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DYNAMICAL THERMOSTABILITY OF ORTHOTROPIC SHELLS OF
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Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. Dynamical thermostability of closed orthotropic shells of revolution, close by their form

to cylindrical ones, with an elastic filler and under the action of meridional stresses, external pres-
sure and temperature, is investigated. We consider the shells of middle length whose midsurface

generatrix is a parabolic function. The shells of positive and negative Gaussian curvature are also

considered. Formulas for finding the lowest frequencies, critical loadings and boundaries of domains
of dynamical instability depending on orthotropy parameters, Gaussian curvature, initial stressed

state, temperature and amplitude of deviation from cylindrical form, are obtained.

In the present paper, we consider dynamical thermostability of closed orthotropic shells of revolu-
tion, close by their form to cylindrical ones with an elastic filler and under the action of meridional
stresses, uniformly distributed over the shell ends, external pressure and temperature. We consider
a light filler for which the effect of tangential stresses on the contact surface and inertia forces may
be neglected. Temperature is uniformly distributed in the shell body. The shell is assumed to be
thin and elastic. An elastic filler is modeled by a Winkler base, its extension due to heating is not
taken into account. We investigate the shells of middle length in which the shape of generatrix of
the median surface is a parabolic function. The shells of positive and negative Gaussian curvature
are also considered. The boundary conditions at the wall-ends correspond to a free support allowing
some radial displacement in the initial state.

When solving the questions under consideration, the focus was on identifying the most dangerous
area of dynamical instability and the lowest frequencies, practically the most important. Formulas and
universal curves of dependence of the lowest frequency, the shape of wave formation and boundaries
of regions of dynamical instability on the Gaussian curvature, orthotropy parameters, temperature
and amplitude of shell deviation from the cylinder, are obtained in dimensionless form. It is shown
that the elastic orthotropy parameters affect significantly the lowest frequency and the principal area
of dynamical instability. The degree of influence of orthotropy parameters under a separate and joint
action of the above-mentioned external forces both on the lowest frequencies and on the boundaries
of the region of dynamical instability, is shown.

1. We consider the shells whose middle surface is formed by the rotation of a quadratic parabola
around the z-axis of the rectangular system of coordinates x, y, z with the origin in the midsegment of
the rotation axis. It is assumed that the cross-section radius R of a middle surface is determined by
the equality R = r+δ0

[
1−ξ2(r/ℓ)2

]
, where r is the end-wall section radius, δ0 is a maximal deviation

from cylindrical form (for δ0 > 0, the shell is convex and for δ0 < 0, it is concave), L = 2ℓ is the shell
length, ξ = z/r.

We consider the shells of middle length [8] and it is assumed that(
δ0/r

)2 ≪ 1,
(
δ0/ℓ

)2 ≪ 1. (1.1)

As the basic equations of oscillations we take the equations of the theory of shallow shells [7]. For
orthotropic shells of middle length, the forms of oscillations, corresponding to the lowest frequencies,
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vary weakly in a longitudinal direction in comparison with the circumferential, therefore the relation

∂2f

∂ξ2
≪ ∂2f

∂φ2
(f = w,ψ), (1.2)

is valid; here, w and ψ are, respectively, the functions of radial displacement and stress. As a result,
the system of equations for the shells under consideration reduces to the following equation [3, 6]:

ε
∂8w

∂φ8
+
E1

E2

(∂4w
∂ξ4

+ 4 δ
∂4w

∂ξ2 ∂φ2
+ 4 δ2

∂4w

∂φ4

)
− t01

∂6w

∂ξ2 ∂φ6

− t02
∂6w

∂φ6
− 2 s0

∂6w

∂ξ ∂φ5
− γ

∂4w

∂φ4
− ρ r2

E2

∂2

∂t2

(∂4w
∂φ4

)
= 0, (1.3)

ε = h2/12 r2(1− v1v2), δ = δ0 r/ℓ
2, ti = T 0

i /E2h (i = 1, 2),

s0 = S0/E2h, γ = βr2/E2h,

E1, E2, v1, v2 are, respectively, the elastic moduli and the Poisson coefficients in the axial and
circumferential directions (E1v2 = E2v1); T

0
1 , T

0
2 are meridional and circumferential normal forces of

the initial state; S0 is the shearing stress of the initial state; h is a shell thickness; ρ is density of the
shell material; β is the “bed” coefficient of an elastic filler (characterizing a filler rigidity); φ is an
angular coordinate; t is time.

