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ON THE AM-GM INEQUALITY AND THE GENERAL PROBLEMS OF

MAXIMIZATION OF PRODUCTS

GEORGE CHELIDZE1,2, MIKHEIL NIKOLEISHVILI1,3 AND VAJA TARIELADZE1

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. General problems on maximizing the products of several positive real, rational and
integer numbers whose sum is given are investigated.

1. Introduction

The problem is formulated as follows:
Let n > 1 be a natural number, L > 0 and xi > 0, i = 1, . . . , n; maximize

∏n
i=1 xi when∑n

i=1 xi = L.
A solution of this extremum problem is contained in the following version of the arithmetic mean–

geometric mean inequality, for short, the AM-GM inequality.

Theorem 1.1. Let n > 1 be a natural number, L > 0 and xi > 0, i = 1, . . . , n be real numbers with∑n
i=1 xi = L. Then

n∏
i=1

xi ≤
(L
n

)n

, (1.1)

we get equality in (1.1) if and only if

xi =
L

n
, i = 1, . . . , n.

There are many different proofs of this statement; e.g., 12 proofs are presented in [1], while,
according to [9], one can find 52 proofs in [2] and 74 proofs in [3]. In [13], it has been shown that the
first part of Theorem 1.1 is equivalent to the following Bernoulli inequality:

xn ≥ 1 + n(x− 1) for any x > 0 and n ∈ N.

It seems that the one of the shortest ways for a proof of the AM-GM inequality is its derivation
from the following assertion.

Proposition 1.2. Let n > 1 be a natural number. If the numbers

xi > 0, i = 1, . . . , n

satisfy
n∏

i=1

xi = 1,

then
n∑

i=1

xi ≥ n,

the above inequality turns into equality if and only if

xi = 1, i = 1, . . . , n.
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A simple inductive proof of Proposition 1.2 can be seen on pages 17-19 of nicely written work [12];
see also the proof in [1, §11, pp. 9-10], attributed to G. Ehlers (1954)). The same opinion is supported
in [18]; in this connection, the names of Dörrie (1921; see [7]), H. Kreis (1946) and Korovkin (1952)
(see [10, p. 7]) are mentioned in [3, p. 90].

Theorem 1.1, as well as Proposition 1.2 can be formulated for rational numbers, the proof of
Proposition 1.2 presented in [3, p. 90] (but not the proof in [11]!) uses only the tools of arithmetic,
however, a derivation of Theorem 1.1 from Proposition 1.2 is impossible without the use of irrational
numbers. A really simple direct arithmetic inductive proof of Theorem 1.1 can be found in [19] (see
also [6] and [14, p. 30]).

A direct arithmetic, not inductive proof of the following reformulation of Theorem 1.1, which belongs
to Johan Frederik Steffensen (1930–1931; see [17]) and does not use even the division, is presented
in [3, pp. 90-91].

Theorem 1.3. Let n > 1 be a natural number, xi > 0, i = 1, . . . , n. Then

nn
n∏

i=1

xi ≤
( n∑

i=1

xi

)n

and we have the equality if and only if

xi = x1, i = 1, . . . , n.

In his book [8] (not mentioned in [3]), Heinrich Dörrie gave a direct, not inductive, arithmetic proof
of Theorem 1.1. In Section 2, we give two similar proofs of Theorem 2.3 (a reformulation of Theorem
1.1), one of which is based on the idea of [8, Section 10].

Seemingly, the second author of the present text is the first who considers the above-mentioned
maximization problem for natural numbers; he observed that for them the bound

(
L
n

)n
was not the

best possible and he found the correct bound (see [5]). In Section 3, the result of [5] is included

and it is shown that, in general, the sharper bound
[(

L
n

)n]
may not likewise be the best possible (see

Proposition 3.1).
The given paper is dedicated to the ways of solution of the following general extremum problem

(see Subsection 2.1).
Let n > 1 be a natural number, X be an infinite set of non-negative real numbers, L ∈ X, L > 0

and xi, ki, si ∈ X, i = 1, . . . , n; maximize
n∏

i=1

(xi + si)

when
∑n

i=1 xi = L and xi ≥ ki, i = 1, . . . , n.
In Section 2, we treat the cases when X = R+ or X = Q+ (see Theorem 2.5) and Section 3 deals

with the case X = Z+ (see Theorem 3.3).

2. Problem for the Case X ∈ {R+,Q+}

2.1. Formulation of the problem. In this subsection, X ∈ {R+,Q+,Z+}, where, as usual, R+ :=
[0,+∞[ is the set of non-negative real numbers, Q+ is the set of non-negative rational numbers and
Z+ is the set of non-negative integers.

Moreover, we fix a natural number n, the number L ∈ X, L > 0, the numbers ki ∈ X, i = 1, . . . , n,
assume that

L >

n∑
i=1

ki

and introduce the set

X(L, n;kn) :=

{
(x1, . . . , xn) ∈ Xn :

n∑
i=1

xi = L, xi ≥ ki, i = 1, . . . , n

}
,

where kn := (k1, . . . , kn).
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We write
X(L, n) := X(L, n; 0n),

where 0n := (0, . . . , 0).
Clearly,

Z+(L, n;kn) ⊂ Q+(L, n;kn) ⊂ R+(L, n;kn),

the set Z+(L, n;kn) is finite; if n > 1, then Q+(L, n;kn) is an infinite closed subset of Qn, while
R+(L, n;kn) is an infinite compact convex subset of Rn.

