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CRITERION FOR THE EXISTENCE OF BOUNDED SOLUTIONS ON THE

REAL AXIS R OF LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL

EQUATIONS

MALKHAZ ASHORDIA

Abstract. Effective necessary and sufficient conditions are established for the existence of bounded

solutions of systems of linear ordinary differential equations on the real axis. Sufficient conditions

are given for existence of bounded solutions satisfying the Nicoletti condition. Moreover, the method
of the construction of such solutions is considered. Sufficient conditions for the existence of a unique

solution and its positivity are established.

1. Statement of the Problem. Basic Notation and Definitions

For the linear system of the ordinary differential equations

dx

dt
= P (t)x+ q(t) for t ∈ R (1.1)

we consider the problem on the bounded solution

sup{∥x(t)∥ : t ∈ R} < +∞, (1.2)

where P = (pik)
n
i,k=1 ∈ Lloc(R,Rn×n), and q = (qi)

n
i=1 ∈ Lloc(R,Rn).

The same singular and another singular Nicoletti’s [4] problems were considered in earlier works
[2, 3], where effective sufficient conditions were obtained to guarantee the existence of a bounded
solution of system (1.1). As we know, the criterion of the existence of a bounded solution was not
investigated in earlier papers.

Analogous question has been investigated in [1] for systems of the so-called generalized ordinary
differential equations.

In the present paper, our aim is to obtain a criterion for the existence of bounded solutions and,
therefore, eliminate the existing gap.

The use in the paper will be made of the following notation and definitions.
R =]−∞,+∞[, R+ = [0,+∞[.
Rn and Rn×n are the spaces of all real n-vectors x = (xi)

n
i=1 and n × n-matrices X = (xij)

n
i,j=1

with the standard norms. In is the identity n×n-matrix; δij is the Kroneker symbol, i.e., δii = 1 and
δij = 0 for i ̸= j (i, j = 1, . . . ).

diag(h1, , . . . , hn) is a diagonal matrix-functions with diagonal elements h1, . . . , hn.
On×n is the zero n× n matrix. We designate the zero n vector by On, as well.
The inequalities between the matrices are understood componentwise.
ACloc(R;Rn) and ACloc(R;Rn×n) are the sets of all vector-and matrix-functions, respectively,

whose restrictions to an arbitrary closed interval from R are absolutely continuous.
Lloc(R;Rn) and Lloc(R;Rn×n) are the sets of all locally integrable vector-and matrix-functions,

respectively.
A matrix-function has some property when each of its components has the same property.
By a solution of system (1.1) we mean a vector-function x ∈ ACloc(R;Rn) such that

x′(t) = P (t)x(t) + q(t) for a.a. t ∈ R.
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1.1. Formulation of the results. Let for each ti ∈ R ∪ {−∞,+∞} (i = 1, . . . , n),

N0(t1, . . . , tn) = {i : ti ∈ R}.

Obviously, N0(t1, . . . , tn) = {1, . . . , n} if ti ∈ R (i = 1, . . . , n), and N0(t1, . . . , tn) = ∅ if ti ∈
{−∞,+∞} (i = 1, . . . , n).

In the case, where ti = −∞ (ti = +∞), we assume sgn(t− ti) = 1 for t ∈ R (sgn(t− ti) = −1 for
t ∈ R).

Theorem 1.1. Problem (1.1), (1.2) is solvable if and only if there exist t0 ∈ R and a non-singular
matrix-function H = (hik)

n
i,k=1 ∈ ACloc(R;Rn×n) such that

sup{∥H−1(t)∥ : t ∈ R} < +∞, (1.3)

sik = sup

{∣∣∣∣
t∫

t0

exp

( t∫
τ

p∗ii(s)ds

)
|p∗ik(τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞

(i ̸= k; i, k = 1, . . . , n), (1.4)

sup

{∣∣∣∣
t∫

t0

exp

( t∫
τ

p∗ii(s)ds

)
|q∗i (τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞ (i = 1, . . . , n), (1.5)

sup

{ t∫
t0

p∗ii(s)ds : t ∈ R
}

< +∞ (i = 1, . . . , n), (1.6)

r(S) < 1, (1.7)

where r(S) is the spectral radius of S, P ∗(t) = (p∗ik(t))
n
i,k=1 ≡

(
H ′(t) + H(t)P (t)