The initial state is assumed to be momentless. On the basis of the corresponding solution and taking
into account the reaction of the filler and also inequalities (1.1), we obtain the following approximate
expressions:

T 0
1 = P1

[
1 +

δ0
2

(
ξ2(r/ℓ)2 − 1

)]
+ qδ0

[
ξ2(r/ℓ)2 − 1

]
,

T 0
2 = −2P1δ0

r

ℓ2
− qr + β0rw0, S0 = 0,

(1.4)

where w0 and β0 are, respectively, the deflection and “bed” coefficient of the filler in the initial state,
P1 is meridional stress, q is external pressure.

In view of (1.2), we get∣∣∣ξ2(r/ℓ)2 − 1
∣∣∣∂2w
∂ξ2

≪ 2(r/ℓ)2
∂2w

∂φ2
,

δ0
r

∣∣∣ξ2(r/ℓ)2 − 1
∣∣∣∂2w
∂ξ2

≪ ∂2w

∂φ2
.

Therefore expressions (1.4) after substitution into equation (1.3) can be simplified. Thus they take
the form

T 0
1 = P1, T 0

2 = −2P1δ0r/ℓ
2 − qr + w0β0r, Ti = σ0

i h (i = 1, 2). (1.5)

In view of the fact that in the initial state, the shell deformation in circumferential direction ε0φ is
defined by the equalities

ε0φ =
σ0
2 − v2σ

0
1

E2
+ α2T, ε0φ = −w0

r
,

where α2 is the coefficient of linear extension in the circumferential direction and T is temperature,
we obtain

w0 =
(
− σ0

2 + v2σ
0
1

) r
E2

− α2Tr. (1.6)

Substituting expression (1.6) into (1.5), we get

T 0
2

E2h
=
σ0
2

E2
= − qr

E2h
− 2

P1

E2h
δ + v2

σ0
1

E2

β0r

E2h
− α2T

β0r
2

E2h
− σ0

2

E2

β0r
2

E2h
.

Introducing the notations

E1 = e1E, E2 = e2E,

qr

Eh
= q,

P1

Eh
= −p, β0r

2

Eh
= γ0, 1 + γ0e

−1
2 = g.
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expressions (1.5) take the form

− σ0
1

E2
= −e−1

2 p, − σ0
1

E2
=

(
q − 2 pδ + v1pγ0 + α2Tγ0

)
e−1
2 g−1. (1.7)

Note that due to the nearness of R to r, in the expressions for stresses (1.7) we admit R ≈ r.
Consequently, equation (1.3) takes the form

ε
∂8w

∂φ8
+
e1
e2

[∂4w
∂ξ4

+ 4 δ
∂4w

∂ξ2∂φ2
+ 4

(
δ2 + γ/4e1

)∂4w
∂φ4

]
+
(
q − 2pδ + v1pγ0 + α2Tγ0

)
e−1
2 g−1 ∂

6w

∂φ6
+ p

∂6w

∂ξ2∂φ4
e−1
2 +

ρr2

E

∂2

∂t2

(∂4w
∂φ4

)
e−1
2 = 0. (1.8)

Let us consider first harmonic oscillations. The given boundary conditions of free support and equation
(1.8) are satisfied by the solution

w = Amn cosλmξ sinnφ cosωmnt, λm = mπr/2ℓ (1.9)

(m = 2i+ 1, i = 0, 1, 2, . . . ).

Substituting expression (1.9) into (1.8), to determine eigenfrequencies, we obtain the following
equalities (in the sequel, for ωmn, the indices m and n well be omitted)

ω2 =
E

ρr2

[
e2εn

4 + e1
(
λ4mn

−4 + 4 δλ2mn
−2 + 4(δ2 + γ/4e1)

)
− p(λ2m − 2 δ̃n2)− (q + α2Tγ0)g

−1n2
]
.

