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PRODUCT OF g-VOLTERRA SPACES IN GENERALIZED TOPOLOGICAL

SPACES

PON JEYANTHI1, GOPAL GEETHA2 AND ENNIS ROSAS3

Abstract. In this paper, we introduce the concept of generalized pseudo-base in generalized topolog-
ical spaces, and using this concept, we study the product of g-Volterra space and weakly g-Volterra

space in generalized topological spaces. In addition, we study the product of g-Baire space with

g-Volterra space in generalized topological spaces.

1. Introduction

In 1881, Volterra [18] proved several theorems on Volterra spaces. After a century, in 1993, Gauld
et al. [9] restated the concept of Volterra spaces and proved that a space X is Volterra if for each
f, g : X → R for which C(f) and C(g) are dense in X, the set C(f) ∩D(g) is also dense in X. Also,
the same authors [7] proved that X is strongly Volterra (respectively, Volterra) if C(f)∩C(g) is dense
in X (respectively, non-empty) whenever f, g : X → R are two functions for which C(f) and C(g) are
dense in X. In [8], the authors proved that a topological space X is Volterra (respectively, weakly
Volterra) if for every pair G and H of dense Gδ subsets of X, the set G ∩ H is dense (respectively,
non-empty). In 2005, Cao et al. [1] revisited the papers of Gauld et al. [7,8] and studied Volterraness
in homogeneous spaces. Spadaro [17] established the relation between P-spaces and the Volterra
property. Milan Matejdes [14] studied the basic properties of weak ε-Volterra and ε-Volterra spaces
which correspond to the known results of the Volterra and weakly Volterra spaces. Gauld et al. [8]
and Cao et al. [2] studied the relation between Baire space and Volterra space in topological spaces.
Csaszar [4], initiated the discussion on the theory of generalized topological spaces and studied various
basic operators related to generalized topological spaces. Also, he discovered many important families
of sets in generalized topological spaces (see [3,5]). Later, Li and Lin [13] defined g-dense, g-nowhere
dense and g-residual in X and also studied Baireness on generalized topological spaces. Recently,
in [11], we introduced the concepts of g-Volterra space and g-first countable space in generalized
topological spaces and studied the relation between g-Volterra space and g-first countable space in
generalized topological spaces. Also, in [12], we introduced the concept of weakly g-Volterra space in
generalized topological spaces and studied the relation between g-Volterra space and weakly g-Volterra
space. In addition, we studied the mapping theorems on g-Volterra space and weakly g-Volterra space
in generalized topological spaces.

Oxtoby [15], Cao et al. [1] and Thangamariappan and Renukadevi [16] studied Cartesian product of
Baire spaces, Volterra space in homogeneous space and the product of Volterra spaces in topological
spaces, respectively. Followed by the results in [1,15] and [16], in this paper, we introduce the concept
of generalized pseudo-base in generalized topological spaces and, using this concept, we study the
product of g-Volterra space and weakly g-Volterra space in generalized topological spaces. Further,
we study the product of g-Baire space with g-Volterra space in generalized topological spaces.

2. Notion and Definitions

In this section, we recall some basic concepts and the known results to prove our main results.
Let X be a non-empty set and exp(X) be the power set of X. A family of sets g ⊂ exp(X) is said

to be a generalized topology (briefly, GT ) on X, if (i) ∅ ∈ g and (ii) union of elements of g belongs
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to g. The pair (X, g) is called a generalized topological space (briefly, GTS). The elements of g are
called g-open subsets of X and the complements are called g-closed subsets of X.

Let (X, g) be a GTS and A ⊂ X. The closure of A and the interior of A in (X, g) are defined as
cg(A) =

⋂
{F : X\F ∈ g and A ⊂ F} and ig(A) =

⋃
{U : U ∈ g and U ⊂ A}.

We recall the following definitions which are useful for the present study.

Definition 2.1 ([13]). A subset A of X is called

i) g-dense in X if cg(A) = X.
ii) g-nowhere dense in X if igcg(A) = ∅.

We denote the family of all g-dense (resp., g-nowhere dense) subsets of (X, g) by D(g) (resp., N(g)).

Definition 2.2. Let (X, g) be a generalized topological space. Then A ⊂ X is called g-somewhere
dense in X if ig(cg(A)) ̸= ∅. The family of all g-somewhere dense subsets of (X, g) is denoted by S(g)
or S(gX).

Lemma 2.3 ([13]). Let (X, g) be a GTS and A ⊂ X. Then

(i) cg(A) = X \ ig(X \A).
(ii) ig(A) = X \ cg(X \A).

Definition 2.4. Let (X, g) be a GTS and A ⊂ X. Then A ∈ N(g) if and only if cg(A) is g-codense
in X, that is, X \ cg(A) ∈ D(g). A GTS (X, g) is called strong [13], if X ∈ g. Clearly, (X, g) is strong
if and only if cg(ϕ) = ϕ. Therefore X ∈ g.

Definition 2.5 ([13]). Let (X, g) be a GTS. Then A ⊂ X is called

(i) g-first category in X if there exists a sequence {An} consisting of g-nowhere dense subsets of
X such that A =

⋃
n∈N

An;

(ii) g-second category in X, if A is not g-first category in X.

We denote the family of all g-first category subsets of (X, g) by M(g).

