∈ Zn
+ (|α| > 0 if n = 2), there exists a constant C depending only on n and α

such that

|Dαh(x, y)| ≤ Cd(x)2−n−|α|.

We find that for each x ∈ Ω, Dxixjh(x, y) is bounded uniformly in a neighborhood of x and therefore

Dxixj

∫
Ω

h(x, y)f(y)dy =

∫
Ω

Dxixj
h(x, y)f(y)dy.
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Moreover, since |Dxj
Γ(x)| ≤ C|x|1−n, we obtain

Dxj

∫
Ω

Γ(x− y)f(y)dy =

∫
Ω

Dxj
Γ(x− y)f(y)dy.

Dxixj
Γ is not an integrable function, so we cannot interchange the order between integration and

second derivatives. The known standard argument shows that

Dxi

∫
Ω

Dxj
Γ(x− y)f(y)dy = Kf(x) + c(x)f(x),

where c is a bounded function and

Kf(x) = lim
ε→0

∫
|x−y|>ε

DxixjΓ(x− y)f(y)dy.

Here and in the sequel, we assume hat f is defined in Rn extending the original f by zero.
Since Dxj

Γ ∈ C∞(Rn \ {0}) and is a homogeneous function of degree 1 − n, the operator K is a
Calderón–Zygmund singular integral operator and Dxixj

Γ(x − y) is homogeneous of degree −n and
has vanishing average on the unit sphere (see Lemma 11.1 in [3, page 152]). It follows from the general
theory given in [9] that K is a bounded operator in Lp(Rn) for 1 < p < ∞.

Furthermore, the maximal operator

K̃f(x) = sup
ε>0

∣∣∣∣ ∫
|x−y|>ε

Dxixj
Γ(x− y)f(y)dy

∣∣∣∣
is also bounded in Lp(Rn) for 1 < p < ∞.

We can now give and prove our main result.

Theorem 5.2. Let Ω ⊂ Rn be a bounded C2 domain and 1 < p < ∞, (φ1, φ2) ∈ Ãp(Rn), 1 ≤ θ1 ≤
θ2 < ∞. Let the functions ω1(r) and ω2(r) satisfy condition (3.9), f ∈ GMp,θ1,ω1,φ1

(Ω) and ϕ be the
solution of problem (2.2), then there exists a constant C depending only on n and Ω such that

∥ϕ∥W 2
p,ω2,θ2

(Ω,φ2) ≤ C∥f∥GMp,θ1,ω1,φ1
(Ω). (5.2)

Proof. We will need the following estimate for the Green function. This estimate has been proved by
A. Dall’Acqua and G. Sweers in [14], however, they assume that the domain is more regular than C2.

Let Ω be a bounded C2 domain and G(x, y) be the Green function of problem (2.2) in Ω. There
exists a constant C depending only on n and Ω such that for (x, y) ∈ Ω× Ω,

|Dxixj
G(x, y)| ≤ C

d(x)

|x− y|n+1
.

Our result follows from the following inequalities (see [15]).

There exists a constant C depending only on n and Ω such that for any x ∈ Ω,

|ϕ(x)|+ |Dxi
ϕ(x)| ≤ CMf(x), (5.3)

|Dxixj
ϕ(x)| ≤ C

(
K̃f(x) +Mf(x) + |f(x)|

)
. (5.4)

Theorems 3.4 and 4.3 imply that the operators M and K̃ are bounded from GMp,θ1,ω1,φ1(Ω) to
GMp,θ2,ω2,φ2

(Ω). Therefore (5.2) follows immediately from inequalities (5.3) and (5.4). □

Now, we get the following

Theorem 5.3. Let Ω ⊂ Rn be a bounded C2 domain and 1 < p < ∞, (φ1, φ2) ∈ Ãp(Rn), 1 ≤ θ1 ≤
θ2 < ∞. Let the functions ω1(r) and ω2(r) satisfy condition (3.9), f ∈ GMp,θ1,ω1,φ1

(Ω) and ϕ be the
solution of problem (2.2), then there exists a constant C depending only on n and Ω such that

∥ϕ∥W 2
p,ω2,θ2

(Ω,φ2) ≤ C∥f∥GMp,θ1,ω1,φ1
(Ω).
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6. A Priori Estimates for Non-divergent Elliptic Equations in Weighted Global
Morrey-type Spaces

Definition 6.1. Suppose that Ω is an open set in Rn. For any f ∈ BMO(Ω) and r > 0, we define

η(r) = sup
x∈Ω,ρ≤r

1

|Ω(x, ρ)|

∫
Ω(x,ρ)

|a(y)− aΩ(x,ρ)|dy < ∞,

where aΩ = 1/|Ω|
∫
Ω
a(y)dy. If η(r) → 0 for r → 0+, we say that any a ∈ BMO(Ω) is from the space

VMO(Ω).