)
H−1(t), q∗(t) =

(q∗i (t))
n
i=1 ≡ H(t)q(t), and S = (sik)

n
i,k=1, sii = 0 (i = 1, . . . , n).

From the proof of Theorem 1.1, it follows that in the theorem, we can assume without loss of
generality that H(t) ≡ X−1(t), where X is the fundamental matrix of system (1.1). So, in this case,
Theorem 1.1 has the following evident form:

Theorem 1.1′. Problem (1.1), (1.2) is solvable if and only if

sup

{
∥X(t)∥+

∣∣∣∣
t∫

0

∥X−1(τ)q(τ)∥dτ
∣∣∣∣ : t ∈ R

}
< +∞.

We give here a simple generalization of the known results from [3].

Theorem 1.2. Let ti ∈ R ∪ {−∞,+∞} (i = 1, . . . , n) and let a non-singular matrix-function H =
(hik)

n
i,k=1 ∈ ACloc(R;Rn×n) be such that conditions (1.3), (1.7) and

sik = sup

{∣∣∣∣
t∫

ti

exp

( t∫
τ

p∗ii(s)ds

)
|p∗ik(τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞

(i ̸= k; i, k = 1, . . . , n), (1.8)

sup

{∣∣∣∣
t∫

ti

exp

( t∫
τ

p∗ii(s)ds

)
|q∗i (τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞ (i = 1, . . . , n), (1.9)

sup

{ t∫
ti

p∗ii(s)ds : t ∈ R
}

< +∞ for i ∈ N0(t1, . . . , tn) (1.10)
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hold, where the matrix- and vector-functions P ∗ and q∗ are defined as in Theorem 1.1, S = (sik)
n
i,k=1,

sii = 0. Let, moreover,

hik(ti) = 0 for i ∈ N0(t1, . . . , tn) (i ̸= k; i, k = 1, . . . , n). (1.11)

Then, for every ci ∈ R (i ∈ N0(t1, . . . , tn)), system (1.1) has at last one bounded on R solution (xi)
n
i=1

satisfying the condition

xi(ti) = ci for i ∈ N0(t1, . . . , tn). (1.12)

Theorem 1.2 has the following form if

H(t) ≡ diag

(
exp

(
−

t∫
0

p11(s)ds

)
, . . . , exp

(
−

t∫
0

pnn(s)ds

))
.

Corollary 1.1. Let ti ∈ R ∪ {−∞,+∞} (i = 1, . . . , n) be such that conditions (1.7) and

sik = sup

{∣∣∣∣
t∫

ti

exp

( τ∫
0

(pkk(s)− pii(s))ds

)
|pik(τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞

(i ̸= k; i, k = 1, . . . , n), (1.13)

sup

{∣∣∣∣
t∫

ti

exp
(
−

τ∫
0

pii(s)ds
)
|qi(τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞ (i = 1, . . . , n) (1.14)

hold, where S = (sik)
n
i,k=1, sii = 0 (i, k = 1, . . . , n). Then, for every ci ∈ R (i ∈ N0(t1, . . . , tn)),

problem (1.1), (1.12) has at last one bounded on R solution.

Theorem 1.2 has the following form if H(t) ≡ In.

