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OVER-REFLECTION OF ACOUSTIC WAVES IN SHEAR FLOW

GRIGOL GOGOBERIDZE1 AND ZURAB VARDANASHVILI2∗

Abstract. Linear dynamics of acoustic waves in a uniform shear flow is studied. It is shown that in

the case of very low shear rate the dynamics of perturbations is adiabatic and can be fully described
by the Liouville–Green asymptotic solutions. In contrast, in the flow with a moderate and high

shear rate the dynamics of perturbations consists of additional phenomenon, acoustic wave over-

reflection. Asymptotic analysis is performed and analytical expressions for the transmission and
reflection coefficients are derived and analyzed.

1. Introduction

It has long been known that velocity shear induced by linear mechanisms play important role
in various physical phenomena [2, 3, 9–11, 15]. Many physical aspects were analysed and interesting
applications were proposed in the framework of these studies. However, the lack of quantitative
analysis impedes future progress. In the presented paper, we study one of these linear phenomena,
the over-reflection of acoustic waves in a uniform shear flow. Dynamics of these perturbations is
described by the following equation [6–8]:

d2u

dt2
+ ω2(t)u = −β(t)I, (1.1)

where I = v−β(t)u−Sρ is the so-called potential vorticity which physically represents the amplitude
of vortical perturbations. In equation (1.1), ρ is the dimensionless density perturbation normalized
by background density, u and v are dimensionless perturbations of the parallel and perpendicular
velocity components, respectively, S is the dimensionless shear parameter, t is the dimensionless time,
ω2(t) = 1+β2(t) and β(t) = ky/kx−St, where kx and ky are parallel and perpendicular wave numbers,
respectively.

If u1 and u2 are any independent solutions of the homogenous counterpart of equation (1.1), the
general solution can be written as:

u(t) = C1u1(t) + C2u2(t) +
I

W

t∫
−∞

γ(t1)[u1(t)u2(t1)− u1(t1)u2(t)]dt1, (1.2)

whereW is the Wronskian of the linear solutions. C1,2, as well as I, are defined by the initial conditions
of the problem.

Definition 1.1. The wave equation is called adiabatic if ω2(t) is slowly varying function of time:
dω(t)/dt ≪ ω2(t) [5, 14].

In the case under consideration, using the definition of ω2(t), this condition takes the form

S|β(t)| ≪ [1 + β2(t)]3/2. (1.3)

Definition 1.2. If the wave equation is adiabatic, its Liouville–Green asymptotic solution is defined
as follows [5, 12,14]:

ũ1,2 =
1√
ω(t)

e±i
∫
ω(t)dt. (1.4)
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Note that physically these solutions correspond to shear modified acoustic waves that have positive
and negative phase velocities along the x-axis, respectively [6, 7]. If S ≪ 1, condition (1.3) holds
for arbitrary β(t). In this case, the evolution of perturbations is adiabatic, i.e., the amplitudes C1,2

remain constant. Comprehensive study of the adiabatic evolution of perturbations in the uniform
shear flow has been performed by several authors [6, 8]. In the next section, we focus on the non-
adiabatic evolution of perturbations, i.e., we study the dynamics of perturbations in the flow with
relatively high shear parameter S.

2. Over-reflection of Acoustic Waves

In the case of relatively high shear rates the Liouville–Green condition (1.3) fails in the neighborhood

of the point β(t) = 0, but it remains valid for |β(t)| ≫
√
S. The problem of asymptotic analysis can be

formulated in the usual manner [5,14]. Assume initially at t = 0, β(0) ≡ ky/kx ≫
√
S and intensities

of acoustic perturbations are C1,2, respectively. The problem is to determine intensities of the same

perturbations D1,2 after passing through the area of non-adiabatic evolution for β(t) ≪ −
√
S, i.e., for

t > 2ky/kx
√
S. Assume that initially at t = 0, β(0) = ky/kx ≫

√
S, there exists only the wave with a

positive phase velocity along the y-axis (without loss of generality, we also assume that both, kx and
ky, are positive):

ui =
C1√
ω(t)

e−i
∫
ω(t)dt. (2.1)

