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ON ONE PROBLEM OF THE PLANE THEORY OF VISCOELASTICITY FOR A

CIRCULAR PLATE WITH POLYGONAL HOLE
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Abstract. The problem of the plane theory of viscoelasticity for a circular plate with a polygonal

hole is considered according to the Kelvin–Voigt model. The external boundary of the plate is
assumed to be subjected to the normal contractive force (pressure), and a rigid smooth washer of

a somewhat larger size is embedded into the hole in such a way that normal displacements of the

boundary points take constant values, in the absence of friction.
Using the methods of conformal mappings and boundary value problems of analytic functions,

the unknown complex potentials are constructed efficiently (in an analytic form). The estimates of

these potentials in the vicinity of angular points are given.

Introduction

As is known (see [5,6]), the methods of conformal mappings and boundary value problems of ana-
lytic functions are successfully applied to simply connected domains mapped onto a circle by rational
functions, but they are less applicable to multiconnected (including doubly-connected) domains. For-
mulas analogous to those of Christophel–Schwartz for doubly-connected domains, obtained in [2],
allow one to solve the mentioned problems efficiently (in an analytic form) in the case of doubly-
connected domains and their modifications which may appear when passing to the limit. Of interest
is the extension of these results to the problems of the plane theory of viscoelasticity.

The present paper considers one of such problems for a circular domain with a polygonal hole for
a viscoelastic plate according to the Kelvin–Voigt model [1, 7].

Statement of the problem. Let a viscoelastic plate on the plane z of complex variable occupy
a doubly-connected domain S which is bounded by a circumference L0 = {|z| = R0} and a convex
polygon (A) with vertices at the points Aj (j = 1, n). By L1 we denote the polygonal boundary (i.e.,

L1 =
n⋃

k=1

L
(k)
1 , L

(k)
1 = AkAk+1 (k = 1, n,An+1 = A1) ) and by πα0

j the inner with respect to S angles

at vertices Aj . The angle lying between the Ox-axis and exterior normal to the contour L1 at the

point σ ∈ L1 we denote by α(σ), i.e., α(σ) = α
(j)
1 = const, σ ∈ L

(j)
1 , (j = 1, n).

Assume that the boundary L0 is under the action of uniformly distributed normal pressure P0, and
a rigid smooth disc of somewhat larger size is embedded into the polygon (A) so that on the segments

of L
(j)
1 we have the values of normal displacement vn(σ) = v

(j)
1 = const (j = 1, n) and the friction is

absent. The given boundary conditions simplify the process of solving, but do not change the essence
of the problem.

The aim of the present paper is to determine complex potentials characterizing stress and displace-
ment distribution in the plate by the Kelvin–Voigt model.

Solution of the problem. Here, we present some results following from the works [5, 8] and [3].
1. Conformal mapping of the domain S onto a circular ring D = {1 < |ζ| < R} is realized by the

function z = ω(ζ) whose derivative is a solution of the Riemann–Hilbert boundary value problem for
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a circular ring D

Re [iξe−iα(ξ)ω′(ξ)] = 0, ξ ∈ l1; Re [iω′(ξ)] = 0, ξ ∈ l0,

where l1 and l0 are the preimages of contours L1 and L0 under the mapping z = ω(ζ), i.e.,

l1 = {|ζ| = 1}; l0 = {|ζ| = R}, and for the condition
n∏

k=1

(ak)
a0
k−1 = 1, it has the form

ω′(ζ) = K0
n∏

k=1

(
1− ak

ζ

)a0
k−1 n∏

k=1

∞∏
j=1

(
1− ζ

R2jak

)a0
k−1(

1− ak
R2jζ

)a0
k−1

, (1)

where K0 is the real constant, ak = ω−1(Ak) (k = 1, n).
2. The boundary conditions of the first and second basic problems for a viscoelastic plate S have

by the Kelvin–Voigt model the form

φ(σ, t) + σφ′(σ, t) + ψ(σ, t) = i

σ∫
0

(Xn + iYn)ds+ c1 + ic2, (2)

Γφ(σ, t)−M
[
φ(σ, t) + σφ′(σ, t) + ψ(σ, t)

]
= 2µ∗(u+ iv), σ ∈ L = L0 ∪ L1, (3)

where t denotes here and in the sequel the parameter of time; Γ and M are the operators of time t,

Γφ(σ, t) =

t∫
0

[
κ∗ek(τ−t) + 2em(τ−t)

]
φ(σ, τ)dτ,

M
[
φ(σ, t) + σφ′(σ, t) + ψ(σ, t)

]
=

t∫
0

em(τ−t)
[
φ(σ, τ) + σφ′(σ, τ) + ψ(σ, τ)

]
dτ, σ ∈ L.

