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BOUNDEDNESS CRITERIA FOR LINEAR AND MULTILINEAR FRACTIONAL
INTEGRAL OPERATORS IN LORENTZ SPACES

ALEXANDER MESKHI"2 AND LAZARE NATELASHVILI3

Abstract. In this note we give necessary and sufficient condition on a measure p guaranteeing
the boundedness of the multilinear fractional integral operator T7", defined with respect to p from
the product of Lorentz spaces [[pr; L™k (u, X) to the Lorentz space LP>?(u, X). The result is
new even for linear fractional integrals T, , (i.e., when m = 1). From the general results we have
a criterion for the validity of Sobolev—type inequality in Lorentz spaces defined for non-doubling
measures.

1. INTRODUCTION

During the last two decades a considerable attention of researchers was attracted to the study
of the mapping properties of integral operators defined on metric measure spaces with non-doubling
measure (see e.g. [1,12-14] and references cited therein). The results regarding the boundedness of
such operators in function spaces were mainly obtained under the growth condition on a measure.

The fractional integral (Riesz potential)
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plays a fundamental role in Harmonic Analysis. It also finds applications in PDEs, such as in the
theory of Sobolev embeddings (see, for instance, Maz’ya [10]). The study of multilinear fractional
integrals was initiated by L. Grafakos [4]. The author of that paper established the boundedness of
the operator
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B, ( 0<a<n,

from LP1(R™) x LP2(R™) to LI(R™).
As a tool to understand B,, the operators
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written in the m— linear form, where 0 < a < nm, ? = (f1s- s fa)s T = (Y1, -- ., yn), were studied
as well.

Let (X, d, 1) be a quasi-metric measure space. Our aim is to characterize those measures for which
the boundedness of the fractional integral operator
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where 7 - (fla sy fm,), dﬂ’(?) = d:u(yl) e dﬂ(ym) holds from H;nzl L% (luv X) to Lp,q(,u, X) Here
L% (u, X)) and LP%(u, X) are Lorentz spaces defined on (X, d, ).

O<y<m, zelX,
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This result is new even for linear case m = 1. In particular, as a corollary we have a complete
characterization of a measure p guaranteeing the boundedness of the fractional integral operator

Tv,u(g)(w)Z/d(zg(yy))lvdu(y), 0<y<l, z€X,

from L™%(u,X) to LP9(u,X). As a corollary, we have also a generalization of the Sobolev-type
inequality in Lorentz spaces. In particular, we give necessary and sufficient condition on a measure p
for which the inequality

T
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holds.

These results for Lebesgue spaces in the multilinear setting were derived in [8] (including weak type
estimates), and for the linear case go back to [9] (see also [1], Ch. 6) for quasi-metric measure spaces,
and [6,7] for Euclidean spaces. We refer also to [2,3] for the Sobolev—type inequalities in the classical
Lebesgue spaces for non-doubling measure (see also [11] for related topics).

2. PRELIMINARIES

Let X be a topological space with a quasi-metric d and a complete measure p on X. We will
assume that the class of compactly supported continuous functions is dense in L!(u, X).

The triple (X, d, ) is called a quasi-metric measure space.

In the sequel we assume that all the balls B(z, R) with center « and radius R are y— measurable
with finite measure, and that for every neighborhood V of x € X, there exists R > 0 such that
B(z,R)C V.

We say that the measure p is Ahlfors upper - regular if there is a positive constant ¢ such that

u(B(z, R)) < cR° (2)

for all z € X and R > 0.
Let f be a p-measurable function on X and let 1 < p, s < co. We say that f belongs to the Lorentz
space LP®(u, X) if

o0 1/s
(3/ (1{z € X : |f(z)] > T})s/prs_ldr) , if s < oo,
0

Il zeos (u,x) =

sups(u({z € X : |f(2)] > s})l/p7 it s=00
s>0

is finite. It is easy to see that LP?(u, X) coincides with the Lebesgue space LP(u, X) with measure p.
Denote by f; a weighted non-increasing rearrangement of f with respect to the measure y. Then
by integration by parts it can be checked that (see also [5]):

o0 1/s
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[l uxy = 4 NP

sup {tl/pf,’j(t)}, if 8= o0,
>0

3. MAIN RESULTS

Now we formulate our main statements.

Theorem 1. Let (X, d, 1) be a quasi-metric measure space, 0 <y <m, 1 <rj,s; <oo,j=1,...,m.
We set - = die % and 1 = die % Suppose that 1 <r < p < oo and q be such that 5 = =. Then

the inequality
1T (F) gy < C T I fullzrens o,

k=1
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with the positive constant C' independent of 7 = (f1,---, fm), holds if and only if p is Ahlfors upper

B-reqular with 8 = % (see (2)).

Theorem 1 implies the following statement.

Theorem 2. Let (X,d,u) be a quasi-metric measure space, 0 < v < 1, and let 1 < T'j,Sj < o0,

ji=1,...,m. Weset%zzgnlr— and * —Z;"ls Suppose that1<7‘<;, and * —7—7. Let q

be such that % = 3. Then the mequalzty

T (P naguy < C T Illzroms o),

k=1
with the positive constant C' independent of ?, holds if and only if u is Ahlfors upper 1-regular.
Theorems 1 and 2 yield the following statements for the linear fractional integral operator T, ,,

Theorem 3. Let (X,d,u) be a quasi-metric measure space, 0 < v < 1,1 <r < p < oo. Let s and

S

q be such that E =2 Then the inequality (1) with the positive constant C' independent of g holds if

and only if p is Ahlfors upper B-regular with 5 = %

Theorem 4. Let Let (X,d,pn) be a quasi-metric measure space, 0 < v < 1. Let 1 < r < %, and

l = = —~. Let s and q be such that b= %' Then inequality (1) with the positive constant C

mdependent of g holds if and only if p is Ahlfors upper 1-regular.
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