Definition 2.6 ([13]). Let (X, g) be a GTS and A ⊂ S ⊂ X. Then (S, gS), where gS = {U∩S : U ∈ g}
is the relative GT on S, is a GTS which is called a subspace of (X, g). Denote the closure of A and
the interior of A in the subspace (S, gS) by cgS (A) and igS (A), respectively.

Definition 2.7 ([11]). A GTS (X, g) is said to be g-Volterra space if each pair of G and H of g-dense
Gδ subsets of X, then G ∩H is g-dense in X.

The following example shows that (X, g) is g-Volterra.

Example 2.8. Let X be the set of all natural numbers. Consider A = {1, 3, 5, . . . } and g = {ϕ} ∪
{A ∪B : ϕ ̸= B ⊂ {2, 4, 6, . . .}}. Then (X, g) is a strong GTS and g is not a topology on X. Here,
A is g-dense in X and U ∩ A ̸= ϕ for any U ∈ g − {ϕ}. By Proposition 3.3 [13], we have A ∈ D(g).
Therefore g−{ϕ} ⊂ D(g). Let G and H be g-dense Gδ subsets of X. Thus A ⊂ G∩H, G∩H ∈ D(g)
and, clearly, (X, g) is g-Volterra.

Definition 2.9 ([12]). Let (X, g) be a GTS. For every pair of g-dense Gδ subsets G and H of X,
G ∩H is non-empty, then X is a weakly g-Volterra space.

The following example shows that (X, g) is weakly g-Volterra.

Example 2.10. Let X be the set of all natural numbers and g = {∅, N − {a}}, where a ∈ N . Then
(X, g) is a GTS and (X, g) is not a topology on X. Let G and H ∈ g − {∅}. If every pair of G and
H of g-dense Gδ subsets of X, then trivially G ∩H is non-empty. Hence (X, g) is weakly g-Volterra.

Definition 2.11 ([11]). Let (X, g) be a GTS and x ∈ X. A g-local base of x, denoted by Cx, is a
collection of g-open neighbourhoods of x such that for all U ∈ g with x ∈ U there exists a C ∈ Cx

such that x ∈ C ⊂ U .

Lemma 2.12. Let (X, g) be a GTS and let A ⊂ S ⊂ X. Then cgS (A) = cg(A) ∩ S.
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Proof. Let B be the closure of A in S. Clearly, cg(A) ∩ S is closed in S. Since B is the smallest
closed set in S containing A, we have B ⊂ cg(A) ∩ S. On the otherhand, B = C ∩ S, where C
is closed in X. Since cg(A) is the smallest closed set containing A, therefore cg(A) ⊂ C. Thus
cg(A) ∩ S ⊂ C ∩ S = B. □

3. g-Volterra Space and Weakly g-Volterra Space in Generalized Topological
Spaces

In this section, we study g-Volterra space and weakly g-Volterra spaces in generalized topological
spaces and obtain some characterizations. Also, we obtain an equivalent condition between g-Volterra
and weakly g-Volterra spaces.

Lemma 3.1. Let (X, g) be a generalized topological space and A ⊂ X. Suppose that X is a g-Volterra
space and S is a Gδ subset containing A such that ig(cg(A)) is g-dense in S. Then S is a g-Volterra
space.

Proof. Suppose that ig(cg(A)) is g-dense in S, then cg(S) = cg(S ∩ ig(cg(A))). Since A ⊂ S, we have
cg(A) ⊂ cg(S) ⊂ cg(S∩ ig(cg(A))) ⊂ cg(A). Thus cg(A) = cg(S). LetM and N be g-dense Gδ subsets
of S and we define A1 = A ∪ (X \ cg(S)), M1 = M ∪ (X \ cg(S)) and N1 = N ∪ (X \ cg(S)). Then
A1, M1 and N1 are g-dense Gδ sets in X. Since X is a g-Volterra space, therefore A1 ∩M1 ∩ N1

is g-dense. Now, we have cg(A) = cg(S) which implies that ig(cg(A)) ⊂ cg(A ∩M ∩ N). Therefore
cg(S) ⊂ cg(S ∩ ig(cg(A))) ⊂ ig(cg(A)) ⊂ cg(S ∩M ∩N). Thus M ∩N is g-dense in S and hence S is
a g-Volterra space. □

Theorem 3.2. Let a generalized topological space X be a weakly g-Volterra space and S be a g-dense
Gδ subset of X, then S is a weakly g-Volterra space.

Proof. Assume that X is a weakly g-Volterra space and S is a g-dense Gδ subset of X. By Defini-
tion 2.9, S is a weakly g-Volterra space. □

Theorem 3.3. A generalized topological space (X, g) is a g-Volterra space if and only if every non-
empty g-open subspace of X is a weakly g-Volterra space.

Proof. Let X be a g-Volterra space. By Theorem 3.2, every non-empty g-open subspace is a weakly
g-Volterra space. Conversely, we show that every non-empty g-open subspace is a weakly g-Volterra
space, then X is a g-Volterra space. Let M and N be two g-dense Gδ subsets of X. Let A be a
non-empty g-open subset of X. Then A∩M and A∩N are the g-dense subsets of A which are g-dense
in A. Now, we have A∩ (M ∩N) = (A∩M)∩ (A∩N). Since A is a weakly g-Volterra space, we have
A ∩ (M ∩N) ̸= ∅. Thus M ∩N is g-dense in X and hence X is a g-Volterra space. □

Lemma 3.4. Let (X, g) be a generalized topological space. If X contains a non-empty weakly
g-Volterra g-open subspace Y , then X is a weakly g-Volterra space.

