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BOUNDEDNESS CRITERIA FOR LINEAR AND MULTILINEAR FRACTIONAL

INTEGRAL OPERATORS IN LORENTZ SPACES

ALEXANDER MESKHI1,2 AND LAZARE NATELASHVILI3

Abstract. In this note we give necessary and sufficient condition on a measure µ guaranteeing
the boundedness of the multilinear fractional integral operator Tm

γ,µ defined with respect to µ from

the product of Lorentz spaces
∏m

k=1 L
rk,sk (µ,X) to the Lorentz space Lp,q(µ,X). The result is

new even for linear fractional integrals Tγ,µ (i.e., when m = 1). From the general results we have

a criterion for the validity of Sobolev–type inequality in Lorentz spaces defined for non-doubling

measures.

1. Introduction

During the last two decades a considerable attention of researchers was attracted to the study
of the mapping properties of integral operators defined on metric measure spaces with non-doubling
measure (see e.g. [1, 12–14] and references cited therein). The results regarding the boundedness of
such operators in function spaces were mainly obtained under the growth condition on a measure.

The fractional integral (Riesz potential)

Iα(f)(x) =

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn,

plays a fundamental role in Harmonic Analysis. It also finds applications in PDEs, such as in the
theory of Sobolev embeddings (see, for instance, Maz’ya [10]). The study of multilinear fractional
integrals was initiated by L. Grafakos [4]. The author of that paper established the boundedness of
the operator

Bα(f, g)(x) =

∫
Rn

f(x+ t)g(x− t)

|t|n−α
dt, 0 < α < n,

from Lp1(Rn)× Lp2(Rn) to Lq(Rn).
As a tool to understand Bα, the operators

Iα(
−→
f )(x) =

∫
Rn

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α
d−→y , x ∈ Rn,

written in the m− linear form, where 0 < α < nm,
−→
f := (f1, . . . , fn),

−→y := (y1, . . . , yn), were studied
as well.

Let (X, d, µ) be a quasi-metric measure space. Our aim is to characterize those measures for which
the boundedness of the fractional integral operator

Tm
γ,µ(

−→
f )(x) =

∫
Xm

f1(y1) · · · fm(ym)dµ(−→y )(
d(x, y1) + · · ·+ d(x, ym)

)m−γ , 0 < γ < m, x ∈ X,

where
−→
f = (f1, . . . , fm), dµ(−→y ) = dµ(y1) · · · dµ(ym) holds from

∏m
j=1 L

rj ,sj (µ,X) to Lp,q(µ,X). Here

Lrj ,sj (µ,X) and Lp,q(µ,X) are Lorentz spaces defined on (X, d, µ).
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This result is new even for linear case m = 1. In particular, as a corollary we have a complete
characterization of a measure µ guaranteeing the boundedness of the fractional integral operator

Tγ,µ(g)(x) =

∫
X

g(y)

d(x, y)1−γ
dµ(y), 0 < γ < 1, x ∈ X,

from Lr,s(µ,X) to Lp,q(µ,X). As a corollary, we have also a generalization of the Sobolev-type
inequality in Lorentz spaces. In particular, we give necessary and sufficient condition on a measure µ
for which the inequality

∥Tγ,µ(g)∥Lp,q(µ,X) ≤ C∥g∥Lr,s(µ,X), p =
r

1− γr
(1)

holds.
These results for Lebesgue spaces in the multilinear setting were derived in [8] (including weak type

estimates), and for the linear case go back to [9] (see also [1], Ch. 6) for quasi-metric measure spaces,
and [6,7] for Euclidean spaces. We refer also to [2,3] for the Sobolev–type inequalities in the classical
Lebesgue spaces for non-doubling measure (see also [11] for related topics).

2. Preliminaries

Let X be a topological space with a quasi-metric d and a complete measure µ on X. We will
assume that the class of compactly supported continuous functions is dense in L1(µ,X).

The triple (X, d, µ) is called a quasi-metric measure space.
In the sequel we assume that all the balls B(x,R) with center x and radius R are µ− measurable

with finite measure, and that for every neighborhood V of x ∈ X, there exists R > 0 such that
B(x,R) ⊂ V .

We say that the measure µ is Ahlfors upper β- regular if there is a positive constant c such that

µ(B(x,R)) ≤ cRβ (2)

for all x ∈ X and R > 0.
Let f be a µ-measurable function on X and let 1 ≤ p, s ≤ ∞. We say that f belongs to the Lorentz

space Lp,s(µ,X) if

∥f∥Lp,s(µ,X) =


(
s

∞∫
0

(
µ{x ∈ X : |f(x)| > τ}

)s/p
τs−1dτ

)1/s

, if s < ∞,

sup
s>0

s
(
µ({x ∈ X : |f(x)| > s}

)1/p
, if s = ∞

is finite. It is easy to see that Lp,p(µ,X) coincides with the Lebesgue space Lp(µ,X) with measure µ.
Denote by f∗

µ a weighted non-increasing rearrangement of f with respect to the measure µ. Then
by integration by parts it can be checked that (see also [5]):

∥f∥Lp,s(µ,X) ≈


(
s

p

∞∫
0

(
t1/pf∗

µ(t)
)s dt

t

)1/s

, if s < ∞,

sup
t>0

{
t1/pf∗

µ(t)
}
, if s = ∞,

3. Main Results

Now we formulate our main statements.

Theorem 1. Let (X, d, µ) be a quasi-metric measure space, 0 < γ < m, 1 < rj , sj < ∞, j = 1, . . . ,m.
We set 1

r =
∑m

j=1
1
rj

and 1
s =

∑m
j=1

1
sj
. Suppose that 1 < r < p < ∞ and q be such that r

p = s
q . Then

the inequality

∥Tm
γ,µ(

−→
f )∥Lp,q(µ,X) ≤ C

m∏
k=1

∥fk∥Lrk,sk (µ,X),
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with the positive constant C independent of
−→
f = (f1, . . . , fm), holds if and only if µ is Ahlfors upper

β-regular with β = rp(m−γ)
rpm+r−p (see (2)).

Theorem 1 implies the following statement.

Theorem 2. Let (X, d, µ) be a quasi-metric measure space, 0 < γ < 1, and let 1 < rj , sj < ∞,
j = 1, . . . ,m. We set 1

r =
∑m

j=1
1
rj

and 1
s =

∑m
j=1

1
sj
. Suppose that 1 < r < 1

γ , and
1
p = 1

r − γ. Let q

be such that r
p = s

q . Then the inequality

∥Tm
γ,µ(

−→
f )∥Lp,q(µ,X) ≤ C

m∏
k=1

∥fk∥Lrk,sk (µ,X),

with the positive constant C independent of
−→
f , holds if and only if µ is Ahlfors upper 1-regular.

Theorems 1 and 2 yield the following statements for the linear fractional integral operator Tγ,µ:

Theorem 3. Let (X, d, µ) be a quasi-metric measure space, 0 < γ < 1, 1 < r < p < ∞. Let s and
q be such that r

p = s
q . Then the inequality (1) with the positive constant C independent of g holds if

and only if µ is Ahlfors upper β-regular with β = rp(1−γ)
rp+r−p .

Theorem 4. Let Let (X, d, µ) be a quasi-metric measure space, 0 < γ < 1. Let 1 < r < 1
γ , and

1
p = 1

r − γ. Let s and q be such that r
p = s

q . Then inequality (1) with the positive constant C

independent of g holds if and only if µ is Ahlfors upper 1-regular.
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