In the general case, where β(t) ≪ −
√
S, there exist both Liouville–Green solutions (1.4). According

to the notations adopted in the theory of acoustic wave propagation in non-uniform flows [13], the
Liouville–Green solution with positive phase velocity along the y-axis is treated as a reflected wave
(ur) and another solution is regarded as a transmitted wave (ut):

ur =
D1√
ω(t)

e−i
∫
ω(t)dt, (2.2)

ut =
D2√
ω(t)

ei
∫
ω(t)dt. (2.3)

Definition 2.1. The reflection and transmission coefficients are defined as follows [5, 12,14]:

R =
|D1|
|C1|

, T =
|D2|
|C1|

. (2.4)

Normally, the non-adiabatic evolution changes not only Liouville–Green amplitudes, but also the
phases:

D1 = eiϕ1RC1, D2 = eiϕ2TC1. (2.5)

Combining equation (1.1) and its complex conjugate, it can be easily shown that if ω2(t) is a real
function of t, then an arbitrary solution ux of equation (1.1) satisfies the condition

u∗ du

dt
− u

du∗

dt
= constant, (2.6)

where asterisk denotes complex conjugation. It is well known [1] that this equation represents the
conservation of wave action during the evolution. Substituting equations (2.1)–(2.5) into (2.6), one
can obtain

R2 − T 2 = 1. (2.7)

So, the amplitude of a reflected wave is always larger than that of an incident wave. This means,
that a non-adiabatic evolution of acoustic waves (T ̸= 0) is always accompanied by the over-reflection
phenomenon discovered by Miles [13], who studied the problem of acoustic wave reflection from the
surface of tangential discontinuity of velocity. From the derivation of equation (2.7), it is clear that
the same conclusion holds for a non-adiabatic evolution of arbitrary wave mode that is governed by
equation (1.1) with an arbitrary real function ω2(t).
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Theorem 2.1. For the acoustic waves in the uniform shear flow, for any value of the shear rate S, the
changes in the reflection and transmission coefficients and phase are given by the following expressions:

R =
√
1 + e−π/S , (2.8)

T = e−π/2S , (2.9)

ϕ1 =
ln(2S)

2S
− arg

[
Γ
(1
2
+

i

2S

)]
, (2.10)

ϕ2 =
π

2
. (2.11)

Proof. Exact formal analytical solutions of the homogenous part of equation (1.1) can be presented
by the parabolic cylinder functions [14]

ū1 =E

(
− 1

2S
,

√
2

S
β(t)

)
, (2.12)

ū2 =E∗
(
− 1

2S
,

√
2

S
β(t)

)
. (2.13)

Taking into account the asymptotic expansion of parabolic cylinder function [1],

E(a, η) ≈
√

2

η
exp

[
i
(η2
4

− a ln η +Φ+
π

4

)]
(2.14)

for η ≫ |a|, , (2.15)

where Φ = arg Γ
(
1
2 + ia

)
, and using the connection formula [5]

iE(a,−η) = eπaE(a, η)−
√
1 + e2πaE∗(a, η), (2.16)

we conclude that for β(t) ≫ S1/2, the exact solution (2.12) coincides with the incident wave (2.1),
accurate to the constant multiplier. Whereas for β(t) ≪ −S1/2, exact solutions (2.12) and (2.13) agree
with reflected (2.2) and transmitted (2.3) waves, respectively. Bearing this in mind and combining
equations (2.1)–(2.5) and (2.14)–(2.16) one can readily derive equations (2.8)–(2.11). □

Noteworthy is the fact that equations (2.8)–(2.11) represent exact asymptotic solution of the prob-
lem, i.e., they are valid for an arbitrary value of normalized shear parameter S. Calculating the phase
integral [5, 14]

δ =
1

S

∣∣∣∣
i∫

−i

√
1 + β2dβ

∣∣∣∣ = π

2S
, (2.17)

and noting that Tph = e−δ in the framework of the method, we see that the method of phase integrals
gives the same results for T and R as in equations (2.8) and (2.9). However, the validity of the method
is bounded by the condition S ≪ 1.

3. Discussion and Conclusions

In this section, we discuss mathematical corollaries and physical consequences of the obtained
results.

Corollary. If the incident wave has a negative phase velocity with respect to the x-axis,

ūi =
C2√
ω(t)

ei
∫
ω(t)dt, (3.1)

then the expressions for reflection and transmission coefficients remain the same as in equations
(2.8)–(2.9), whereas the expressions (2.10)–(2.11) for ϕ1,2 change the sign.