Proof. Let M and N be two g-dense Gδ subsets of X. Then M ∩ Y and N ∩ Y are two g-dense Gδ

subsets of Y . Since Y is weakly g-Volterra and (M ∩N) ∩ Y ⊂M ∩N, therefore M ∩N ̸= ∅. Hence
X is a weakly g-Volterra space. □

Lemma 3.5. Let (X, g) be a generalized topological space. If X contains a g-dense Gδ subspace which
is not a weakly g-Volterra space, then X is not a weakly g-Volterra space.

Proof. Let M and N be two g-dense Gδ subsets of X. Then M ∩ Y and N ∩ Y are two g-dense Gδ

subsets of Y . Since Y is weakly g-Volterra and (M ∩N)∩ Y ⊂M ∩N, so, M ∩N ̸= ∅. Hence X is a
weakly g-Volterra space. □

Lemma 3.6. Let (X, g) be a generalized topological space. Then the union of any family of non-empty
g-open non-weakly g-Volterra subspace is not a weakly g-Volterra space.

Proof. Let G be a family of non-empty g-open subspaces of X such that every member of G is not a
weakly g-Volterra space in X. Let TNV be the set of all collections of non-empty g-open subsets of X
with the following properties:
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(i) Every collection of ψ ∈ TNV is pairwise disjoint.
(ii) For every collection of ψ ∈ TNV and each member of V ∈ ψ, there exists some U ∈ G such

that V ⊂ U .

Let V = {Vα : α ∈ A}. Then
⋃
{U : U ∈ G} ⊂ cg(V ). It follows from the condition (ii) and

Lemma 3.4 that for each α ∈ A, Vα is not a weakly g-Volterra space. Thus there are two families
{Gα : α ∈ A} and {Hα : α ∈ A} of Gδ sets of X such that

(iii) Gα ∩Hα = ∅ for all α ∈ A and
(iv) Gα ⊂ Vα ⊂ cg(Gα) and Hα ⊂ Vα ⊂ cg(Hα) for all α ∈ A.

Let G = {Gα : α ∈ A} and H = {Hα : α ∈ A}. Using conditions (ii) and (iii), we obtain
G∩H = ∅. Let Gα =

⋂
{Gα

n : n ≥ 1} andHα =
⋂
{Hα

n : n ≥ 1}, where Gα
n andHα

n are non-empty
g-open subsets of X contained in Vα such that Gα

n+1 ⊂ Gα
n and Hα

n+1 ⊂ Hα
n for all α ∈ A and

n ∈ N . Now, we choose Gα =
⋃
{Gα

n : α ∈ A} and Hα =
⋃
{Hα

n : α ∈ A} for all n ∈ N . Thus
we obtain G =

⋂
{Gn : n ≥ 1} and H =

⋂
{Hn : n ≥ 1}. Since {Gα : α ∈ A} and {Hα : α ∈ A}

are the two families in the subspace V of X, we have V ⊂
⋃
{cg(Gα)

V : α ∈ A} = (cg(G))
V and

V ⊂
⋃
{cg(Hα)

V : α ∈ A} = (cg(H))V . Thus G and H are the two disjoint g-dense Gδ sets in the
subspace V of X. It follows from Lemma 3.5 that cg(V ) is not a weakly g-Volterra subspace of X.
Since

⋃
{U : U ∈ G} ⊂ cg(V ), by Lemma 3.4,

⋃
{U : U ∈ G} is not a weakly g-Volterra subspace of

cg(V ). Therefore
⋃
{U : U ∈ G} is not a weakly g-Volterra subspace of X. □

Using Lemma 3.4 and Theorem 3.3, we prove the following theorem. In our previous paper [11],
we have proved that every g-Volterra space is weakly g-Volterra and presented an example that the
converse implication is not true. We prove the theorem by using the following

Definition 3.7. A generalized topological space (X, g) is said to be homogeneous if for any two
distinct points x, y ∈ X there exists a homeomorphism f : X → X such that f(x) = y.

Theorem 3.8. Let (X, g) be a generalized topological space and homogeneous space. Then X is a
g-Volterra space if and only if X is a weakly g-Volterra space.

Proof. The necessary condition is trivial. To prove the sufficiency part, assume that X is a weakly
g-Volterra space and XV is a non-empty g-open g-Volterra subspace of X. Let U be any non-empty
g-open subspace of X. Then there exists a point x ∈ XV and a homeomorphism f : X → X such
that f(x) ∈ U . Since f(XV ) is g-Volterra, so, U ∩ f(XV ), a non-empty g-open subspace of f(XV ), is
g-Volterra. By Lemma 3.4, U is a weakly g-Volterra subspace of X. By Theorem 3.3, the space X is
a g-Volterra space. □

Theorem 3.9. Let (X, g) be a generalized topological space and A be a non-empty g-open subspace of
a generalized topological space X, then A is not a weakly g-Volterra space in X if and only if for any
g-open subset U of X with U ∩A ̸= ∅, then there exists a non-empty g-open subset V of X contained
in U such that V ∩A is not a weakly g-Volterra space in X.