Corollary 1.2. Let ti ∈ R ∪ {−∞,+∞} (i = 1, . . . , n) be such that conditions (1.7) and

sik = sup

{∣∣∣∣
t∫

ti

exp

( t∫
τ

pii(s)ds

)
|pik(τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞

(i ̸= k; i, k = 1, . . . , n), (1.15)

sup

{∣∣∣∣
t∫

ti

exp

( t∫
τ

pii(s)ds

)
|qi(τ)|dτ

∣∣∣∣ : t ∈ R
}

< +∞ (i = 1, . . . , n), (1.16)

sup

{ t∫
ti

pii(s)ds : t ∈ R
}

< +∞ for i ∈ N0(t1, . . . , tn) (1.17)

hold, where S = (sik)
n
i,k=1, sii = 0 (i, k = 1, . . . , n). Then, for every ci ∈ R (i ∈ N0(t1, . . . , tn)),

problem (1.1), (1.12) has at last one bounded on R solution.

Corollary 1.2 is proved in [3].
If N0(t1, . . . , tn) = ∅, condition (1.17) is eliminated and the theorem has the following form:

Corollary 1.3. Let ti ∈ {−∞,+∞} (i = 1, . . . , n) be such that conditions (1.7), (1.15) and (1.16)
hold, where S = (sik)

n
i,k=1, sii = 0 (i = 1, . . . , n). Then system (1.1) has at last one bounded solution

on R.

Remark 1.1. If N0(t1, . . . , tn) = {1, . . . , n}, i.e., ti ∈ R for each i ∈ {1, . . . , n}, then condition (1.12)
is the classical Cauchy–Nicoletti one. If, in addition, t1 = · · · = tn we have the Cauchy problem.
Moreover, if N0(t1, . . . , tn) = ∅, conditions (1.10) and (1.12) are eliminated and the results have the
some forms as those given below.
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Theorem 1.2′. Let ti ∈ {−∞,+∞} (i = 1, . . . , n) and a non-singular matrix-function H =
(hik)

n
i,k=1 ∈ ACloc(R;Rn×n) be such that conditions (1.3), (1.7), (1.8) and (1.9) hold, where the matrix-

and the vector-functions P ∗ and q∗ and the matrix S are defined as in Theorem 1.2. Then system
(1.1) has at last one solution bounded on R.

Corollary 1.4. Let the conditions of Theorem 1.2 and

p∗ik sgn(t− ti) ≥ 0 and q∗i sgn(t− ti) ≥ 0 for a.a. t ∈ R (i, k = 1, . . . , n) (1.18)

hold. Then, for every ci ∈ R+ (i ∈ N0(t1, . . . , tn)), problem (1.1), (1.12) has at last one solution x
such that

H(t)x(t) ≥ On for t ∈ R. (1.19)

If N0(t1, . . . , tn) = ∅, then Corollary 1.4 has the following form:

Corollary 1.4′. Let the conditions of Theorem 1.2′ and (1.18) hold. Then problem (1.1), (1.12) has
at least one bounded on R solution satisfying condition (1.19).

Remark 1.2. Only the fulfillment of conditions of Theorem 1.2′ does not guarantee the uniqueness
of a nonnegative solution, i.e., under the condition of the theorem, system (1.1) may be a solution
whose components have differing signs. The corresponding example is constructed in [3] (see, p. 189,
Remark 6.6).

Theorem 1.3. Let ti ∈ {−∞,+∞} (i = 1, . . . , n) and a non-singular matrix-function H=(hik)
n
i,k=1∈

ACloc(R;Rn×n) be such that conditions (1.3), (1.7)–(1.10) and

lim inf
t→ti

0∫
t

p∗ii(s) = −∞ for i ∈ {1, . . . , n} \ N0(t1, . . . , tn)

hold, where the matrix- and the vector-functions P ∗ and q∗ and the matrix S are defined as in
Theorem 1.1. Then, for every ci ∈ R (i ∈ N0(t1, . . . , tn)), problem (1.1), (1.12) has the unique and
bounded on R solution x = (xi)

n
i=1 and

∥H(t)x(t)− x∗
m(t)∥ ≤ ρ0α

m for t ∈ R (m = 1, 2, . . . ),

where x∗
m = (x∗

im)ni=1 (m = 0, 1, . . . ) is the sequence of the vector-functions whosse components are
defined by

x∗
i0(t) ≡ 0, x∗

im(t) ≡ u∗
i (t)