(4)

Since the given domain is doubly-connected, it is advisable to use the functions Φ(z, t) = φ′(z, t)
and Ψ(z, t) = ψ′(z, t) which are single-valued in the case of a multiconnected domain, as well.

Taking into account that

Xn + iYn = (N + iT )eiv(σ) = −i(N + iT )
dσ

ds
,

from (2), by differentiation with respect to σ, we obtain [5]

Φ(σ, t) + Φ(σ, t) + σ′2
s

[
σΦ′(σ, t) + Ψ(σ, t)

]
= N − iT, σ ∈ L. (5)

Analogously, in view of the equlities

u+ iv = (vn + ivτ )e
iα; vτ = 0, vn = v(j)n = const, T (σ) = 0, σ ∈ L

(j)
1 (j = 1, n);

vn = v(0)n = const, vτ = 0, T (σ) = 0, N(σ) = P0; eiα =
σ

R0
, σ ∈ L0,

from (3), by differentiation with respect to σ, we get

Γ[Φ(σ, t)]−M [N − iT ] =

{
2µ∗v

(0)
n R−1

0 , σ ∈ L0

0, σ ∈ L1.
(6)

Since N(σ) = P0, σ ∈ L0; T (σ) = 0, σ ∈ L from (6) follows the boundary value problem

ReΓ[Φ(σ, t)] = P (t), σ ∈ L0; ImΓ[Φ(σ, t)] = 0, σ ∈ L1, (7)

where

P (t) = P0F (t) + 2µ∗R−1
0 v(0)n ; F (t) =

1

m
[1− e−mt].

Mapping the domain S onto a circular ring D (see p. 1) and introducing the notation Φ[ω(ζ), t] =
Φ0(ζ, t), from (7) we obtain the Riemann–Hilbert boundary value problem for a circular ring
D = {1 < |ζ| < R},

Re [Ω(η, t)− P (t)] = 0, η ∈ l0; Im [Ω(η, t)− P (t)] = 0, η ∈ l1 (8)
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where
Ω(ζ, t) = ΓΦ0(ζ, t).

Since problem (8) has only a trivial solution, we will have Ω(ζ, t) = P (t), ζ ∈ D and, consequently,
to determine the function Φ0(ζ, t), we obtain the integral equation ΓΦ0(ζ, t) = P (t), or taking into
account (4), we have

t∫
0

[
κ∗ek(τ−t) + 2em(τ−t)

]
Φ0(ζ, τ)dτ = P (t). (9)

Differentiating (9) with respect to t, and then summing the obtained equality with (9) multipled
by m, we get

(m− k)κ∗
t∫

0

ekτΦ0(ζ, τ)dτ + (κ∗ + 2)ektΦ0(ζ, t) = (P0 + 2µ∗mR−1
0 v0n)e

kt. (10)

From (10) by differentiation with respect to t we obtain the differential equation

Φ̇0(ζ, t) + aΦ0(ζ, t) = b, (11)

where

a =
mκ∗ + 2k

κ∗ + 2
; b =

k(P0 + 2µ∗mR−1
0 v

(0)
n )

κ∗ + 2
(12)

(Φ̇(ζ, t) denotes the derivative with respect to t).
From (10) follows the initial condition

Φ0(ζ, 0) =
b

k
. (13)

The solution of equation (11) for the initial condition (13) has the form

Φ0(ζ, t) = b
[1
a
+
(1
k
− 1

a

)
e−at

]
, (14)

where a and b are defined by formula (12). Further, to determine the function Ψ0(ζ, t) = Ψ[ω(ζ), t],
we make use of equality (5) which after the conformal mapping and by passing to a complex-conjugate
value can be written in the form (see [5])

Φ0(η, t) + Φ0(η, t)−
η2

ρ2ω′(η)

[
ω(η)Φ′

0(η, t) + ω′(η)Ψ0(η, t)
]
= N − iT, η ∈ l = l0 ∪ l1, (15)

(ρ = R, η ∈ l0 and ρ = 1, η ∈ l1).