Introduce the notations

δ̃ = (δ − 0, 5 v2γ0)g
−1, δ

2
= δ2 + γ/4e1, q̃ = (q + α2Tγ0)g

−1.

Then

ω2 =
E

ρr2

[
e2εn

4 + e1
(
λ4mn

−4 + 4 δλ2mn
−2 + 4 δ

2)− p
(
λ2m − 2 δ̃n2

)
− q̃n2

]
. (1.10)

It is not difficult to see that for p = 0, δ > 0 to the lowest frequency there corresponds the value
m = 1. It can also be shown that this condition holds for δ < 0 by taking into account inequalities
(1.1) and the fact that ω2 > 0. Thus let us first consider the forms of oscillations under which we
have only one half-wave (m = 1) over the shell length, while in the circumferential direction we have
n waves. For the compression, we have p > 0, and for the tension, p < 0; q is a normal pressure which
is assumed to be positive if it is exterior.

Let expression (1.10) be dimensionless. Towards this end, we introduce the following dimensionless
values:

Θ = (e1/e2)
1/4N, N = n2/n20, P = P/

√
e1e2, P = p/p∗,

Q̃ =
q̃

q0∗
, q̃ = (q + α2Tγ0)g

−1,

n20 = λ1ε
1/4, p∗ = 2ε1/2, q0∗ = 0, 855(1− v1v2)

−3/4
(h
r

)3/2 r

L
,

δv∗ = (e1/e2)
1/4δ∗, δ∗ = δε

−1/2
∗ ,

δ̃v∗ = (e1/e2)
1/4

(
δ − 1

2
v2γ0

)
ε
−1/2
∗ g−1,

δ
v2

∗ = (e1/e2)
1/2

(
δ2∗ +

γ∗
4e1

)
= δv

2

∗ + (e1e2)
−1/2 γ∗

4
, γ∗ = γε−1

∗ ,

ω2
∗ = 2λ21ε

1/2 E

ρr2
, ε∗ = (1− v1v2)

−1/2h

r

( r
L

)2

,

(1.11)

where p∗, qo∗ and ω∗ are, respectively, compression critical loading, critical pressure and the lowest
frequency for a cylindrical isotropic shell of middle length [2, 8]. Thus equality (1.10) can be written
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in the following dimensionless form:

ω2(Θ)/ω2
∗ = 0, 5

√
e1e2

[
Θ2 +Θ−2 + 2, 37 δv∗Θ

−1 + 1, 404 δ
v2

∗

− 1, 755 e
−1/4
1 e

−3/4
2 ΘQ̃− 2P

(
1− 1, 185 δ̃v∗Θ

)]
. (1.12)

The lowest frequency (for ω2(Θ) > 0) is determined by means of the condition [ω2(Θ)]′ = 0. As a
result, we get

0, 8775 e
−1/4
1 e

−3/4
2 Q̃− 1, 185 δ̃v∗P = Θ− 1, 185 δv∗Θ

−2 −Θ−3, (1.13)

or

Θ4 −
(
0, 8775 e

−1/4
1 e

−3/4
2 Q̃− 1, 185 δ̃v∗P

)
Θ3 − 1, 185 δv∗Θ− 1 = 0. (1.13′)

For Q̃ = P = 0, this implies that

Θ4 − 1, 185 δv∗Θ− 1 = 0.

This equation has been considered in [3] for an isotropic shell. Investigating the roots of this
equation analogous to [3], we obtain

Θ =
√

1− 0, 0876 δ2∗(e1/e2)
1/2 + 0, 2962 δ∗(e1/e2)

1/4 (δ∗ > 0),

Θ =
√

1− 0, 0876 δ2∗(e1/e2)
1/2 − 0, 2962 δ∗(e1/e2)

1/2 (δ∗ < 0).

(1.14)

In particular, for δ∗ = 0, we obtain the well-known formula for a cylindrical orthotropic shell of
middle length (n2 = (e1/e2)

1/4λ1ε
−1/4) [6].