+

n∑
k=1, k ̸=i

t∫
ti

exp

( t∫
τ

p∗ii(s)ds

)
p∗ik(τ)x

∗
km−1(τ)dτ (i = 1, . . . , n; m = 1, 2, . . . ),

the functions u∗
i (i = 1, . . . , n) are defined by

u∗
i (t) ≡ ci exp

( t∫
ti

p∗ii(s)ds

)
+

t∫
ti

exp

( t∫
τ

p∗ii(s)ds

)
q∗i (τ)dτ for i ∈ N0(t1, . . . , tn),

u∗
i (t) ≡

t∫
ti

exp

( t∫
τ

p∗ii(s)ds

)
q∗i (τ)dτ for i ∈ {1, . . . , n} \ N0(t1, . . . , tn),

and ρ0 > 0 and α ∈]0, 1[ are the constant numbers, independent of m.

Corollary 1.5. Let ti ∈ R ∪ {−∞,+∞} (i = 1, . . . , n) and a non-singular matrix-function H =
(hik)

n
i,k=1 ∈ ACloc(R;Rn×n) be such that conditions (1.3), (1.11) and

p∗ii(t) sgn(t− ti) ≤ ηii, |p∗ik(t)| ≤ ηik (i ̸= k; i, k = 1, . . . , n) (1.20)
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hold on R, where ηik (i, k = 1, . . . , n) are the constants such that the real parts of characteristic values
of the matrix Θ = (ηik)

n
i,k=1 are negative. Let, moreover,

sup

{ t+1∫
t

|q∗i (s)|ds : t ∈ R
}

< ∞ (i = 1, . . . , n). (1.21)

Then the conclusion of Theorem 1.3 is true.

Theorem 1.3 and Corollary 1.6 have for N0(t1, . . . , tn) = ∅ the following forms:

Theorem 1.3′. Let ti ∈ {−∞,+∞} (i = 1, . . . , n) and a non-singular matrix-function H =
(hik)

n
i,k=1 ∈ ACloc(R;Rn×n) be such that conditions (1.3), (1.7)–(1.9) and

lim inf
t→ti

0∫
t

p∗ii(s) = −∞ for i ∈ {1, . . . , n}

hold, where the matrix– and vector-functions P ∗ and q∗ and the matrix S are defined as in Theorem 1.1.
Then system (1.1) has the unique and bounded on R solution x = (xi)

n
i=1, and

∥H(t)x(t)− x∗
m(t)∥ ≤ ρ0α

m for t ∈ R (m = 1, 2, . . . ),

where x∗
m = (x∗

im)ni=1 (m = 0, 1, . . . ) is the sequence of vector-functions whose components are defined
by

x∗
i0(t) ≡ 0, x∗

im(t) ≡
t∫

ti

exp

( t∫
τ

p∗ii(s)ds

)
q∗i (τ)dτ

+

n∑
k=1, k ̸=i

t∫
ti

exp

( t∫
τ

p∗ii(s)ds

)
p∗ik(τ)x

∗
km−1(τ)dτ (i = 1, . . . , n; m = 1, 2, . . . ),

and ρ0 > 0 and α ∈]0, 1[ are the constant numbers, independent of m.

Corollary 1.5′. Let ti ∈ {−∞,+∞} (i = 1, . . . , n) and a non-singular matrix-function H =
(hik)

n
i,k=1 ∈ ACloc(R;Rn×n) be such that conditions (1.3) and (1.20) hold on R, where ηik (i, k =

1, . . . , n) are the constants such that the real parts of characteristic values of the matrix Θ = (ηik)
n
i,k=1

are negative. Let, moreover, condition (1.21) hold. Then the conclusion of Theorem 1.3′ is true.
From Theorems 1.3 and 1.3′ and Corollaries 1.5 and 1.5′ immediately follow the following proposi-

tions.