Proof. By Lemma 3.4, the necessary condition arises directly. Therefore, first, we prove the sufficiency
part. Suppose that A is a g-nowhere dense subset of X. Let U and V be any two g-dense Gδ sets in
A. If A is a weakly g-Volterra space, then U ∩ V is g-somewhere dense in the subspace A. We prove
this by contradiction. Let G be any non-empty g-open subset of A and H be a g-open subset of X
with G = H ∩ A. Also, ig(A) is g-dense in A, then H ∩ ig(A) ̸= ∅. Since A is g-nowhere dense set of
X, then U ∩ V is a g-nowhere dense subset of X. Thus there exists a non-empty g-open subset O of
X contained in H ∩ ig(A) such that O ∩ (U ∩ V ) = ∅. This shows that U ∩ V is a g-nowhere dense
set in the subspace A, which is a contradiction. Hence A is not weakly g-Volterra in X. Next, we
consider that A is a g-somewhere dense subset of X. Let U = ig(cg(A)). Then U is a non-empty
g-open subset of X. Let G = {Uβ : β ∈ B} be the family of all non-empty g-open subsets of X such
that for each β ∈ B, Uβ ⊂ U and Uβ ∩ A is not a weakly g-Volterra subspace of X. Now, for each
β ∈ B, Uβ ∩ A is not a weakly g-Volterra space. By Lemma 3.5,

⋃
{Uβ ∩ A : β ∈ B} is not a weakly

g-Volterra space in the subspace A. Then
⋃
{Uβ ∩A : β ∈ B} is a g-dense g-open subspace of U ∩A.

Hence by Lemma 3.5, U ∩ A is not a weakly g-Volterra space. Since ig(A) ⊂ U ∩ A, by Lemma 3.4,
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ig(A) is not a weakly g-Volterra space in X. Finally, ig(A) is g-dense and g-open in the subspace A.
Also, by Lemma 3.5, A is not a weakly g-Volterra subspace of X. □

4. Product of g-Volterra Spaces in Generalized Topological Space

In this section, we introduce a generalized pseudo-base in generalized topological spaces and, using
this concept, we study the product of g-Volterra spaces in generalized topological spaces.

Definition 4.1. A family B of non-empty g-open sets in a generalized topological space is called a
generalized pseudo- base (g-pseudo-base) if every non-empty g-open set contains at least one member
of B.

Example 4.2. Consider R with a usual topology. Now, B = {(−1/n, 1/n)∪ (n, n+1) : n ∈ R}, then
B has a g-pseudo-base at 0.

Definition 4.3 ([16]). Let E ⊂ X × Y , the section of E corresponding to any x ∈ X is defined as
E(x) = {y : (x, y) ∈ E}.

Definition 4.4. Let J ̸= ∅ be an index set, Xα ̸= ∅ for α ∈ J and let X = Π
α∈J

Xα be the Cartesian

product of the sets Xα. We denote the projection mapping pα : X → Xα by pα.
Let {Xα}α∈J be an indexed family of sets. We define the product in generalized topologies as

follows:
Suppose that gα is a given generalized topology on Xα for α ∈ J and Mα is the union of all

elements of gα; that is, Mα =
⋃

α∈J

gα. Consider the collection of all sets of the form Π
α∈J

Uα, where

Uα is gα-open in Xα and for each α and Uα equals Mα, except for finitely many indices α. Thus
B = { Π

α∈J
Uα|Uα ∈ Bα for each α and Uα = Mα except for finitely many indices α}, where

Bα ⊂ gα for each α is the g-pseudo base for gα. Clearly, ∅ ∈ B. We define a generalized topology
g = g(B) having B for a g-pseudo base. We call the product of the generalized topologies gα by g,
denoted by g = Π

α∈J
gα.

Consider Aα ⊂ Xα, A = Π
α∈J

Aα, x ∈ X and xα = pα(x).

Example 4.5. Let J = N , Xα = R be the Euclidean topology for every α. We choose Uα =
(−1/α, 1/α) such that Uα ∈ gα for α ∈ J . We define X = Π

α∈J
Xα and g = Π

α∈J
gα. Consider

B = { Π
α∈J

Uα | Uα ∈ Bα ⊂ gα for each α and Uα = Mα except for finitely many indices α}, where
Bα ⊂ gα and each Bα has a gα-pseudo-base. Therefore B has a g-pseudo-base.

Csaszar [6] defined the following proposition in generalized topological spaces.

Proposition 4.6 ([6]). Let (X, g) be a generalized topological space. Then the following conditions
hold:

(i) For α ∈ J , ig(A) ⊂ Π
α∈J

ig(Aα).

(ii) If J is finite, then ig(A) = Π
α∈J

ig(Aα).

(iii) cg(A) = Π
α∈J

cg(Aα).

Proposition 4.7. The projection mapping pα is (g, gα)-open and pα need not be (g, gα)-continuous.

The following example shows that the projection mapping need not be continuous in generalized
topological spaces.

Example 4.8. Let X = X1 ×X2, g = g1 × g2, X1 = {1, 2}, g1 = {∅, X1}, X2 = {3, 4}, g2 = {∅, {3}}.
X1 × X2 = {(1, 3), (1, 4), (2, 3), (2, 4)} and g1 × g2 = {∅ × ∅, ∅ × {3}, X1 × ∅, X1 × {3}} by g. Also,
B = {∅, X1 × {3}}, then X1 ∈ g1 and p1

−1(X1) = X /∈ B. Therefore pα is not a (g, gα) continuous.