By Θ0 we denote the value of Θ, which can be defined by (1.14). The obtained in such a way Θ0

(for fixed e1, e2, δ∗) and substituting it into (1.12) (for Q̃ = P = 0), we obtain the lowest frequency
ω(Θ0). For clarity, we pass to the value N = Θ(e1/e2)

1/4.
In Figures 1 and 2 we can see the graphs of dependence of N0 = n2/n20 and ω(N0)/ω∗ on the

parameter δ∗ for the cases e1 = e2 = 1(0); e1 = 1, e2 = 2(1), e1 = 2, e2 = 1(2), the curves are denoted
by N0(i)u(i), i = 0, 1, 2. It is not difficult to see that for convex shells (δ > 0) the role of an elastic
parameter in the axial direction is greater than in circumferential one, while for concave shells (δ < 0),
we have an opposite phenomenon.

For ω = 0, P = 0, equality (1.12) yields

1, 755 e
−1/4
1 e

−3/4
2 Q̃ = Θ+Θ−3 + 2, 37 δv∗ Θ

−2 + 1, 404 δ
v2

∗ Θ−1. (1.15)

The lowest value Q̃ > 0 depending on Θ is realised for Q̃′
Θ = 0. Thus we obtain

Θ4 − 1, 404 δ
v2

∗ Θ2 − 4, 74 δv∗ Θ− 3 = 0.

The positive root of this equation Θ = Θ∗ (N = N∗) corresponds to a number of waves in the

circumferential direction under which critical loading is realized upon the loss of the stability Q̃∗.
This equation for the orthotropic shell, analogous to the equation for isotropic one, has been con-
sidered in [3], where the expression for a positive root is given explicitly. Generalizing this result to
the orthotropic case, we present the corresponding curves of dependence of N∗ on δ∗ for the cases
i = 0, 1, 2 considered above. In Figure 1, these curves are denoted respectively by N∗(i). The graphs

of dependence of Q̃∗ on δ∗ for these cases are given in Figure 3.

Owing to equality (1.13) (for P = 0), it is not difficult to constract the curves N(Q̃) realizing the
lowest frequency for different values e1, e2, δ∗, γ∗, T . Towards this end, we fix these parameters and

having the values of Θ from the interval Θ0 ≤ Θ ≤ Θ∗ (see [3]), we find the value of Q̃ by formula
(1.13). Substituting these values into formula (1.12), we obtain (for the case P = 0) the corresponding
value of the lowest frequency. In Figure 4, we can see the curves of dependence of the lowest frequency

ω/ω∗ on Q̃ (when γ = 0) for δ∗ = 0, 4 and δ∗ = −0, 4, when i = 0, 1, 2. The curves are denoted by
(0)+, (1)+, (2)+ and (0)−, (1)−, (2)−, respectively.
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Let us now consider general cases P ̸= 0, Q̃ ̸= 0. As it has been shown above, the frequency is
defined by equality (1.12). For ω = 0, in view of (1.12), we obtain

1, 755 e
−1/4
1 e

−3/4
2 Q̃ = Θ+Θ−3 + 2, 37 δv∗ Θ

−2 + 1, 404 δv
2

∗ Θ−1 − 2P
(
Θ−1 − 1, 185 δv∗

)
.

The lowest value Q̃ > 0 depending on Θ is realized for Q̃′
Θ = 0. Thus we get

Θ4 + cΘ2 + dΘ+ e = 0, c = 2P − 1, 404 δv
2

∗ , d = −4, 74 δv∗ , e = −3.

The roots of the above equation coincide with the roots of the two quadratic equations which
are given explicitly for an isotropic shell in [3]. Generalizing our investigation of these roots to an
orthotropic case, we obtain

Θ1,2 =

√√
3 + 0, 234

(
δv2

∗ + 3/4e1 γv∗
)
− P ± 0, 684 |δv∗ |,

where the index “1” corresponds to δ∗ > 0, and the index “2” corresponds to δ∗ < 0. Taking into
account that Θ in an expanded form Θ = (e1/e2)

1/4 n2/λ1ε
−1/4, we arrive at

n21,2 = (e1/e2)
1/4

{(√
3 + 0, 234(e1/e2)

1/2ε−1/2
[
(δ0/ℓ)

2 + 3/4 γ/e1 (ℓ/r
2
]
− P

)1/2
± 0, 735(e1/e2)

1/4 ε−1/4 |δ0|/ℓ
}
λ1 ε

−1/4. (1.16)

In particular, for δ∗ = p = γ = 0, we obtain the well-known formula for a critical wave number
of the cylindrical shell of middle length n2 = (e1/e2)

1/4λ1 ε
−1/4

√
3 [5]. It can be easily noticed that

under the action of contractive forces a number of critical waves in circumferential direction decreases,
while under the action of tensile forces this number of critical waves increases.

