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ON SOME FINITE SYSTEMS OF VECTORS IN THE EUCLIDEAN PLANE

ALEXANDER KHARAZISHVILI

Abstract. In this note, an algorithmic version of Minkowski’s well-known theorem is considered for

the special case of dimension m = 2.

The following classical and well-known result on convex polyhedra was obtained by Minkowski
many years ago (see, for example, [1, 5]).

Theorem 1. Let m ≥ 2 be a natural number, {e1, e2, . . . ek} be a finite system of distinct unit vectors
in the space Rm, not all of which belong to a vector hyperplane of Rm, and let {s1, s2, . . . , sk} be a
family of strictly positive real numbers satisfying the relation∑

{siei : 1 ≤ i ≤ k} = 0.

Then there exists a unique (up to translations) m-dimensional convex polyhedron P in Rm with all
facets {F1, F2, . . . , Fk} such that for every natural index j ∈ [1, k], the (m− 1)-dimensional volume of
Fj is equal to sj, and ej is an exterior normal vector of Fj.

Some further interesting extensions of Minkowski’s theorem can be found, e.g., in [2] and [7].
For m ≥ 3, all the known proofs of this theorem are non-elementary, because they use the standard

methods of mathematical analysis. So, it makes no sense to speak on finding an algorithmic construc-
tion of such a polyhedron P . However, in the case m = 2, the same question is meaningful and we
will consider it below.

In the sequel, we will need one simple auxiliary proposition.

Lemma 1. If m = 2, then Minkowski’s theorem is equivalent to the following statement:
Let k ≥ 3 be a natural number, {e1, e2, . . . , ek} be a finite system of nonzero vectors in the plane R2,

no two of which are of the same direction, and let

e1 + e2 + · · ·+ ek = 0.

Then there exists a unique (up to translations) non-degenerate oriented convex k-gon P in R2 such
that the set of all oriented sides of P coincides with the given system.

In other words, Lemma 1 says that there exists a permutation ϕ of the set {1, 2, . . . , k} such that
the re-enumerated system of vectors

{eϕ(1), eϕ(2), . . . , eϕ(k)}

gives us all successive sides of some oriented convex k-gon P in R2.
Since there are exactly k! permutations of {1, 2, . . . , k}, there arises a natural question: find a max-

imally simple construction of the above-mentioned convex polygon P . Clearly, from the algorithmic
point of view, such a construction should be of minimal complexity with respect to an initial natural
parameter k.

Lemma 2. Let {e1, e2, . . . , ek} be a nonempty finite system of distinct unit vectors in the plane R2.
The following two assertions are valid:
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(1) if k = 2n, then there exists a straight line l passing through the origin of R2 and having the
property that exactly n many vectors of this system belong to one of the open half-planes determined
by l and the rest n vectors of this system belong to the other open half-plane determined by l;

(2) if k = 2n+1, then there exists a straight line l passing through the origin of R2 and having the
property that exactly n+1 many vectors of this system belong to one of the open half-planes determined
by l and the rest n vectors of this system belong to the other open half-plane determined by l.

Moreover, there is an algorithm of complexity O(kln(k)) for finding the required separating line l
in both cases (1) and (2).

In the process of proving Lemma 2, the two possible situations should be taken into account:
(i) the origin of R2 does not belong to conv{e1, e2, . . . , ek};
(ii) the origin of R2 belongs to conv{e1, e2, . . . , ek}.

Remark 1. Obviously, using appropriate projections and induction onm, Lemma 2 can be generalized
to finite systems of unit vectors in the Euclidean space Rm, where m ≥ 2. Also, we would like to
mention one interesting fact closely connected with the separating hyperplanes for such systems of
vectors.

Let {e1, e2, . . . , e2k} be a nonempty finite system of distinct unit vectors in Rm, where m ≥ 2, and
suppose that the following condition is satisfied:

If H is any hyperplane in Rm passing through the origin of Rm and containing no vector from
{e1, e2, . . . , e2k}, then there are exactly k many vectors of this system which belong to one of the open
half-spaces determined by H and the rest k vectors of this system belong to the other open half-space
determined by H.

Then there exists a partition of {e1, e2, . . . , e2k} into two-element subsets such that the vectors
belonging to any member of the partition are opposite to each other.