The set R+(1, n) in a convex analysis is called standard (n− 1)-simplex (or unit (n− 1)-simplex).
Let us now fix

sn = (s1, . . . , sn) ∈ Xn

and introduce the quantity

b(L, n;kn; sn;X) = sup

{ n∏
i=1

(xi + si) : (x1, . . . , xn) ∈ X(L, n;kn)

}
. (2.1)

Observe that the following equality:

b(L, n;kn; sn;X) = b(L+

n∑
i=1

si, n;kn + sn;0n;X). (2.2)

(pointed out to us by our Referee in June 4, 2023) holds.
Clearly,

b(L, 1;k1, s1;X) = L+ s1,

and, in general,

b(L, n;kn; sn;X) ≤
n∏

i=1

(L+ si).

Let us introduce the following set:

Xext(L, n;kn; sn) :{
(x1, . . . , xn) ∈ X(L, n;kn) : b(L, n;kn; sn;X) =

n∏
i=1

(xi + si)

}
.

Note that if X = R+, as the set R+(L, n;kn) is compact and the function

(x1, . . . , xn) 7→
n∏

i=1

(xi + si)

is continuous, we have
(R+)ext(L, n;kn; sn) ̸= ∅

and so, in the Definition 2.1 instead of sup, we can write max.
If n > 1, then we will see in what follows (see Remark 2.6), although this is not clear in advance,

that we also have
(Q+)ext(L, n;kn; sn) ̸= ∅.

Taking into account the introduced notation, our main optimization problem can be formulated as
follows.

Problem 2.1. Let X ∈ {R+,Q+,Z+}. For a fixed natural number n, the number L ∈ X with L > 0
and n-tuples of numbers

kn = (k1, . . . , kn) ∈ Xn, sn = (s1, . . . , sn) ∈ Xn,

we calculate
b(L, n;kn; sn;X)

and describe the set
Xext(L, n;kn; sn).

In view of equality (2.2), this problem can be reformulated as follows.



352 G. CHELIDZE, M. NIKOLEISHVILI AND V. TARIELADZE

Problem 2.2. Let X ∈ {R+,Q+,Z+}. For a fixed natural number n, the number L ∈ X with L > 0
and n-tuples of numbers

kn = (k1, . . . , kn) ∈ Xn, sn = (s1, . . . , sn) ∈ Xn,

we calculate

b(L+

n∑
i=1

si, n;kn + sn;0n;X)

and describe the set

Xext

(
L+

n∑
i=1

si, n;kn + sn;0n

)
.

We agree to write below

b(L, n;X) instead of b(L, n;0n;0n;X)

and

Xext(L, n) instead of Xext(L, n;0n;0n).

2.2. Solution to problem for X ∈ {R+,Q+}: a particular case. In this subsection, we present
two proofs of the following reformulation of the AM-GM inequality, which provides a complete solution
to Problem 2.1 in case when X ∈ {R+,Q+} and kn = sn = 0n.

Theorem 2.3. Let X ∈ {R+,Q+}. For a fixed natural number n and the number L ∈ X with L > 0,
we have

b(L, n;X) =
(L
n

)n

(2.3)

and

Xext(L, n) =

{(L
n
, . . . ,

L

n

)}
. (2.4)

To give our proofs of Theorem 2.3, we introduce first a notation and prove a lemma of independent
interest.

For a natural number n > 1 and the numbers q, xi, i = 1, . . . , n, we write:

In = {1, . . . , n} and In,q(x1, . . . , xn) = {i ∈ In : xi ̸= q}.

Lemma 2.4. Let X ∈ {R+,Q+,Z+}, n > 1 be a natural number, q ∈ X, q > 0 be a number and

(x1, . . . , xn) ∈ X(nq, n),

i.e.,

xi ∈ X, i = 1, . . . , n and

n∑
i=1

xi = nq.

Suppose that

In,q(x1, . . . , xn) ̸= ∅. (2.5)

Then

card (In,q(x1, . . . , xn)) ≥ 2 (2.6)

and there exists

(x′
1, . . . , x

′
n) ∈ X(nq, n)

with the following properties:
n∏

i=1

x′
i >

n∏
i=1

xi (2.7)

and

card (In,q(x
′
1, . . . , x

′
n)) ≤ card (In,q(x1, . . . , xn))− 1 < card (In,q(x1, . . . , xn)) . (2.8)
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Proof. Suppose that (2.6) is not true. Then from this assumption and (2.5), we can conclude that
In,q(x1, . . . , xn) = {j} for some j ∈ In; this implies:

nq =

n∑
i=1

xi = xj +
∑

i∈In\{j}

xi = xj + (n− 1)q.

Hence xj = q contradicts j ∈ In,q(x1, . . . , xn). Therefore (2.6) is proved.
Now, it is easy to see that for some j ∈ In,q(x1, . . . , xn) and k ∈ In,q(x1, . . . , xn), we have

xj > q and xk < q,

and so,
(xj − q)(q − xk) > 0. (2.9)

Define now a sequence x′
i, i = 1, . . . , n as follows:

x′
j = q, x′

k = xj + xk − q, x′
i = xi for i ∈ In \ {j, k}.