Let us now consider equation (1.13′) and write it in the form

Θ4 + bΘ3 + dΘ+ e = 0, b = 1, 185 δv∗ P − 0, 8775Q,

d = −1, 185 δv∗ , e = −1, Q = Q̃ e
−1/4
1 e

−3/4
2 .

(1.17)

Conducting a study of roots of that equation, similar to that carried out in [3], we find that the
positive roots of equation (1.17) take the form

Θ1 =
[
1 + 0, 1755 δ̃v

2

P M1

(
1− P

2
M2

1

)
− 0, 0877 δ̃v

2

∗
(
1 + 2P M1 − 2P

2
M2

1

)]1/2
+ 0, 2962 δ̃v∗(1− P M1) (δ∗ > 0),

Θ2 =
[
1 + 0, 1755 δ̃v

2

P M2

(
1− P

2
M2

2

)
− 0, 0877 δ̃v

2

∗
(
1 + 2P M2 − 2P

2
M2

)]1/2
− 0, 2962 δ̃v∗(1− P M2) (δ∗ < 0),

M1 = 1− 0, 7405Q/δv∗ P , M2 = 1 + 0, 7405Q/|δv∗ |P .

Substituting the obtained expression for Θ (for fixed P , Q, γv) into formula (1.12), we obtain the
lowest value for dimensionless frequency ω/ω∗.

Next, consider the value m > 1. Using notations (1.11), formula (1.10) can be represented as
follows:

ω2/ω2
∗ = 0, 5

√
e1e2m

2
[
Θ

2
+Θ

−2
+ 2, 37 δv∗ Θ

−1
m−1 + 1, 404 δ

v2

∗ m−2

−2P
(
1−1, 185 δ∗ Θm−1

)
−1, 755 e

−1/4
1 e

−3/4
2 Θ Q̃m−1

]
, Θ = Θ/m. (1.18)

Let us consider the expression for finding critical loading Q̃ > 0. The right-hand side in (1.18)
vanishes for

1, 755 e
−1/4
1 e

−3/4
2 Q̃ = m

(
Θ+Θ

−3 − 2P Θ−1
)
+ 2, 37 δv∗ Θ

−2

+ 1, 404 δ
v

∗ Θ
−1m−1 + 2, 37P δ̃v∗ . (1.19)
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The value Θ realizing the lowesr value Q̃ (for fixed m) is determined by a positive root of the
equation

Θ
4
+
(
2P − 1, 404 δ

v2

m

)
Θ

2 − 4, 74 δvm Θ− 3 = 0, δvm = δv∗/m.

Analogously to the above-said (replacing δv∗ by δvm), we have

Θ =
[√

3 + 0, 234
(
δv

2

∗ + 3/4γv∗
)
m−2 − P

]1/2
+ 0, 684

δv∗
m

(δv∗ > 0),

Θ =
[√

3 + 0, 234
(
δv

2

∗ + 3/4γv∗
)
m−2 − P

]1/2 − 0, 684
|δv∗ |
m

(δv∗ < 0).

(1.20)

Substituting (1.20) into formula (1.19) (for fixed m, e1, e2, δ
v
∗ , γ

v
∗ , P ), we obtain the corresponding

value Q̃kp.

Consider now expression (1.18). The lowest value ω2 depending on Θ (for fixed m) is determined
from the condition [ω2]′

Θ
= 0. Thus we obtain

Θ
4
+ bΘ

3
+ dΘ+ e = 0, b = 1, 185P δ̃vm − 0, 8775Θm, d = −1, 185 δvm, e = 1,

Qm = Q/m, δvm = δv∗/m, Q = e
−1/4
1 e

−3/4
2 Q̃.