Corollary 1.6. Let the conditions of Theorem 1.3 or Corollary 1.5 and condition (1.18) be fulfilled.
Then, for every ci ∈ R+ (i ∈ N0(t1, . . . , tn)), system (1.1) has the unique boundary solution on R,
satisfying condition (1.12), and this solution is nonnegative.

Corollary 1.6′. Let the conditions of Theorem 1.5′ or Corollary 1.5′ and condition (1.18) hold. Then
system (1.1) has the unique boundary solution on R and this solution is nonnegative.

Remark 1.3. If H is the diagonal matrix described above, then theorems and corollaries have the
forms, where condition (1.6) is eliminated, and conditions (1.3), (1.4) and (1.5) have the forms of
conditions (1.13) and (1.14), respectively.

2. Short Description of the Proofs

The results given above, with the exception of Theorem 1.1, were obtained in [3] for H(t) ≡ In.
We will need some from the last paper for the matrix-and vector-functions P ∗ and q∗ defined as in
Theorem 1.1. We use also the following simple lemma.
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Lemma 2.1. Let the nonsingular matrix-function H = (hik)
n
i,k=1 ∈ ACloc(R;Rn×n) be such that

condition (1.3) hold. Then problem (1.1), (1.2) is solvable if and only if the system

dy

dt
= P ∗(t) y + q∗(t), for t ∈ R, (2.1)

is solvable under the condition

sup{∥y(t)∥ : t ∈ R} < +∞,

where P ∗(t) and q∗(t) are defined as in Theorem 1.1. Moreover, if ti ∈ R∪ {−∞,+∞} (i = 1, . . . , n)
are such that condition (1.11) holds, then the solvability of problem (1.1), (1.12) is equivalent to that
of system (2.1) under the condition

yi(ti) = ci hii(ti) for i ∈ N0(t1, . . . , tn),

Consider Theorem 1.1. Owing to Lemma 2.1 and Corollary 1.2, problem (1.1), (1.2) is solvable.
Now, consider the necessity question. By Corollary 1.2, the homogeneous system

dx

dt
= P (t)x for t ∈ R, (2.2)

under condition (1.2), has at least a solution xi satisfying the condition

x(t0) = ci (2.3)

for every i = 1, . . . , n, where ci = (δil)
n
l=1 (the Kroneker symbol).

Let X(t) ≡ (x1(t), . . . , xn(t)). Then due to (2.3) we have detX(t0) = 1 and, therefore, X(t) is a
fundamental matrix of system (2.2). Moreover, by (1.2) we find

sup{∥X(t)∥ : t ∈ R} < +∞.

Let now H(t) ≡ X−1(t). Then by the last estimate matrix-function H satisfies estimate (1.3). In
addition, by property of fundamental matrix X, we get H ′(t) +H(t)P (t) ≡ On×n. So, P

∗(t) ≡ On×n

and all conditions (1.4)–(1.7) are fulfilled.
Due to Lemma 2.1, Theorem 1.2 evidently follows from Corollary 1.2.
Corollary 1.1 follows immediately from Theorem 1.2 because for the diagonal matrix given in the

proposition, we conclude that p∗ii(t) ≡ 0 (i = 1, . . . , n), p∗ik(t) ≡ exp
( t∫

0

(pkk(s) − pii(s)ds
)
pik(t)

(i ̸= k, i, k = 1, . . . , n) and the matrix S = (sik)
n
i,k=1 has the form given in the corollary. □

Theorems 1.2, 1.2′, 1.3, 1.3′ and all corollaries follow immediately from Lemma 2.1 and from the
corresponding results circumscribed above [3], i.e., for the case, when H(t) ≡ In.
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