Clearly, (x′
1, . . . , x

′
n) ∈ X(nq, n), and we also have

x′
jx

′
k > xjxk. (2.10)

In fact, taking into account (2.9), we can write:

x′
jx

′
k − xjxk = q · (xj + xk − q)− xjxk = (xj − q) · (q − xk) > 0

and so, (2.10) is proved.
Now, using (2.10), we get

n∏
i=1

x′
i = x′

jx
′
k ·

∏
i∈In\{j,k}

x′
i = x′

jx
′
k ·

∏
i∈In\{j,k}

xi > xjxk ·
∏

i∈In\{j,k}

xi =

n∏
i=1

xi

and so, (2.7) is proved.
It is clear that

In,q(x
′
1, . . . , x

′
n) ⊂ In,q(x1, . . . , xn) \ {j}

and (2.8) holds, as well. □

The first proof of Theorem 2.3.
First, we consider the case for X = R+. Clearly, it suffices to show that

(R+)ext(L, n) =

{(L
n
, . . . ,

L

n

)}
. (2.11)

As we have noted in Subsection 2.1, we can suppose that (R+)ext(L, n) ̸= ∅. So, fix some (x1, . . . , xn) ∈
(R+)ext(L, n) and define q = L

n . Then

n∏
i=1

xi = b(L, n;R+). (2.12)

Suppose for a moment that In,q(x1, . . . , xn) ̸= ∅. Then by Lemma 2.4, we can find

(x′
1, . . . , x

′
n) ∈ R+(L, n)

such that
n∏

i=1

x′
i >

n∏
i=1

xi.

From this inequality and (2.12), we get
n∏

i=1

x′
i > b(L, n;R+),

but this contradicts the definition of b(L, n;R+).
Therefore In,q(x1, . . . , xn) = ∅; hence xi = q, i = 1, . . . , n and so, (2.11) is true.
Consequently, (2.3) and (2.4) are proved when X = R+.
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Consider the case for X = Q+.
Since in this case we also have L ∈ Q+, equalities (2.3) and (2.4) remain true.
Hence, the first proof of Theorem 2.3 is complete.
The second proof of Theorem 2.3 does not assume that (R+)ext(L, n) ̸= ∅.
Define q = L

n . It suffices to show that

(x1, . . . , xn) ∈ X(L, n) and In,q(x1, . . . , xn) ̸= ∅ =⇒
n∏

i=1

xi < qn.

So, fix an arbitrary (x1, . . . , xn) ∈ X(L, n) with In,q(x1, . . . , xn) ̸= ∅ and let us verify that

n∏
i=1

xi < qn. (2.13)

In this case, by Lemma 2.4, we can find and fix some

(x
(1)
1 , . . . , x(1)

n ) ∈ X(L, n)

such that
n∏

i=1

x
(1)
i >

n∏
i=1

xi (2.14)

and

card
(
In,q(x

(1)
1 , . . . , x(1)

n )
)
< card (In,q(x1, . . . , xn)) .

Case 1.1. For (x
(1)
1 , . . . , x

(1)
n ), we have In,q(x

(1)
1 , . . . , x

(1)
n ) = ∅.

In this case, we have x
(1)
i = q, i = 1, . . . , n and so,

n∏
i=1

x
(1)
i = qn.

This equality together with (2.14) gives
n∏

i=1

xi <

n∏
i=1

x
(1)
i = qn

and so, (2.13) is satisfied.

Case 1.2. For (x
(1)
1 , . . . , x

(1)
n ), we have In,q(x

(1)
1 , . . . , x

(1)
n ) ̸= ∅.

In this case, necessarily n > 2. We can apply Lemma 2.4 to (x
(1)
1 , . . . , x

(1)
n ) ∈ X(L, n) instead of

(x1, . . . , xn) ∈ X(L, n) to find and fix some

(x
(2)
1 , . . . , x(2)

n ) ∈ X(L, n)

such that
n∏

i=1

x
(2)
i >

n∏
i=1

x
(1)
i (2.15)

and

card
(
In,q(x

(2)
1 , . . . , x(2)

n )
)
< card

(
In,q(x

(1)
1 , . . . , x(1)

n )
)
< card (In,q(x1, . . . , xn)) .

Case 1.3. For (x
(2)
1 , . . . , x

(2)
n ), we have In,q(x

(2)
1 , . . . , x

(2)
n ) = ∅.

In this case, we have x
(2)
i = q, i = 1, . . . , n and so,

n∏
i=1

x
(2)
i = qn.

This equality together with (2.14) and (2.15) gives
n∏

i=1

xi <

n∏
i=1

x
(1)
i <

n∏
i=1

x
(2)
i = qn
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and so, (2.13) is satisfied again.
Continuing in this way, we can find a natural number m < n and a sequence

(x
(i)
1 , . . . , x(i)

n ) ∈ X(L, n), i = 1, . . . ,m

such that
In,q(x

(i)
1 , . . . , x(i)

n ) ̸= ∅, i = 1, . . . ,m− 1 and In,q(x
(m)
1 , . . . , x(m)

n ) = ∅.
Then

n∏
i=1

xi <

n∏
i=1

x
(1)
i <

n∏
i=1

x
(2)
i < · · · <

n∏
i=1

x
(m)
i = qn.

Consequently, (x1, . . . , xn) satisfies (2.13). □

2.3. Solution to the problem: the case X ∈ {R+,Q+}. The following theorem provides a solution
to Problem 2.1 in general when X ∈ {R+,Q+}.

Theorem 2.5. Let n ≥ 1 be a natural number, L ∈ X, L > 0 ,

kn := (k1, . . . , kn) ∈ Xn, sn := (s1, . . . , sn) ∈ Xn,

and

q :=
L+

∑n
i=1 si

n
.