Corollary. It follows from equation (2.9) that if S ≪ 1, then the intensity of transmitted wave is
exponentially small with respect to the large parameter 1/S. In its turn, this implies that if S ≪ 1, then
the adiabatic invariants C1,2 have exponential (with respect to 1/S) accuracy of conservation [5,12,14].
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Corollary. It follows from equation (2.8) that the intensity of a transmitted wave never exceeds that

of an incident wave (T < 1), and therefore R <
√
2.

The last point we discuss is an approximate physical estimation of the time scale of transmitted
wave generation process. It follows from the condition of validity of asymptotic expansion (2.14) that
the time scale ∆tb of the “birth” [4] of transmitted wave is of order

∆tb ∼ S−1/2. (3.2)

Note that this estimation is valid for arbitrary S. From equation (3.2), it follows that for relatively
small shear rates, creation of the transmitted wave is a slow process compared to the wave period
(which in our dimensionless notations is of order 1), and is a quick process compared to the adiabatic
changes (having characteristic timescale 1/S). We have to note that the estimation similar to (3.2)
was first obtained by Berry [4] for a wide class of ω2(t).

Acknowledgement

This work has been supported by the Shota Rustaveli National Science Foundation grant
FR-18-14747. The authors are grateful to Yuriy Voitenko for helpful discussions.

References

1. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions Dover Publications. Inc., New York, 1965.

2. M. Akhalkatsi, G. Gogoberidze, Infrasound generation by tornadic supercell storms. Quart. J. R. Met. Soc.
135 (2009), no. 641, 935–940.

3. M. Akhalkatsi, G. Gogoberidze, Spectrum of infrasound radiation from supercell storms. Quart. J. R. Met. Soc.

137 (2011), no. 654, 229–235.
4. M. V. Berry, Waves near Stokes lines. Proc. R. Soc. London Ser. A 427 (1990), no. 1873, 265–280.

5. M. V. Fedoriuk, Asymptotic Methods for Ordinary Differential Equations. Nauka, Moskow, 1983.

6. G. Gogoberidze, On acoustic wave generation in uniform shear flow. J. Phys. A: Math. Thor. 49 (2016), no. 29,
295501.

7. G. Gogoberidze, Asymptotic analysis of over-reflection equation in magnetized plasma. Trans. A. Razmadze Math.

Inst. 174 (2020), no. 1, 71–74.
8. G. Gogoberidze, Asymptotic analysis of coupled oscillators equations in a non-uniform plasma. Trans. A. Razmadze

Math. Inst. 175 (2021), no. 2, 281–284.

9. G. Gogoberidze, S. C. Chapman, B. Hnat, M. W. Dunlop, Impact of measurement uncertainties on universal scaling
of MHD turbulence. Mon. Not. R. Astron. Soc. 426 (2012), no. 2, 951–955.

10. G. Gogoberidze, S. Perri, V. Carbone, The Yaglom law in the expanding solar wind. Astrophys. J. 769 (2013),
no. 2, 111.

11. P. Goldreich, D. Lynden-Bell, Gravitational stability of uniformly rotating disks. Mon. Not. R. Astron. Soc.

130 (1965), no. 2, 97–124.
12. L. D. Landau, E. M. Lifschitz, Quantum Mechanics (Non-Relativistic Theory). Pergamon Press, Oxford, England,

1977.

13. J. W. Miles, On the reflection of sound at an interface of relative motion. J. Acoust. Soc. Amer. 29 (1957), 226–235.
14. F. W. J. Olver, Asymptotics and Special Functions. Computer Science and Applied Mathematics. Academic Press,

New York-London, 1974.
15. A. J. Turner, G. Gogoberidze, S. C. Chapman, Nonaxisymmetric anisotropy of solar wind turbulence as a direct

test for models of magnetohydrodynamic turbulence. Phys. Rev. Lett. 108 (2012), no. 8, 085001.

(Received 06.02.2023)

1Institute of Theoretical Physics, Ilia State University, 3/5 ave. Cholokashvili, Tbilisi 0162, Georgia

2Physics Department, Tbilisi State University, 3 Ave., Chavchavadze, Tbilisi 0179, Georgia

Email address: grigol gogoberidze@iliauni.edu.ge

Email address: zuravardanashvili@gmail.com