This equation is the same as equation (1.17), where we have replace δv∗ by δvm, δ̃v∗ by δ̃vm and Q by Qm.
So, we obtain

Θ =
[
1 + 1, 765 δ̃v

2

m P M1(1− P
2
M2

1 )− 0, 08775 δ̃v
2

m (1 + 2PM1

− 2P
2
M2

1 )
]1/2

+ 0, 2962 δvm(1− P M1) (δ∗ > 0),

Θ =
[
1 + 1, 755 δ̃v

2

m P M2(1− P
2
M2

2 )− 0, 08775 δ̃v
2

m (1 + 2P M2

− 2P
2
M2)

]1/2
− 0, 2962 |δvm|(1− P M2) (δ∗ < 0),

(1.21)

whereM1,2 = 1∓
(
0, 7405Q/|δv∗ |P

)
; the index “1” corresponds to δ∗ > 0 and the index “2” corresponds

to δ∗ < 0.
Substituting (1.21) into formula (1.18) (for fixed m, e1, e2, δ

v
∗ , γ

v
∗ , P , Q), we obtain the values of

the lowest frequecies for different fixed m.
The carried out calculations show that the orthotropy parameters e1, e2 affect significantly the

lowest frequencies of the prestressed shell, whereas the influence of these parameters on the higher fre-
quencies is practically insignificant. At the same time, the influence of meridional loading is significant
both on the lowest and on the higher frequencies.

2. Let us now consider the case for

q1 = q0 + qt cosΩt, P1 = P0 + Pt cosΩt, T1 = T0 + Tt cosΩt.

A solution of equation (1.8) will be sought in the form

w = fmn(t) cosλmξ sinnφ, λm =
mπr

2 ℓ
, m = 2i+ 1 (i = 0, 1, 2, . . . ).

Substituting this solution into (1.8) and requiring that the latter be satisfied for any ξ and φ, we have

d2fmn

dt2
+

E

ρr2

[
e2εn

4 + e1
(
λ4mn

−4 + 4 δ λ2mn
−2 + 4(δ2 + γ/4e1)

)
− p(t)(λ2m − 2 δ̃ n2)−

(
q1(t) + α2 T1(t) γ0

)
g−1n2

]
fmn = 0. (2.1)

Frequencies of eigenoscillations of orthotropic shell (for q1 = q0, P1 = P0, T1 = T0) are determined
from equation (2.1) by putting fmn = C sinωmnt, and they are expressed by formula (1.10). Since
equation (2.1) is identical for all forms of oscillations, the indices m, n may be omitted.
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Analogously to the above, we introduce dimensionless values (1.11) and Θ = Θ/m. We write
equation (2.1) in the form

d2f

dt2
+ 0, 5m2 ω2

∗

{
Θ

2
+Θ

−2
+ 2, 37 δvmΘ

−1
+ 1, 404 δ

v2

m − 2(P 0 + P t cosΩt)(1− 1, 185 δvm Θ)

−1, 755
[
(Θ0 + α2 γ T̃0) + (Θt + α2 γ T̃t) cosΩt

]
g−1Θm−1

}
f = 0. (2.2)

where

Qi = e
−1/4
1 e

−3/4
2 Qi, P i = e

−1/2
1 e

−1/2
2 Pi,

T̃i = e
−1/4
1 e

−3/4
2 T i (i = 0, t), ω2

∗ =
√
e1e2pω

2
∗,

Qi = q/q0∗, Pi = pi/p0∗, T i = Ti/q0∗.

Further, we introduce the notation

Q̃i = e
−1/4
1 e

−3/4
2

(
Qi + α2γ T i

)
g−1.

and reduce equation (2.2) to the standard form of the Mathieu equation

d2f

dt2
+ ω2(Θ)

[
1− 2µ(Θ) cosΩt

]
= 0, (2.3)

ω2(Θ) = ω2
0(Θ)

[
1−M0(Θ

]
, ω2

0(Θ) = 0, 5ω2
∗m

2D(Θ), (2.4)