Assuming further that

d := L−
n∑

i=1

ki > 0, (2.16)

we put b(L, n;kn; sn) instead of b(L, n;kn; sn;X) and denote

α = min
1≤i≤n

(ki + si), β = max
1≤i≤n

(ki + si),

I1 = {i ∈ In : si + ki ≤ q}, I2 = {i ∈ In : si + ki > q},
m := card(I1), I1 := {i1, . . . , im}.

Then the following statements are valid:
(a)

q ≥ d

n
+ α > α, (2.17)

in particular, m ≥ 1 and
n∏

i=1

(ki + si +
d

n
) ≤ b(L, n;kn; sn) ≤ qn. (2.18)

(b) If m = n, i.e., if q ≥ β, then we have the equalities

b(L, n;kn; sn) = qn and Xext(L, n;kn; sn) = {(x1, . . . , xn)},
where xi = q − si, i = 1, . . . , n.

(c) If m < n, i.e., if q < β, then

b(L, n;kn; sn) < qn (2.19)

and
b(L, n;kn, sn) = b(Lm,m; ,km; sm)

∏
i∈I2

(ki + si), (2.20)

where Lm := L−
∑

i∈I2
ki, km := (ki1 , . . . , kim) and sm := (si1 , . . . , sim).

(d) If m = 1, then

b(L, n;kn; sn) = (L1 + si1)
∏

i∈In\{i1}

(ki + si)

and
(x1, . . . , xn) ∈ Xext(L, n;kn; sn),

where L1 := L−
∑

i∈In\{i1} ki, xi1 := L1 and xi := ki for i ∈ In \ {i1}.
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Proof. (a) (2.17) follows from (2.16). In fact,

q =
d+

∑n
i=1(ki + si)

n
≥ d+ nα

n
=

d

n
+ α > α.

We have m ≥ 1 by (2.17).
The left inequality of (2.18) is true because(

k1 +
1

n
d, . . . , kn +

1

n
d
)
∈ X(L, n;kn).

The right inequality of (2.18) follows directly from Theorem 2.3, as for (x1, . . . , xn) ∈ X(L, n;kn), we
have

(x1 + s1, . . . , xn + sn) ∈ X
(
L+

n∑
i=1

si, n;kn

)
,

and hence
n∏

i=1

(xi + si) ≤ b

(
L+

n∑
i=1

si, n;kn,0n;X
)

≤ b

(
L+

n∑
i=1

si, n;0n,0n;X
)

= qn.

(b) From q ≥ β ≥ si + ki, i = 1, . . . , n, we conclude that for

xi := q − si, i = 1, . . . , n,

we have
(x1, . . . , xn) ∈ X(L, n;kn).

Hence

qn =

n∏
i=1

(xi + si) ≤ b(L, n;kn; sn).

From this inequality and the right-hand inequality of (2.18), we get that (b) is true.
(c) Suppose that (2.19) fails, i. e., we have the equality

b(L, n;kn; sn) = qn.

Then for some
(x1, . . . , xn) ∈ X(L, n;kn),

we shall have
n∏

i=1

(xi + si) = b(L, n;kn; sn) = qn.

That is, in the AM-GM inequality, for xi + si, i = 1, . . . , n, we have the equality. From this we can
conclude that

q = xi + si, i = 1, . . . , n.

Hence q − si = xi ≥ ki, i = 1, . . . , n and so, q ≥ si + ki, i = 1, . . . , n; in particular, q ≥ β, but this
contradicts our assumption that q < β.

We will now prove (2.20) in two steps.

Step 1. (AS) If (x1, . . . , xn) ∈ Xext(L, n;kn, sn), i.e., if (x1, . . . , xn) ∈ X(L, n;kn) and
n∏

j=1

(xj + sj) = b(L, n;kn, sn), (2.21)

then
xi = ki, ∀i ∈ I2. (2.22)

To prove (AS), we fix some (x1, . . . , xn) ∈ X(L, n;kn) satisfying (2.21) and let us show that then
(2.22) is satisfied, too.

Suppose that this is not so, i.e., xl > kl for some l ∈ I2. Fix t > 0 such that xl − t > kl. Fix then
i ∈ {1, . . . , n} with i ̸= l and put

yi := xi + t, yl := xl − t,
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in case n > 2,

yj := xj for j ∈ {1, . . . , n} \ {i, l}.
Then we have

(y1, . . . , yn) ∈ X(L, n;kn).

From this and (2.21), we can conclude that
n∏

j=1

(xj + sj) ≥
n∏

j=1

(yj + sj).

This implies

(xi + si)(xl + sl) ≥ (xi + t+ si)(xl − t+ sl).

Using this inequality along with the implications

(xi + si)(xl + sl) ≥ (xi + t+ si)(xl − t+ sl) =⇒ xl + sl
xl − t+ sl

≥ xi + t+ si
xi + si

=⇒ xl + sl
xl − t+ sl

− 1 ≥ xi + t+ si
xi + si

− 1 =⇒ t

xl − t+ sl
≥ t

xi + si
,

we get

xi + si ≥ xl − t+ sl.

This implies ∑
i∈{1,...,n}\{l}

(xi + si) ≥
∑

i∈{1,...,n}\{l}

(xl − t+ sl) = (n− 1)xl + (n− 1)(sl − t).

Therefore

L+

n∑
j=1

sj = xl + sl +
∑

i∈{1,...,n}\{l}

(xi + si)

≥ xl + sl + (n− 1)xl + (n− 1)(sl − t) = nxl + nsl − (n− 1)t.

This yields

q =
L+

∑n
j=1 sj

n
≥ xl + sl −

n− 1

n
t ≥ xl + sl − t ≥ kl + sl,

which contradicts our choice of l: q < kl + sl. Therefore (2.21) implies (2.22) and (AS) is proved.