Keeping in mind Lemma 2, the proof of the last statement can be obtained by using induction on m
(cf. [6], where this fact was applied to some characteristic properties of m-dimensional parallelepipeds
in Rm).

Remark 2. The following statement is analogous to Lemma 2 and proved similarly to the proof of
this lemma.

Let k ≥ 3 be a natural number, {z1, z2, . . . , zk} be a finite system of pairwise different points in
the plane R2, and let z be a point of R2 which is in a general position with respect to {z1, z2, . . . , zk}
(i.e., z does not belong to the straight line passing through any two distinct points of the system).

For such a point z, these two assertions are always valid:
(a) if k = 2n, then there exists a straight line l ⊂ R2 passing through z and having the property

that exactly n many points of the system belong to one of the open half-planes determined by l and
the rest n points of this system belong to the other open half-plane determined by l;

(b) if k = 2n+1, then there exists a straight line l ⊂ R2 passing through z and having the property
that exactly n + 1 many points of the system belong to one of the open half-planes determined by l
and the rest n points of this system belong to the other open half-plane determined by l.

Moreover, there is an algorithm of complexity O(kln(k)) for finding the required separating line l
in both cases (a) and (b).

In addition, it should be mentioned that if there is at least one straight line passing through two
distinct points of the system and containing z, then it may happen that both assertions (a) and (b)
become false.

Lemma 3. Let N denote the set of all natural numbers and let

f : N → N

be an increasing (in general, not strictly increasing) function satisfying the relation

f(2n) ≤ 2f(n+ 1) + q (n ∈ N),

where q is some real constant (one may assume, without loss of generality, that q ≥ f(3)).
Then the inequality f(n) ≤ 4qn− q for n ≥ 3 takes place. Consequently, f(n) = O(n).
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Actually, Lemma 3 is a very special version of the well-known Master Theorem (see, for instance,
[3, 4]). It makes sense to emphasize that in the formulation of this lemma the condition that f is a
monotone function is essential and cannot be omitted.

Theorem 2. Let k ≥ 3 be a natural number, {e1, e2, . . . , ek} be a finite system of nonzero vectors in
the plane R2, no two of which are of the same direction, and let

e1 + e2 + · · ·+ ek = 0.

Then there exists an algorithm of the complexity O(kln(k)) for finding a permutation ϕ of {1, 2, . . . , k}
such that the system of vectors

{eϕ(1), eϕ(2), . . . , eϕ(k)}
gives all successive sides of some oriented convex k-gon P in R2.

Remark 3. Theorem 2 implies that if k ≥ 3 and {e1, e2, . . . , ek} is a finite system of nonzero vectors
in the plane R2 which are not collinear and for which the equality e1 + e2 + · · ·+ ek = 0 holds true,
then there exists a permutation ϕ of {1, 2, . . . , k} such that the system {eϕ(1), eϕ(2), . . . , eϕ(k)} gives all

successive sides of an oriented convex k-gon P in R2 (however, in this k-gon P , some adjacent sides
may be collinear).

Remark 4. Preserving the notation and assumptions of Theorem 2, suppose additionally that l is a
straight line passing through the origin of R2 and separating the system of unit vectors

V = {e1/||e1||, e2/||e2||, . . . , ek/||ek||},
as is indicated in Lemma 2. Then, using this line l and two linear arcwise orderings produced canoni-
cally by l on the two respective parts of V , the required convex k-gon P for the system {e1, e2, . . . , ek}
can be constructed by an algorithm of complexity O(k). Note that a similar situation occurs when
studying the problem of finding all affine diameters of a given k-element set E in the plane R2. This
problem is easily reduced to finding all affine diameters of the set of vertices of conv(E). As is well
known, all successive vertices of the convex polygon conv(E) are obtained by applying to E an algo-
rithm of complexity O(kln(k)). At the same time, it can be demonstrated that if E itself is the set of
all successive vertices of a convex k-gon, then all affine diameters of E can be found with the aid of an
algorithm of complexity O(k). Note, by the way, that in this case we also have an upper estimate 3k/2
for the total number af(E) of affine diameters of E. The equality af(E) = 3k/2 is valid if and only if
the set of all sides of conv(E) admits a partition into two-element subsets so that the sides belonging
to any member of the partition are parallel. On the other hand, if E is an arbitrary k-element subset
of R2, then it may happen that af(E) is of order k2 (as simple examples show). Also, if E is the set
of all vertices of a convex k-gonal prism in the space R3, then af(E) is again of order k2.