Let 1 < p < ∞, f ∈ GMp,θ1,ω1,φ1(Ω) and the functions φ satisfy the condition

sup
r>0

( r∫
0

ω2(s)∥φ2∥θ2Lp(B(x,s))ds

) θ1
θ2

×
( d∫

r

(
1 + ln

t

r

)θ′
1

ω1(t)
1−θ′

1t−θ′
1∥φ2∥

−θ′
1

Lp(B(x,t))dt

)θ1−1

< ∞, (6.1)

where C is independent of x and r.
We get the following result from Theorem 4.6.

Corollary 6.2. Let 1 < p < ∞, (φ1, φ2) ∈ Ãp(Rn), φ1, φ2 ∈ Ap(Rn), 1 ≤ θ1 ≤ θ2 < ∞ and the
functions ω1 and ω2 satisfy condition (6.1). Suppose Ω is an open set in Rn and a ∈ VMO(Ω). If
the kernel K is a constant or variable Calderón–Zygmund kernel on Rn and T is the corresponding
Calderón–Zygmund determinant, then for any ε > 0, there exists a positive number ρ0 = ρ0(ε, η) such
that, for any ball B(0, r) with radius r ∈ (0, ρ0), Ω(0, r) ̸= ∅ for all f ∈ GMp,θ1,ω1,φ1(Ω(0, r)),

∥[a, T ]f∥GMp,θ2,ω2,φ2
(Ω(0,r)) ≤ Cε∥f∥GMp,θ1,ω1,φ1

(Ω(0,r)),

where C = C(n, p, φ,K,M) is independent of ε, f and r.

Suppose that Ω is a bounded domain in Rn, n ≥ 3 and ∂Ω ∈ C1,1 and the coefficients aij(x),
i, j = 1, . . . , n, are symmetric and uniformly elliptic in Ω, that is, for some Λ > 0 and any ξ ∈ Rn,

aij(x) = aji(x),Λ
−1|ξ|2 ≤

n∑
i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

a.e. x ∈ Ω. Furthermore, let aij(x) ∈ VMO(Ω), the spaces of mean oscillation functions vanish to
zero according to D. Sarason [38].

Take into account the Dirichlet problem{
Lu = f almost everywhere in Ω,

u = 0 on the ∂Ω.
(6.2)

Let

Γ(x, t) =
1

(n− 2)ωn(det ai,j)1/2

( n∑
i,j=1

Aij(x)titj

)(2−n)/2

,

Γi(x, t) =
∂

∂ti
Γ(x, t),

Γij(x, t) =
∂2

∂ti∂tj
Γ(x, t),
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for a.e. x ∈ B and ∀t ∈ Rn \ {0}, where (Aij)n×n is the inverse of the matrix (aij)n×n. We have for

u ∈ W 2,p
0 (see [11,18,21]) the following formulas:

uxixj (x) = P · V ·
∫
B

Γij(x, x− y)

[ ∑
k,l=1

(akl(x)− akl(y))uxkxl
(y) + Lu(y)

]
dy

+ Lu(x)

∫
|y|=1

Γi(x, y)yjdδy,

a.e. x ∈ B ⊂ Ω, where B is a ball in Ω.

Theorem 6.3. Let Ω be a bounded domain in Rn, 1 < p < ∞, (φ1, φ2) ∈ Ãp(Rn), φ1, φ2 ∈ Ap(Rn),
1 ≤ θ1 ≤ θ2 < ∞ and the functions ω1 and ω2 satisfy condition (6.1). Suppose that aij ∈ VMO(Ω)
for i, j = 1, 2, . . . , n,

M ≡ max
i,j=1,...,n

max
|β|≤2n

∥∥∥∥ ∂β

∂tβ
Γij(x, T )

∥∥∥∥
L∞

< ∞,

f ∈ GMp,θ1,ω1,φ1
(Ω) and u is the solution of problem (6.2), then there exists a positive constant C

such that for any ball B ⊂ Ω:

∥uxixj
∥GMp,θ2,ω2,φ2

(B) ≤ C∥Lu∥GMp,θ1,ω1,φ1
(B).

Proof. One can easily check that Γij is a variable Calderón–Zygmund kernel. From Corollary 6.2 and
representation uxixj

, for any ε > 0, we get

∥uxixj
∥GMp,θ2,ω2,φ2

(B) ≤ Cε∥uxixj
∥GMp,θ1,ω1,φ1

(B) + C∥Lu∥GMp,θ1,ω1,φ1
(B).

Choosing ε small enough (for example, Cε < 1), we obtain

∥uxixj∥GMp,θ2,ω2,φ2
(B) ≤ (C/(1− Cε))∥Lu∥GMp,θ1,ω1,φ1

(B).

Therefore the proof is completed. □
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