Step 2. From (AS) proved in Step 1, we derive now equality (2.20).

Fix (x1, . . . , xn) ∈ X(L, n;kn) satisfying (2.21). From the statement proved in Step 1, we can write
m∏
j=1

(xij + sij )
∏
j∈I2

(kj + sj) = b(L, n;kn; sn) (2.23)

and
m∑
j=1

xij = Lm. (2.24)

From (2.24) and the definition of b(Lm,m;km, sm), we can write
m∏
j=1

(xij + sij ) ≤ b(Lm,m;km; sm). (2.25)

Fix now some (y1, . . . , ym) ∈ X(Lm,m;km) such that
m∏
j=1

(yj + sij ) = b(Lm,m;km; sm). (2.26)

Consider the indices im+1, . . . , in such that

I2 = {im+1, . . . , in}.
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Since (y1, . . . , ym, kim+1
, . . . , kin) ∈ X(L, n;kn), from (2.21), we get

m∏
j=1

(yj + sij )

n∏
j=m+1

(kij + sij ) ≤ b(L, n;kn, sn) =

m∏
j=1

(xij + sij )
∏
j∈I2

(kj + sj).

Hence
m∏
j=1

(yj + sij ) ≤
m∏
j=1

(xij + sij ).

From this inequality and from (2.26), we obtain

b(Lm,m;km, sm) ≤
m∏
j=1

(xij + sij ).

This inequality along with (2.25) gives

b(Lm,m;km, sm) =

m∏
j=1

(xij + sij ).

Combining this equality with (2.23), we come to (2.20).
(d) follows from (2.20) of (c) because b(L1, 1; si1) = L1 + si1 . □

Remark 2.6. Note that Theorem 2.5(b) gives the complete solution to Problem 2.1, while Theorem
2.5(c) fails to provide a complete solution, because (for n > 2 and m > 1) it does not give a formula
for b(L, n;kn; sn;X); it provides just a method of its calculation at a finite (in the worst case
of (n − 2)) number of steps. This method shows that when the “initial data” are rational, then
b(L, n;kn; sn;Q+) is a rational number, as well (i. e., when X = Q+, then b(L, n;kn; sn;Q+) ∈ Q+

and so, (Q+)ext(L, n;kn; sn) ̸= ∅).

3. Problem for the Case X = Z+

3.1. Solution to problem for X = Z+: a particular case. In this subsection, we deal with
Problem 2.1 in case X = Z+ and kn = sn = 0n.

We present a proof of the following assertion, which in the case under consideration provides a
complete solution to Problem 2.1 and a slight modification of a similar statement obtained earlier
in [5] (see also [15]).

Proposition 3.1 ([5]). Let L ≥ n > 1 be natural numbers, [q] be the integer part of q := L
n , and

r := L− n[q].
Then the following statements are valid.
(a) If (x1, . . . , xn) ∈ (Z+)ext (L, n), then xi ≥ 1, i = 1, . . . , n and

|xi − xj | ∈ {0, 1}, i, j = 1, . . . , n. (3.1)

(b) The equality

b(L, n;Z+) = (1 + [q])r[q]n−r (3.2)

holds.
Moreover, for (x1, . . . , xn) ∈ Z+(L, n), we have

(x1, . . . , xn) ∈ (Z+)ext(L, n),

if and only if

card ({i ∈ In : xi = 1 + [q]}) = r and card ({i ∈ In : xi = [q]}) = n− r.

(c) If r = 0, then

b(L, n;Z+) = b(L, n;R+) = qn (3.3)

and if r > 0, then

b(L, n;Z+) < b(L, n;R+) = qn, (3.4)
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or, equivalently,

(1 + [q])r[q]n−r <
(
[q] +

r

n

)n

. (3.5)

(d) If r > 0, then

b(L, n;Z+) ≤ [b(L, n;R+)] = [qn], (3.6)

or, equivalently,

(1 + [q])r[q]n−r ≤
[(

[q] +
r

n

)n]
;

The equality in (3.6) takes place only in the following cases:
Case 1. n = 2.
Case 2. n = 3 and L ∈ {4, 5, 7, 8}.
Case 3. n > 3 and L = n+ 1.

Proof. (a) Observe first of all that evidently

(x1, . . . , xn) ∈ (Z+)ext(L, n) =⇒ xi ≥ 1, i = 1, . . . , n. (3.7)

Fix now (x1, . . . , xn) ∈ (Z+)ext(L, n) and show that (3.1) holds.
Suppose for a moment that (3.1) is not true; i.e., for some i, j ∈ {1, . . . , n}, we have |xi − xj | > 1.

We can suppose without loss of generality that x1 − x2 > 1. Put now y1 = x1 − 1, y2 = x2 + 1 and,
in case n > 2, yi = xi, i = 3, . . . , n. Clearly, (y1, . . . , yn) ∈ Z+(L, n). This and the definition of
b(L, n;Z+) and (3.7) imply

b(L, n;Z+) ≥
n∏

i=1

yi = y1y2

n∏
i=3

xi > x1x2

n∏
i=3

xi =

n∏
i=1

xi;

but the obtained inequality

b(L, n;Z+) >

n∏
i=1

xi

contradicts the relation (x1, . . . , xn) ∈ (Z+)ext(L, n).
(b) Let us show now the validity of (3.2). Fix some (x1, . . . , xn) ∈ (Z+)ext(L, n). Then

b(L, n;Z+) =

n∏
i=1

xi. (3.8)

We can suppose without loss of generality that x1 ≥ · · · ≥ xn. From (3.1), we have |xi − xj | ∈ {0, 1},
i, j = 1, . . . , n. In particular, we have x1 − xn ∈ {0, 1}.