In view of (15), from (6), we obtain

ΓΦ0(η, t)−M
{
Φ0(η, t) + Φ0(η, t)−

η2

ρ2ω′(η)

[
ω(η)Φ′

0(η, t) + ω′(η)Ψ0(η, t)
]}

=

{
2µ∗R−1

0 v
(0)
n , η ∈ l0,

0, η ∈ l1.
(16)

By virtue of (14) and (16), we arrive at the boundary value problem

Im [Ω1(η, t)] = 0, η ∈ l = l0 ∪ l1, (17)

where
Ω1(ζ, t) =M

[
ζ2ω′2(ζ)Ψ0(ζ, t)

]
. (18)

The solution of problem (17) has the form

Ω1(ζ, t) = K1(ζ, t), (19)

where K1(ζ, t) is the real function.
It follows from (4), (14) and (16) that

Re Ω1(η, t) = F (η, t), η ∈ l0, (20)
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where

F (η, t) = R2
[
− Γ∗[Φ0(η, t)] + 2µR−1

0 v(0)n

]
ω′2(η), η ∈ l0,

Γ∗[Φ0(η, t)] =

t∫
0

κ∗ek(τ−t)Φ0(η, τ)dτ.

From (19) and (20), we obtain

K1(ζ, t) = F (ζ, t), (21)

and thus, on the basis of (4), (18) and (21), for the function Ψ0(ζ, t), we get the equation

M [Ψ0(ζ, t)] =
f(t)

ζ2
, (22)

where

f(t) = R2
[
− Γ∗[Φ0(η, t)] + 2µ∗R−1

0 v(0)n

]
. (23)

Relying on (4) and (22), it is not difficult to obtain

Ψ0(ζ, t) =
1

ζ2
[
mf(t) + ḟ(t)

]
.

Taking into account (14) and (23), performing the corresponding calculations, we have

Ψ0(ζ, t) =
R2

ζ2

[κ∗b

k

(
− m

a
+

(m
a

− 1
)
e−at

)
+ 2µ∗mR−1

0 v(0)n

]
.

Introducing here the value a from formula (12), we finally get

Ψ0(ζ, t) =
R2

ζ2

[
2mµ∗R−1

0 v(0)n − bκ∗

k(mκ∗ + 2k)

[
m(κ∗ + 2)− 2(m− k)e−mt

]]
.

Let us now investigate behaviour of the function φ′(z, t) in the vicinity of angular points Aj

(j = 1, n). Taking into account the fact that the conformally mapping function in the vicinity of
the point Aj has the form (see [4])

ω(ζ) = Aj + (ζ − aj)
α0

jΩj(ζ),

where Ωj(aj) ̸= 0, and bearing in mind (1), for the function φ′(z, t) = Φ0(ζ,t)
ω′(ζ) in the vicinity of the

point A (A is one of the points Aj), we obtain the estimate

|φ′(z, t)| < M(t)|z −A|
1

α0
−1.

In particular, for the rectangle we have |φ′(z, t)| < M(t)|z−A|− 1
3 and for a rectangular cut |φ′(z, t)| <

M(t)|z −A|− 1
2 .

Note that in the statement of the problem there appears the value P0, while in the expression of the

function Φ0(ζ, t), there appear, as is seen from (12) and (14), both values P0 and v
(0)
n . Consequently,

we have to find the dependence between these values. If we suppose that at the initial moment we
have on L0 the value of P0, then

Xx = Yy = P0, Xx + Yy = 4Re [Φ(σ, t)], Re [Φ(σ, t)] =
P0

2
, σ ∈ L0,

and condition (13) due to (12) can be written in the form

P0

2
=
P0 + 2µ∗mv

(0)
n R−1

0

κ∗ + 2
,

which implies that

v(0)n =
κ∗P0R0

4µ∗m
.
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