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Abstract. The Dirichlet generalized harmonic problem for irregular n-sided pyramidal domains is

considered. The term “generalized” indicates that a boundary function has a finite number of first
kind discontinuity curves. In the case under consideration, the pyramid edges appear in the role

of the mentioned curves. The algorithm for a numerical solution of boundary problems consists of
the following main steps: a) application of the method of probabilistic solution (MPS), which is in

its turn based on a computer modeling of the Wiener process; b) finding the intersection point of

the path of Wiener process simulation and the pyramid surface; c) development of a code for the
numerical realization and checking the accuracy of calculated results; d) calculating the meaning of

a sought for function at any chosen point.

For illustration two examples are considered. Numerical results are presented and discussed.

1. Introduction

In the present paper the MPS for numerical solution of the Dirichlet harmonic problem in irregular
pyramidal domains with singularities in the boundary data is considered. It is known (see, e.g.,
[1,2,7,10,12]) that in practical stationary problems (for example, determination of electrical potential,
temperature potential, gravitational potential, and so on) there are cases when it is necessary to
consider the Dirichlet generalized harmonic problem.

As is well known (see, e.g., [7, 8]), there are the methods for an approximate solution of classical
boundary value problems that are: a) less applicable, or b) useless for solving generalized boundary
problems. In the first case, convergence of the approximate process is very slow in the neighborhood
of discontinuity curves. Consequently, the accuracy of numerical result is very low (see, e.g., [1, 2, 7,
10,12]). In the second case, the process is unstable. Namely, we have got a similar phenomenon while
solving the Dirichlet generalized harmonic problem by the MFS.

Therefore researchers have tried to conduct preliminary “improvements” of the boundary value
problem in question. For the Dirichlet generalized plane harmonic problems the following methods
were elaborated: I) A method of reduction of the Dirichlet generalized harmonic problem to a classical
problem (see, e.g., [9, 13]); II) A method of conformal mapping (see, e.g., [11]); III) A method of
probabilistic solution (see, e.g., [3,5]). It is evident that in the case of 3D Dirichlet harmonic problems,
from the above-mentioned methods we can apply only the third one.

For 3D Dirichlet generalized harmonic problems researchers face more significant difficulties. In
particular, there does not exist a universal approach that can be applied to a wide class of domains.

The above-mentioned literature [1,2,7,10,12] deals with the simplified generalized problems. Mainly,
the methods of separation of variables, particular solutions and heuristic methods are applied to their
solution. Respectively, the accuracy of the solution is low. The heuristic methods do not guarantee
to find the best solution. Moreover, in some cases, they may give an incorrect solution and, thus
we have to check these solutions in order to establish how they satisfy all conditions of a problem
(see, e.g., [7]). Therefore, the construction of effective computational schemes with a high accuracy
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for numerical solution of 3D Dirichlet generalized harmonic problems, applicable to a wide class of
domains, are both of theoretical and practical importance.

It should be noted that in [10], the existence of discontinuity curves is ignored while solving the
Dirichlet generalized harmonic simplest problems for a sphere. This fact and also the application of
classical methods is the main reason of low accuracy. Therefore, for the numerical solution of three-
dimensional Dirichlet generalized harmonic problems it is preferable to apply the methods in which
there is no need to approximate a boundary function, or to consider the existence of discontinuity
curves. It is on this basis that the Method of Prorabilistic Solutions is one of such methods.

2. Mathematical Formulation of the Main Problem

Let D be the interior of an irregular n-sided pyramid Pn(h) ≡ Pn in the space R3, where h is its
height. We consider the cases, where h is a lateral edge of Pn (or its orthogonal projection lies in the
base of Pn). In the first case, without loss of generality, we assume that h is located on Ox3 of the
right Cartesian coordinate system Ox1x2x3 and the base of Pn lies in the plane Ox1x2. Also, suppose
that the vertices of the base A1, A2, . . . An of Pn = MA1A2 . . . An are located in a counter-clockwise
direction. Let us formulate the following problem for the pyramid Pn ≡ D.

Problem A. The function g(y) given on the boundary S of the pyramid Pn is continuous everywhere,
except the edges l1, l2, . . . , l2n, of Pn, which represent the first kind discontinuity curves for the func-
tion g(y). It is required to find a function u(x) ≡ u(x1, x2, x3) ∈ C2(D) ∩ C(D\ ∪2n

k=1 lk) satisfying
the following conditions:

∆u(x) = 0, x ∈ D, (2.1)

u(y) = g(y), y ∈ S, y ∈ lk ⊂ S (k = 1, 2n), (2.2)

|u(x)| < c, x ∈ D, (2.3)

where ∆ =
∑3

i=1
∂2

∂x2
i
is the Laplace operator, lk (k = 1, 2n) are the edges of Pn, and c is a real

constant.

It is shown (see [6, 14]) that Problem (2.1)–(2.3) has a unique solution depending continuously on
the initial data. For the generalized solution u(x), the generalized extremum principle

min
x∈S

u(x) < u(x)
x∈D

< max
x∈S

u(x), (2.4)

is valid, where it is supposed that x∈lk (k = 1, 2n) for x ∈ S.
Note (see [14]) that the additional requirement (2.3) of the boundedness plays an important role

in the extremum principle (2.4); it concerns only the neighborhoods of discontinuity curves of the
function g(y).