Suppose first that x1 = xn. Then nx1 = L = n[q] + r and (3.8) implies that (3.2) is true with
r = 0.

Suppose now that x1 > xn and m < n are the first natural number such that x1 = xm. Then we
have xi = xm + 1, i = 1, . . . ,m and xi = xm, i = m+ 1, . . . , n. This equalities and (3.8) imply that

b(L, n;Z+) = (1 + xm)mxn−m
m . (3.9)

The equalities xi = xm + 1, i = 1, . . . ,m and xi = xm, i = m + 1, . . . , n as
∑n

i=1 xi = L imply also
that

m(xm + 1) + (n−m)xm = L = n[q] + r

and so,

nxm +m = n[q] + r.

Consequently, xm = [q] and r = m > 0 and (3.9) implies that (3.2) is true.
(c) Clearly, when r = 0, then (3.3) is true.
Let now r > 0. As

q =
L

n
= [q] +

r

n
,
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inequality (3.4) and inequality (3.5) are equivalent. By AM-GM, we have the inequality

(1 + [q])r[q]n−r = (1 + [q]) · · · · · (1 + [q]) · [q]) · · · · · [q]

<
( (1 + [q]) + · · ·+ (1 + [q]) + [q]) + · · ·+ [q]

n

)n

=
(r(1 + [q]) + (n− r)[q])

n

)n

=
(
[q] +

r

n

)n

,

and (3.5) is proved.
(d) Evidently, (3.6) follows from (3.4). The assertion contained in the rest part of (d) is of inde-

pendent interest and its proof is already published in [4]; for the reader’s convenience we reproduce
this proof here (see Remark 3.2 below). □

Remark 3.2. Let n > 1 and 1 ≤ r < n be natural numbers. Then we have

(1 + x)rxn−r ≤
[(

x+
r

n

)n]
, x = 1, 2, . . . (3.10)

and the following statements give a complete description of the set

Vn,r :=
{
x ∈ N : (1 + x)rxn−r =

[(
x+

r

n

)n]}
.

(a) V2,1 = N, V3,1 = V3,2 = {1, 2} and Vn,1 = {1}, n = 4, 5, . . . .
(b) n > 3, r > 1 =⇒ Vn,r = ∅.

Proof of Remark 3.2. First, we formulate several useful observations.

Vn,r = {x ∈ N :
(
x+

r

n

)n

− (1 + x)rxn−r < 1}; (3.11)(
x+

r

n

)n

− (1 + x)rxn−r =

n∑
k=0

( rk

nk
Cn,k − Cr,k

)
xn−k, (3.12)

where

Cn,k :=
n!

k!(n− k)!

and, as usual, we assume that Cr,k = 0 if k > r;

rk

nk
Cn,k − Cr,k = 0, k = 0, 1; (3.13)

rk

nk
Cn,k − Cr,k > 0, k = 2, . . . , n. (3.14)

Proof of (3.10). See Proposition 3.1(c)
Proof of (3.11). It is true because (x+ r

n )
n, x = 1, 2, . . . are not integers.

Proof of (3.12). We have by the binomial theorem.
Proof of (3.13). Direct verification.
Proof of (3.14). The inequality is equivalent to the inequality(

1− 1

n

)(
1− 2

n

)
· · · (1− k − 1

n
) >

(
1− 1

r

)(
1− 2

r

)
· · ·

(
1− k − 1

r

)
,

which is, of course, true when r < n.

Proof of Remark 3.2(a). The equalities V2,1 = N and V3,1 = V3,2 = {1, 2} are easy to verify by
using (3.11).

We have 1 ∈ Vn,1 from (3.11) and from the known inequality
(
1 + 1

n

)n − 2 < 1. The remaining
relation

x ≥ 2, n > 3 =⇒ x ̸∈ Vn,1

follows from the next more general statement:

x ≥ 2, n > 3 =⇒ x ̸∈ Vn,r. (3.15)
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To prove (3.15), note that owing to (3.12), (3.13) and (3.14), we can write(
x+

r

n

)n

− (1 + x)rxn−r >
( r2

n2
Cn,2 − Cr,2

)
xn−2 =

xn−2r

2

(
1− r

n

)
.

From this relation we get (3.15). Indeed, if n ≥ 4 and x ≥ 2, then

xn−2r

2
(1− r

n
) ≥ 2n−3 r(n− r)

n
,

and since r(n− r) achieves its minimum value at r = 1 or at r = n− 1, we have the estimate

xn−2r

2

(
1− r

n

)
≥ 2n−3 r(n− r)

n
≥ 2n−3

(
1− 1

n

)
> 1,

and from (3.11), we can conclude that x ̸∈ Vn,r.

Proof of Remark 3.2(b). From (3.15) we have that if x ≥ 2, then x ̸∈ Vn,r.
Now let us prove that if n ≥ 4 and r > 1, then 1 /∈ Vn,r, as well. For this purpose, according to

(3.11), it suffices to show that the following (slightly unexpected) inequality

n ≥ 4, 1 < r < n =⇒
(
1 +

r

n

)n

− 2r > 1

holds. Therefore it remains now to prove the following inequality:

n ≥ 4, 1 < r < n =⇒
(
(1 +

r

n
)

n
r

)r

− 2r > 1. (3.16)

It is clear that for the given r the left-hand side of (3.16) increases as n increases. Let us consider
separately two cases r = 2 and r ≥ 3.