Lemma 4.9 ([6]). Let (X, g) be a generalized topological space. Then X =Mg = Π
α∈J

Uα.
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Proof. If U ∈ g, then pα(U) ∈ gα. Let Π
α∈J

Uα ∈ B ⊂ g, then U ⊂ Π
α∈J

pα(U) ⊂ Π
α∈J

Uα ∈ g. Therefore

Π
α∈J

Uα is the largest g-open set in g. □

Proposition 4.10. If every gα is strong, then g is strong and pα is (g, gα)-continuous for each α ∈ J .

Proof. By Lemma 4.9, Mg = Π
α∈J

Uα = Π
α∈J

Xα = X such that X ∈ g. Then Uα = Xα for each α.

Also, Uα ∈ gα which implies that pα
−1(Mα) = Π

i∈J
Ni, where Nα =Mα and Ni = Xi for i ̸= α. Hence

Π
i∈J

Ni ∈ B ⊂ g. □

Lemma 4.11 ( [13]). Let {(Xα, gα) : α ∈ J} be a family of generalized topological spaces and
( Π
α∈J

Xα, g) be its product. Let pα : Π
α∈J

Xα → Xα be the projection, then the following properties

hold:

(i) For each α ∈ J , pα is (g, gα)-open.
(ii) For each α ∈ J , if gα is strong, then g is strong and pα is (g, gα)-continuous.

Definition 4.12. For any 0 ≤ m < n, we define X(n) = Π
i=1

nXi, X
(m,n) = Π

i=m+1

nXi and Y (n) =

Π
i=n+1

∞Xi.

Lemma 4.13. If each Xi has a countable generalized pseudo-base, then the product space Π
α∈J

Xα has

a countable g-pseudo-base.

Proof. Consider a sequence {Xi} of spaces which has a countable g-pseudo-base. In the following case
we prove the result by induction on n.

Case (i): When n = 2, B = {U × V : U ∈ B1 and V ∈ B2}. Since B1 and B2 are countable,
then B is countable. If (x, y) ∈ G, then there exist g-open sets G1 ⊂ X1 and G2 ⊂ X2 such that
(x, y) ∈ G1 × G2 ⊂ G. Since B1 is a generalized pseudo-base for X1, there exists U ∈ B1 such that
x ∈ U ⊂ G1. Also, B2 is a generalized pseudo-base for X2, there exists V ∈ B2 such that y ∈ V ⊂ G2.
Thus (x, y) ∈ U × V ⊂ G1 ×G2 ⊂ G and X1 ×X2 has a countable generalized pseudo-base. Assume
that the result is true for n− 1. Therefore X1 ×X2 × · · · ×Xn−1 have a countable g-pseudo-base. By
Case(i), X1×X2×· · ·×Xn have a countable g-pseudo-base. Hence X(n) has a countable g-pseudo-base
{G(n, i)}. Thus G(n, i) × Y (n), where n and i are the positive integers which constitute a countable
g-pseudo-base in Π

α∈J
Xα which has a countable g-pseudo-base. □

The following example shows that the product of two g-Volterra spaces need not be a g-Volterra
space in the generalized topological spaces.

Example 4.14. Let (X1, g1) and (X2, g2) be two generalized topological spaces, where X1 = {1, 2},
X2 = {3, 4}, g1 = {∅, X1}, g2 = {∅, {3}}. Observe that (X1, g1) and (X2, g2) are g-Volterra spaces.
Now, consider X = X1 ×X2 and g = g1 × g2. It is easy to see that (X, g) is a generalized topological
space. Now, if we take G = {(1, 3)} and H = {(2, 4)}, then both G and H are g-dense Gδ subsets
of X. Clearly, G ∩H = ∅ and G ∩H is not a g-dense subset of X. Therefore X is not a g-Volterra
space.

In the following example, we show that the product of two g-Volterra spaces is a g-Volterra space
in generalized topological spaces even if one of them has a g-pseudo-base.

Example 4.15. Let (X1, g1) be a strong generalized topological space and (X2, g2) be a generalized
topological space, where X1 = X2 = N , g1 = {∅, N − {a}, N}, where a ∈ N and g2 = {∅, N − {b}},
where b ∈ N and a distinct of b. We take B = {∅, N−{a}, N}. Note that B is a g1-pseudo-base for the
generalized topological space (X1, g1). Observe that (X1, g1) and (X2, g2) are g-Volterra spaces and
X1 has g1-pseudo-base. Now, consider X = X1×X2 = N×N , g = g1×g2. It is easy to see that (X, g)
is a generalized topological space. The collection of g-open sets in N×N are {∅, N−{a}×N−{b}, N×
N−{b}} and the collection of g-closed sets in N×N are {N×N, {a}×N∪N×{b}, N×N−{b}}. Now,
G and H are g-dense and the non-empty Gδ subsets in the generalized topological space (N ×N, g)
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are N − {a} × N − {b} and N × N − {b}. The possibility for G and H is N − {a} × N − {b} or
N ×N − {b}.