ω2
∗ = 2λ1ε

1/2√e1e2
E

ρr2
,

D(Θ)=Θ2+Θ
−2

+2, 37 δvmΘ
−1

+1, 404 δ
v2

m , δ
v2

m =
δ
v2

x

m2
=
(
δv

2

m +
√
e1e2

γ∗
4

)
m−2,

µ(Θ) =
Mt(Θ)

2[1−M0]
, M0(Θ) =

P0

P (Θ)
+

Q0

Q̃(Θ)
, Mt(Θ) =

Pt

P (Θ)
+

Qt

Q̃(Θ)
, (2.5)

P (Θ) =
D(Θ)

2(1− 1, 185 δvmΘ)
, Q̃(Θ) =

D(Θ)

1, 755 e
−1/4
1 e

−3/4
2 m−1Θ

. (2.6)

If P (t)

Q̃(t)
= χ, then

P i

Q̃i

= χ, Q̃i = e
−1/4
1 e

−3/4
2

(
Qi + α2 γ Ti

)
g−1, i = 0, t

and we get

M0 =
Q̃0

Q̃c

, Mt =
Q̃t

Q̃c

, Q̃c =
D(Θ)

2χ(1− 1, 185 δ̃vmΘ) + 1, 755 e
−1/4
1 e

−3/4
2 m−1Θ

.

The value µ is usually called an excitation coefficient. The solution of equation (2.3) has been
studied in a cycle of works, where it was mentioned that for the certain relations between µ,Ω, ω and
t→ ∞ a solution of equation (2.3) will infinitely grow in areas of instability. Generalizing the results
of [1] to the shell under consideration, we will give below the following formulas. To show the influence
of orthotropy parameters and temperature on the location of domains of dynamical instability, we first
of all consider the case for Pt → 0 (µ→ 0). In this connection, we find that these domains are located
in the vicinity of frequencies

Ω∗ = 2ω(Θ)/k.

Depending on the number k, we distinguish the first, second, third and so on domains of dynamical
instability. The domain of instability (k = 1) lying in the vicinity of Ω∗ = 2ω(Θ), when ω(Θ) takes
the lowest value, is the most dangerous and hence is of the greatest practical value. This domain is
called a principal domain of dynamical instability.
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For Pt, other than zero, the boundaries of the principal domain of instabiliti takes the following
form:

Ω∗ = 2ω(Θ)

√
1± µ(Θ).

Taking into account resistance forces, proportional to the first derivative of displacement in time
(with damping coefficient ε), the formula for determining the boundaries of the principal domain of
instability takes the form

Ω∗ = 2ω(Θ)

√
1±

√
µ2(Θ)− (∆/π)2, ∆ = 2πε/ω(Θ), (2.7)

where the terms involving higher degrees ∆/π are rejected, taking into account the fact that the
damping factor ∆ is usually very small compared with unity.

The values of ω(Θ), P (Θ), µ(Θ) are determined by virtue of formulas (2.4), (2.5), (2.6), where
m and Θ correspond to the lowest value of ω(Θ). For m = 1, owing to formula (1.18), we have
Θ = (e2/e1)

1/4N . It follows from formula (2.7) that the minimal value of the excitation coefficient
(critical) for which undamped oscillations are still possible, is determined by the equality

µ∗1 = ∆/π.

For the boundary of the second domain of instability (k = 2), the formula

Ω∗ = ω(Θ)

√
1 + µ2(Θ)±

√
µ4(Θ)− (∆/π)2

[
1− µ2(Θ)

]
holds.

In the given case, the critical value of the excitation coefficient is determined approximately by
the equality µ∗2(Θ) = (∆/π)1/2. Analogously, generalizing the results obtained in [1], we can present
likewise formulas for the third domain of dynamical instability which is practically rarely realized.

Relying on the formulas given above, it is not difficult to determine the intervals of change of exciting
frequencies (depending on e1, e2, δ∗, P0, Pt, Q0, Qt, T0, Tt) falling into the domains of dynamical
instability. The formulas obtained above for the problems under consideration make it quite easy to
determine how significantly the parameters of orthotropy, temperature and acting loading can affect
the boundaries of domains of dynamical instability.

Figure 1
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Figure 2

Figure 3



422 S. KUKUDZHANOV

Figure 4
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