If r = 2, it is enough to check that (3.16) is true when n = 4. Plugging in (3.16) r = 2 and n = 4
we are getting true inequality 17

16 > 1 and hence we are done.
For r ≥ 3, it is enough to show that (3.16) holds when n = r+1. In this case, the left-hand side of

(3.16) will be(
2− 1

r + 1

)r+1

− 2r =
Cr+1,22

r−1

(r + 1)2
− Cr+1,32

r−2

(r + 1)3
+

r+1∑
k=4

Cr+1,k2
r+1−k (−1)k

(r + 1)k
.

Since the sum
r+1∑
k=4

Cr+1,k2
r+1−k (−1)k

(r + 1)k

is nonnegative, it is enough to show that

Cr+1,22
r−1

(r + 1)2
− Cr+1,32

r−2

(r + 1)3
> 1.

We have

Cr+1,22
r−1

(r + 1)2
−Cr+1,32

r−2

(r + 1)3
= 2r−2

(
1− 1

r + 1

)(5
6
+

1

3(r + 1)

)
>2r−2

(
1− 1

r + 1

)5
6
≥ 2× 3

4
× 5

6
=

15

12
>1

and so, (3.16) holds when n = r + 1. □

3.2. Solution to problem for X = Z+, in general. The following analogue of Theorem 2.5 provides
a solution to Problem 2.1, in general, when X = Z+.

Theorem 3.3. Let n ≥ 1 be a natural number, L ∈ Z+, L > 0,

kn := (k1, . . . , kn) ∈ (Z+)
n, sn := (s1, . . . , sn) ∈ (Z+)

n,

q :=
L+

∑n
i=1 si

n
and r := L+

n∑
i=1

si − n[q].

We assume further that

d := L−
( n∑

i=1

ki + n
)
≥ 0 (3.17)
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and denote α = min1≤i≤n(ki + si), β = max1≤i≤n (ki + si),

I1 = {i ∈ In : si + ki ≤ q}, I2 = {i ∈ In : si + ki > q},
m := card(I1), I1 := {i1, . . . , im}.

Then the following statements are valid:
(a)

q ≥ 1 +
d

n
+ α > α, (3.18)

in particular, m ≥ 1 and( n−1∏
i=1

(1 + ki + si)

)
· (1 + kn + d+ sn) ≤ b(L, n;kn, sn;Z+) ≤ (1 + [q])r[q]n−r. (3.19)

(b) If m = n, i.e., if q ≥ β, then we have the following equality:

b(L, n;kn, sn;Z+) = (1 + [q])r[q]n−r.

Moreover, for (x1, . . . , xn) ∈ Z+(L, n;kn), we have (x1, . . . , xn) ∈ (Z+)ext(L, n;kn; sn) if and only if

card ({i ∈ In : xi = 1 + [q]− si}) = r and card ({i ∈ In : xi = [q]− si}) = n− r.

(c) If m < n, i.e., if q < β, then

q = [q] =⇒ b(L, n;kn, sn;Z+) < qn; (3.20)

and

b(L, n;kn; sn;Z+) = b(Lm,m; ,km; sm;Z+)
∏
i∈I2

(ki + si), (3.21)

where Lm := L−
∑

i∈I2
ki, km := (ki1 , . . . , kim) and sm := (si1 , . . . , sim).

(d) If m = 1, then

b(L, n;kn; sn;Z+) = (L1 + si1)
∏

i∈In\{i1}

(ki + si)

and

(x1, . . . , xn) ∈ Xext(L, n;kn; sn),

where L1 := L−
∑

i∈In\{i1} ki, xi1 = L1 and xi = ki for i ∈ In \ {i1}.

Proof. (a) (3.18) follows from (3.17). In fact,

q =
d+

∑n
i=1(ki + si) + n

n
≥ d+ nα+ n

n
=

d

n
+ α+ 1 > α.

We have m ≥ 1 by (3.18).
The first inequality of (3.19) is true because

(1 + k1, . . . , 1 + kn−1, 1 + kn + d) ∈ Z+(L, n;kn).

The second inequality of (3.19) follows directly from Proposition 3.1, as for (x1, . . . , xn) ∈ Z+(L, n;kn),
we have

(x1 + s1, . . . , xn + sn) ∈ Z+

(
L+

n∑
i=1

si, n;kn

)
,

and hence
n∏

i=1

(xi + si) ≤ b

(
L+

n∑
i=1

si, n;kn,0n;Z+

)
≤ b

(
L+

n∑
i=1

si, n;0n,0n;Z+

)
= (1 + [q])r[q]n−r.

(b) Clearly, since β is an integer, from q ≥ β, we have [q] ≥ β and so, [q] ≥ ki + si, i = 1, . . . , n.
This implies that

(x
(r)
1 , . . . , x(r)

n ) ∈ Z+(L, n;kn)



ON THE AM-GM INEQUALITY AND THE GENERAL PROBLEMS 363

and

(1 + [q])r[q]n−r =

n∏
i=1

(x
(r)
i + si) ≤ b(L, n;kn, sn;Z+).

This equality together with the right inequality of (3.19) show that (b) is true.
(c) Suppose that (3.20) fails, i.e., we have the equality

b(L, n;kn, sn;Z+) = qn

Then for some

(x1, . . . , xn) ∈ Z+(L, n;kn),

we will have
n∏

i=1

(xi + si) = b(L, n;kn, sn;Z+) = qn,

i.e., in the AM-GM inequality for xi + si, i = 1, . . . , n, we have the equality, whence we can conclude
that

q = xi + si, i = 1, . . . , n.