When two of them are intersected, we obtain:
(i) N − {a} ×N − {b} intersected with N − {a} ×N − {b} = N − {a} ×N − {b} is g-dense in the

GTS (N ×N, g).
(ii)N ×N − {b} intersected with N ×N − {b} = N ×N − {b} is g-dense in the GTS (N ×N, g).
(iii) N −{a}×N −{b} intersected with N ×N −{b} = N −{a}×N −{b} is g-dense in the GTS

(N ×N, g).
From the above three cases, we find that the generalized topological space (N ×N, g) is g-Volterra.

Example 4.16. Consider X1 = X2 = R with the discrete topology. Then X1 and X2 are g-Volterra
spaces and the product space X1 ×X2 is a g-Volterra space. Observe that if we take the basis for the
product topology on R×R given by B = {{x1} × {x2} : x1, x2 ∈ R}, it has a g-pseudo-base.

Theorem 4.17. Let X and Y be g-Volterra spaces and X be a g-second category space with a
g-pseudo-base B such that no two members of B are pairwise disjoint and at least one of them has a
countable g-pseudo-base, then their product X × Y is a g-Volterra space.

Proof. Suppose that X × Y is not a g-Volterra space. Then by Theorem 3.3, there exists g-open set
U × V in X × Y such that U × V is not a weakly g-Volterra space. By Definition 2.9, there exists
two g-dense gGδ sets M and N in U × V such that M ∩ N = ∅. Since M and N are Gδ sets, we
have M =

⋂
n=1

∞Mn and N =
⋂
n=1

∞Nn, where Mn and Nn are g-open sets. Since M and N are

g-dense, each Mn and Nn is g-dense. Let {Vα} be a countable g-pseudo-base for Y . For each n, α,
we define hn,α = Mn ∩ (U × Vα) and gn,α = Nn ∩ (U × Vα). Also, we define Hn,α = pX(hn,α) and
Gn,α = pX(gn,α) such that Hn, k and Gn,k are g-open. Since Mn is g-dense in U × V which implies
that Mn ∩ (U × Vα) is g-dense in U × Vα. Thus hn,α is g-dense in U × Vk. Let U1 be any g-open set
in U . Then U1 × Vα is a g-open set in U × Vα. Therefore (U1 × Vα) ∩ hn,α ̸= ∅. Thus each Hn,α is
g-dense in U . Similarly, Gn,α is g-dense in U . Since X is of g-second category, by [13, Theorem 5.3],
there exists a g-open subset D in X such that D is a g-Baire space.

Thus D∩U ̸= ∅ and D∩U is a g-open set in D. Since D is a g-Baire space, this implies that D∩U is
a g-Baire space. Therefore D∩U intersects each Gn,α and Hn,α. Hence D∩U ∩Gn,α and D∩U ∩Hn,α

are g-dense g-open sets inD∩U . SinceD∩U is a g-Baire space,
⋂
n,α

(B∩U∩Gn,α) and
⋂
n,α

(D∩U∩Hn,α)

are g-dense g-open sets in D∩U . By Theorem 3.3, D and U are g-open sets in X and X is a g-Volterra
space, then D∩U is a weakly g-Volterra space. Thus

⋂
n,α

[D∩U∩Gn,α]∩
⋂
n,α

[D∩U∩Gn,α] is non-empty.

Then we choose x ∈ U such that x ∈
⋂
n,α

[D ∩ U ∩Gn,α] ∩
⋂
n,α

[D ∩ U ∩Hn,α].

=⇒ x ∈
⋂
n,α

[B ∩ U ∩Gn,α ∩Hn,α].

=⇒ x ∈ Gn,α ∩Hn,α for every n, α.

There exists y such that (x, y) ∈ hn,α, (x, y) ∈ gn,α. Also, (x, y) ∈Mn∩(U×Vα), (x, y) ∈ Nn∩(U×Vα)
for all n, α. We define M(x) = {y ∈ V : (x, y) ∈M} and N(x) = {y ∈ V : (x, y) ∈ N}. Now, we have
M(x) = (∩

n
Mn)(x) = ∩

n
[Mn(x)].

Suppose

y ∈ (∩
n
Mn)(x) ⇐⇒ (x, y) ∈ ∩

n
Mn.

⇐⇒ (x, y) ∈Mn for all n.

⇐⇒ y ∈Mn(x) for all n.

⇐⇒ y ∈
⋂
n

(Mn)(x).
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Therefore M(x) is a Gδ set. Also (x, y) ∈Mn ∩ (U × Vα) for each Vα and for all n, k.

=⇒ (x, y) ∈
(⋂

n

Mn ∩ (U × Vα)
)
.

=⇒ that (x, y) ∈Mn ∩ (U × Vα).

Therefore there exists y ∈ Vα such that (x, y) ∈ M and so, y ∈ V such that y ∈ M(x). Thus
M(x) ∩ Vα ̸= ∅. Hence M(x) is g-dense in V . Similarly, N(x) is also g-dense in V . Since Y is a
g-Volterra space and V is a weakly g-Volterra space, therefore M(x) ∩N(x) ̸= ∅.

Thus there exists z ∈ U such that z ∈M(x) ∩N(x).

=⇒ z ∈M(x) and z ∈ N(x).

=⇒ (x, z) ∈M and (x, z) ∈ N.

=⇒ (x, z) ∈M ∩N, which is a contradiction.