It follows from Minkowski’s theorem formulated at the beginning of this communication that the
above-mentioned convex k-gon P is unique up to the translations of the plane R2. For dimension
m ≥ 3, the uniqueness part in Minkowski’s theorem is usually justified by referring to the Brunn-
Minkowski inequality (see, for instance, [1]). In the casem = 2, the uniqueness of P can be established
by a direct recursive construction of P .

Lemma 4. Preserving the assumptions and notation of Theorem 2, let (ei, ej) be a pair of distinct
vectors from the system {e1, e2, . . . , ek} such that the angle between ei and ej takes minimum value.

Then these two vectors are necessarily the adjacent sides of the convex k-gon P .

Replacing ei and ej by their sum ei + ej and using the inductive argument, one can construct a
unique (up to translations) oriented convex (k − 1)-gon P ′ for the system of vectors

({e1, e2, . . . , ek} \ {ei, ej}) ∪ {ei + ej}.
Afterwards, replacing in P ′ the side ei + ej by the two adjacent sides ei and ej , it becomes possible
to obtain the required oriented convex k-gon P . As a by-product, this construction also yields the
uniqueness of P (up to translations of R2).
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Remark 5. It can be shown that for a system of vectors {e1, e2, . . . , ek} of Theorem 2, there is an
algorithm of complexity O(kln(k)) which enables one to find a pair (ei, ej) with the minimal value of
the angle between ei and ej .

Theorem 3. Let k ≥ 4 be a natural number, {e1, e2, . . . , ek} be a system of nonzero non-coplanar
vectors in the space R3, no two of which are of the same direction, and let

e1 + e2 + · · ·+ ek = 0.

Then there exists a permutation ϕ of the set {1, 2, . . . , k} such that the vectors eϕ(1), eϕ(2), . . . , eϕ(k)
form an oriented Hamiltonian cycle in the 1-skeleton graph of some convex polyhedron P ⊂ R3 with
k vertices.

The proof of Theorem 3 is based on the result of Theorem 2. Using induction on m, a similar result
can be obtained for finite systems of vectors in the Euclidean space Rm, where m ≥ 4. The algo-
rithm mentioned in Theorem 2 produces (by induction) an appropriate algorithm for constructing an
m-dimensional convex polyhedron P in Rm having the property that there is an oriented Hamiltonian
cycle in the 1-skeleton graph of P , which is formed by all members of a given finite system of vectors
in Rm (here we mean that the sum of vectors of the system is zero and no two of them are of the
same direction).

Remark 6. It is not difficult to present an example of a system

{e1, e2, e3, e4, e5}
of nonzero distinct vectors in the space R3 such that:

(a) e1 = 2e2,
(b) the plane generated by {e1, e2, e3} differs from that of generated by {e4, e5} (so, the vectors e1,

e2, e3, e4, e5 are not coplanar);
(c) e1 + e2 + e3 + e4 + e5 = 0;
(d) there exists no convex polyhedron P in R3 with a Hamiltonian cycle in the 1-skeleton graph

of P formed by all vectors from {e1, e2, e3, e4, e5}.

Remark 7. In the space R3, there is a system of nonzero distinct vectors

{e1, e2, e3, e4, e5, e6}
which satisfies the assumptions of Theorem 3 and for which these three conditions are also fulfilled:

(a) there exists a permutation ϕ of the set {1, 2, . . . , 6} such that the vectors eϕ(1), eϕ(2), . . . , eϕ(6)
form an oriented Hamiltonian cycle in the 1-skeleton graph of some convex polyhedron P1 ⊂ R3 with
6 vertices;

(b) there exists a permutation ψ of the set {1, 2, . . . , 6} such that the vectors eψ(1), eψ(2), . . . , eψ(6)
form an oriented Hamiltonian cycle in the 1-skeleton graph of some convex polyhedron P2 ⊂ R3 with
6 vertices;

(c) P1 is combinatorially isomorphic to a trigonal prism in R3, and P2 is combinatorially isomorphic
to an octahedron in R3.

In particular, condition (c) shows that it makes no sense to speak on the uniqueness of a polyhe-
dron P in the formulation of Theorem 3.
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