Hence q − si = xi ≥ ki, i = 1, . . . , n and so, q ≥ si + ki, i = 1, . . . , n; in particular, q ≥ β, but this
contradicts our assumption that q < β.

(c) The proof is similar to that of Theorem 2.5(c). For reader’s convenience, we repeat it with the
corresponding slight modifications.

Step 1. (AS2) If (x1, . . . , xn) ∈ (Z+)ext(L, n;kn; sn); i.e., (x1, . . . , xn) ∈ Z+(L, n;kn) and

n∏
j=1

(xj + sj) = b(L, n;kn; sn;Z+), (3.22)

then

xi = ki, ∀i ∈ I2. (3.23)

To prove (AS2), fix some (x1, . . . , xn) ∈ Z+(L, n;kn) satisfying (3.22)) and let us show that then
(3.23) is satisfied, too.

Suppose that this is not the case, i. e., xl > kl for some l ∈ I2. Fix t > 0 such that xl − t > kl.
Fix then i ∈ {1, . . . , n} with i ̸= l and put

yi := xi + t, yl := xl − t,

and in case n > 2,

yj := xj for j ∈ {1, . . . , n} \ {i, l}.
Then we have

(y1, . . . , yn) ∈ Z+(L, n;kn).

From this and in view of (3.22), we can conclude that

n∏
j=1

(xj + sj) ≥
n∏

j=1

(yj + sj).

This implies that

(xi + si)(xl + sl) ≥ (xi + t+ si)(xl − t+ sl).

This inequality and the following implications:

(xi + si)(xl + sl) ≥ (xi + t+ si)(xl − t+ sl) =⇒ xl + sl
xl − t+ sl

≥ xi + t+ si
xi + si

=⇒ xl + sl
xl − t+ sl

− 1 ≥ xi + t+ si
xi + si

− 1 =⇒ t

xl − t+ sl
≥ t

xi + si
,

give

xi + si ≥ xl − t+ sl.
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This implies that∑
i∈{1,...,n}\{l}

(xi + si) ≥
∑

i∈{1,...,n}\{l}

(xl − t+ sl) = (n− 1)xl + (n− 1)(sl − t).

Therefore

L+

n∑
j=1

sj = xl + sl +
∑

i∈{1,...,n}\{l}

(xi + si)

≥ xl + sl + (n− 1)xl + (n− 1)(sl − t) = nxl + nsl − (n− 1)t,

whence

q =
L+

∑n
j=1 sj

n
≥ xl + sl −

n− 1

n
t ≥ xl + sl − t > kl + sl.

Consequently, [q] ≥ kl + sl, which contradicts our choice of l: [q] < kl + sl. Therefore, (2.21) implies
(2.22) and hence (AS2) is proved.

Step 2. It remains to prove (3.21).
Fix (x1, . . . , xn) ∈ Z+(L, n;kn) satisfying (3.22). From (AS2) proved in Step 1, we can write

m∏
j=1

(xij + sij )
∏
j∈I2

(kj + sj) = b(L, n;kn, sn;Z+) (3.24)

and
m∑
j=1

xij = Lm. (3.25)

From (3.25) and the definition of b(Lm,m;km, sm;Z+), we can write
m∏
j=1

(xij + sij ) ≤ b(Lm,m;km, sm;Z+). (3.26)

Fix now some (y1, . . . , ym) ∈ Z+(Lm,m;km) such that
m∏
j=1

(yj + sij ) = b(Lm,m;km, sm;Z+). (3.27)

Consider now the indices im+1, . . . , in such that

I2 = {im+1, . . . , in}.
Since (y1, . . . , ym, kim+1

, . . . , kin) ∈ Z+(L, n;kn), from (3.22), we can deduce

m∏
j=1

(yj + sij )

n∏
j=m+1

(kij + sij ) ≤
m∏
j=1

(xij + sij )
∏
j∈I2

(kj + sj).

Hence
m∏
j=1

(yj + sij ) ≤
m∏
j=1

(xij + sij ).

This inequality along with equality (3.27) give

b(Lm,m;km, sm;Z+) ≤
m∏
j=1

(xij + sij ). (3.28)

From (3.28) and (3.26), we obtain

b(Lm,m;km, sm;Z+) =

m∏
j=1

(xij + sij ).

From this equality and (3.24), we conclude that (3.21) is true.
(d) follows from (3.21) of (c) because b(L1, 1; si1 ;Z+) = L1 + si1 . □
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Remark 3.4. Theorem 3.3(c) differs slightly from Theorem 2.5(c); it does not contain the following
statement:

r ̸= 0 and q < β =⇒ b(L, n;kn, sn;Z+) < (1 + [q])r[q]n−r.

This implication may not be true, in general, as the following example shows.

Example. Take n = 2, k1 = k2 = 0, s1 = 0 and s2 = L+1. We shall have [q] = L < L+1 = s2 + k2,
r = 1; however,

b (L, 2; (0, 0); (0, L+ 1);Z+) = L(L+ 1) = (1 + [q])[q].

Remark 3.5. As in the case of Theorem 2.5, we note that Theorem 3.3(b) gives the complete solution
of Problem 2.1, while Theorem 3.3(c) fails to give a complete solution of Problem 2.1, because it, (again
for n > 2 and m > 1), does not provide a formula for b(L, n;kn; sn;Z+); it provides only a reduction
of the problem to the case m < n.
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