Therefore M ∩N is non-empty and U × V is a weakly g-Volterra space. Hence X × Y is a g-Volterra
space. □

Theorem 4.18. Suppose that Xi is a g-second category space that has a countable g-pseudo-base B
such that no two members of B are pairwise disjoint. If every Xi is a g-Volterra space for finite n,
then X(m,n) is a g-Volterra space.

Proof. We prove the result by induction on n. If n = 2, then 0 ≤ m < 2. Suppose m = 1, then
X(m,2) = X2 is g-Volterra. Suppose m = 0, then X(m,2) = Π

i=1

nXi = X1 × X2. By Theorem

4.17, X1 × X2 is a g-Volterra space. Assume that X(m,n−1) is a g-Volterra space, then we have
Π

i=m+1

n−1Xi = Xm+1 ×Xm+2 × · · · ×Xn−1 is a g-Volterra space. We obtain X(m,n) = Π
i=m+1

nXi =

( Π
i=m+1

n−1Xi)×Xn = X(m,n−1)×Xn. Since X
(m,n−1) and Xn are g-Volterra space, therefore X(m,n)

is g-Volterra space. □

Theorem 4.19. Suppose that Xi is a g-second category space which has a countable g-pseudo-base B
such that no two members of B are pairwise disjoint. If every Xi is a g-Volterra space, then Π

α∈J
Xα

is a g-Volterra space.

Proof. Consider X = Π
α∈J

Xα. Let M and N be two g-dense Gδ sets in X. Since M and N are

g-dense, therefore Mn and Nn are g-dense. Assume that Mn and Nn are the decreasing sequences
of g-dense g-open sets in X. Let A be a g-open set in X. Since M1 is a g-dense g-open set in X,
A ∩M1 is a non-empty g-open set in X. By Lemma 4.13, every Xi has a countable g-pseudo-base,
then Π

α∈J
Xα has a countable g-pseudo base. Then there exists a basic g-open set U (n1) × Y (n1) such

that U (n1)×Y (n1) ⊂ A∩M1∩N1, where U
(n1)×Y (n1) is a g-open set in X(n1)×Y (n1). Now, we define

M
(n1)
n =Mn∩(U (n1)×Y (n1)) and N

(n1)
n = Nn∩(U (n1)×Y (n1)) for all n. ThenM

(n1)
n and N

(n1)
n form

a sequence of g-dense g-open sets U (n1) × Y (n1). Let V
(n1)
α be a countable generalized pseudo-base

for Y (n1). Also, we define h
(n1)
n,α = M

(n1)
n ∩ (U (n1) × V

(n1)
α ) and g

(n1)
n,α = N

(n1)
n ∩ (U (n1) × V

(n1)
α ). Let

H
(n1)
n,α = pX(n1)(h

(n1)
n,α ) and G

(n1)
n,α = pX(n1)(g

(n1)
n,α ). Since the projection mapping pα is (g, gα)-open and

h
(n1)
n,α is (g, gα)-open and so, H

(n1)
n,α is also (g, gα)-open. Then M

(n1)
n is g-dense in U (n1) × Y (n1).

=⇒ M (n1)
n ∩ U (n1) × V (n1)

α is g-dense in U (n1) × V (n1)
α .

=⇒ h(n1)
n,α is g-dense in U (n1) × V (n1)

α .

=⇒ (U
(n1)
1 × V (n1)

α ) ∩ h(n1)
n,α ̸= ∅ for any g-open set U

(n1)
1 in U (n1).

Then U
(n1)
1 ∩pX(n1)(h

(n1)
n,α ) ̸= ∅ and thus U

(n1)
1 ∩H(n1)

n,α ̸= ∅. Therefore H(n1)
n,α is g-dense in U (n1). Since

every Xi is a g-second category space, there exists a g-open subset Di in Xi such that Di is a g-Baire
space. Suppose that D(n1) is a g-open g-Baire subspace of X(n1). Then D(n1) ∩ U (n1) ̸= ∅. Also,
D(n1)∩U (n1) is a g-open subset of D(n1) and D(n1) is a g-Baire space which implies that D(n1)∩U (n1)
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is a g-Baire subspace. Since U (n1) is g-open, the sets D(n1) ∩ U (n1) ∩ H
(n1)
n,α and D(n1) ∩ U (n1) ∩

G
(n1)
n,α are g-dense g-open in D(n1) ∩ U (n1). Since D(n1) ∩ U (n1) is g-Baire,

⋂
n,α

[D(n1) ∩ U (n1) ∩ G(n1)
n,α ]⋂

n,α
(D(n1) ∩U (n1) ∩H(n1)

n,α ) will be g-dense Gδ sets in D(n1) ∩U (n1). By Theorem 3.3, D(n1) and U (n1)

are g-open in X(n1) and X(n1) is a g-Volterra space, then D(n1) ∩ U (n1) is a weakly g-Volterra space.

Therefore
{⋂
n,α

(D(n1)∩U (n1)∩G(n1)
n,α )

}
∩
{⋂
n,α

(D(n1)∩U (n1)∩H(n1)
n,α )

}
is non-empty. Then there exists

b1 ∈ U (n1) such that b1 ∈
{⋂
n,α

(D(n1) ∩ U (n1) ∩G(n1)
n,α )

}
∩
{⋂
n,α

(D(n1) ∩ U (n1) ∩H(n1)
n,α )

}
which implies

that b1 × Y (n1) ⊂ U (n1) × Y (n1) ⊂ A ∩M1 ∩ N1. Thus Mn(b1) and Nn(b1) are g-dense g-open sets
in Y (n1).

Next, we prove the result by induction on k.
Suppose that n1 < n2 < n3 · · ·nk and bi ∈ X(ni−1,ni), i = 1, 2, 3, . . . k such that

(i) (b1, b2, . . . , bk)× Y (nk) ⊂ A ∩Mk ∩Nk,
(ii) Mn(b1, b2, . . . , bk) and Nn(b1, b2, . . . , bk) are g-dense g-open in Y (nk) for n = 1, 2, 3, . . . .

SinceX has a countable g-pseudo-base, there is a basic g-open set U (nk+1)×Y (nk+1) such that U (nk+1)×
Y (nk+1) ⊂ A ∩Mk+1(b1, b2, . . . , bk) ∩Nk+1(b1, b2, . . . , bk). We define H

(nk+1)
n,α and G

(nk+1)
n,α , the projec-

tions of X(nk,nk+1), then bk+1 ∈
⋂
n,α

[D(nk+1)∩U (nk+1)∩H(nk+1)
n,α ∩G(nk+1)

n,α ]. Also,Mn(b1, b2, . . . , bk) and

Nn(b1, b2, . . . , bk) are g-dense g-open in Y (nk+1). We choose bk+1×Y (nk+1) ⊂Mk+1(b1, b2, . . . , bk), then
b1, b2, . . . , bk, bk+1×Y (nk+1) ⊂Mk+1. Thus (b1, b2, . . . , bk)×Y (nk) ⊂ A∩Mk∩Nk and (b1, b2, . . . , bk)×
Y (nk) ⊂ G which implies that (b1, b2, . . . , bk)× Y (nk+1) ⊂ G∩Mk+1 ∩Nk+1. Hence the conditions are
satisfied for k + 1. Therefore the sequences {nk} and {bk} are satisfied with every positive integer k.
Let x ∈ X and there exists a sequence {bk} such that x ∈ G ∩Mk ∩Nk for all k which implies that
x ∈ G ∩ (∩Mk) ∩ (∩Nk). Therefore x ∈ G ∩M ∩N which implies that M ∩N is non-empty. Hence
M ∩N is g-dense in X. Thus Π

α∈J
Xα is a g-Volterra space. □

5. Product of g-Baire Space and g-Volterra Space in Generalized Topological
Spaces

In this section, we show that the product of a g-Baire space and g-Volterra space with a countable
g-pseudo-base is g-Volterra.

Theorem 5.1. Let X and Y be generalized topological spaces. Let X be a g-Baire space and Y be a
g-Volterra space with a countable g-pseudo-base, then X × Y is a g-Volterra space.

Proof. Let X be a g-Baire space and Y be a g-Volterra space with a countable generalized pseudo-base
{Vα}. Suppose that X × Y is not a g-Volterra space. Then there exists a g-open set U × V in X × Y
such that U × V is not a weakly g-Volterra space. Let M and N be two g-dense Gδ sets in U × V
such that M ∩ N = ∅. Since M and N are Gδ sets, hence M =

⋂
n=1

∞Mn and N =
⋂
n=1

∞Nn, where

Mn and Nn are g-open sets. Again, M and N are g-dense, then Mn and Nn are g-dense. For each
n, α, we define hn,α =Mn ∩ (U × Vα), gn,α = Nn ∩ (U × Vα), Hn,α = pX(hn,α) and Gn,α = pX(gn,α)
such that Hn,α and Gn,α are g-dense g-open sets in U . Since Mn is g-dense in U × V , this implies
that Mn ∩ (U × Vα) is g-dense in U × Vα. Thus hn,α is g-dense in U × Vα. Let U1 be any g-open
set in U . Then U1 × Vα is a g-open set in U × Vα. Therefore (U1 × Vα) ∩ hn,α ̸= ∅ which implies
that U1 ∩ pX(hn,α) ̸= ∅ which further implies that U1 ∩Hn,α ̸= ∅. Thus each Hn,α is g-dense in U ,
U ∩Hn,α and U ∩Gn,α are g-dense g-open sets in U .

Since U is g-Baire,
⋂
n,α

[U ∩Hn,α] and
⋂
n,α

[U ∩ Gn,α] are g-dense Gδ sets in U and
⋂
n,α

[U ∩Hn,α] ∩

[
n,α
U ∩ Gn,α] is non-empty. Therefore there exists x ∈ U such that

⋂
n,α

[U ∩ Hn,α ∩ Gn,α] which

implies that x ∈ Hn,α ∩ Gn,α for every n, α. We define M(x) = {y ∈ V such that (x, y) ∈ M} and
N(x) = {y ∈ V such that (x, y) ∈ N}. Then M(x) and N(x) are g-dense Gδ sets in V . Since Y is a
g-Volterra space and also V is a weakly g-Volterra space, this implies that M(x) ∩ N(x) ̸= ∅. Thus
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M ∩N ̸= ∅ which is a contradiction. Therefore M ∩N is nonempty and U ×V is a weakly g-Volterra
space. Clearly, X × Y is a g-Volterra space. □
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