On the basis of (2.3), the values of u(y) are, in general, not uniquely defined on the curves lk. In
particular, if Problem A concerns the determination of a thermal (or electric) field, then u(y) = 0
when y ∈ lk, respectively. In this case, in the physical sense, the curves lk are non-conductors (or
dielectrics). Otherwise, lk will not be a discontinuity curve.

It is evident that, actually, in the above-mentioned case, the boundary function g(y) has the form

g(y) =



g1(y), y ∈ S1,

g2(y), y ∈ S2,

. . . . . . . . . . . . . . .

gn(y), y ∈ Sn,

gn+1(y), y ∈ Sn+1,

0, y ∈ lk (k = 1, 2n),

(2.5)

where Si (i = 1, n) and Sn+1 are the lateral faces and the base of Pn without discontinuity curves
(edges), respectively; the functions gi(y), y ∈ Si (i = 1, n+ 1) are continuous on the parts Si of S. It
is evident that S = (∪n+1

i=1 Si) ∪ (∪2n
k=1lk).
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Remark 1. a) If the interior of S is empty, we get the generalized problem with respect to closed
shells; b) In Problem A, it is no need for all edges of the pyramid to be dielectric, moreover, we can
consider the cases when faces, apothems, base diagonals, etc. are taken in the role of dielectrics.

3. The Method of Probabilistic Solution and Simulation of the Wiener Process

This section briefly describes the proposed algorithm for numerical solving the problems of type
A. Its detailed description is suggested in [17]. The main theorem that allows us to apply the MPS
is the following one (see, e.g., [6]).

Theorem 1. If a finite domain D ∈ R3 is bounded by a piecewise smooth surface S and g(y) is a
continuous (or discontinuous) bounded function on S, then the solution of the Dirichlet classical (or
generalized) boundary value problem for the Laplace equation at the fixed point x ∈ D has the following
form:

u(x) = Exg(x(τ)). (3.1)

In (3.1): Exg(x(τ)) is the mathematical expectation of values of the boundary function g(y) at the
random intersection points of Wiener process trajectory and the boundary S; τ is the random moment
of the first exit of Wiener process x(t) = (x1(t), x2(t), x3(t)) from the domain D. It is assumed that
the starting point of the Wiener process is always x(t0) = (x1(t0), x2(t0), x3(t0)) ∈ D, where the
value of the desired function is being determined. If the number N of the random intersection points
yj = (yj1, y

j
2, y

j
3) ∈ S (j = 1, 2, . . . , N) is sufficiently large, then according to the law of large numbers,

from (3.1), we have

u(x) ≈ uN (x) =
1

N

N∑
j=1

g(yj) (3.2)

or u(x) = limuN (x), as N → ∞, in a probability sense. Thus, if we have the Wiener process, the
approximate value of the probabilistic solution of Problem A at the point x ∈ D is calculated by using
formula (3.2).

In order to simulate the Wiener process, we construct the following recursion (see, e.g., [14, 17]):

x1(tk) = x1(tk−1) + γ1(tk)/nq,

x2(tk) = x2(tk−1) + γ2(tk)/nq,

x3(tk) = x3(tk−1) + γ3(tk)/nq,

(k = 1, 2, . . . ), x(t0) = x,

(3.3)

according to which the coordinates of the point x(tk) = (x1(tk), x2(tk), x3(tk)) are being determined.
In (3.3): γ1(tk), γ2(tk), γ3(tk) are three normally distributed independent random numbers for the k-th
step, with means, equal to zero and variances, equal to 1 (the generation of the above numbers takes
place apart); nq is a quantification number (nq) such that 1/nq =

√
tk − tk−1 and when nq → ∞,

then the discrete process approaches to the continuous Wiener process. In the implementation, the
random process is simulated at each step of the walk and continues until it crosses the boundary.

In the case under consideration, calculations and generation of random numbers are performed in
MATLAB.

4. An Auxiliary Problem

It should be noted that in 3D case, there are, in general (except for a special case), no exact test
solutions for generalized problems of type A, therefore, for the verification of the scheme needed for
the numerical solution of Problem A, the reliability of obtained results can be demonstrated in the
following way.

If we take gi(y) = 1/|y − x0| in the boundary conditions (2.5), where y ∈ Si (i = 1, n+ 1),
x0 = (x0

1, x
0
2, x

0
3) ∈D, and |y− x0| denotes the distance between the points y and x0, then we can see

that the curves lk (k = 1, 2n) are the removable discontinuity curves for the boundary function g(y).
In the mentioned case, instead of Problem A we obtain the next Dirichlet classical harmonic problem.
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Problem B. Find a Function u(x) ≡ u(x1, x2, x3) ∈ C2(D) ∩ C(D) under the following conditions:

∆u(x) = 0, x ∈ D,

u(y) = 1/|y − x0|, y ∈ S, x0 ∈D.

We solve this problem by using the MPS with the algorithm constructed for Problem A. It is
known that Problem B is well posed, i.e., the solution exists, is unique and depends continuously on
the data. An exact solution of Problem B has the form

u(x0, x) =
1

|x− x0|
, x ∈ D, x0∈D. (4.1)

Note that the process of solving the Dirichlet classical harmonic problems numerically by MPS is quite
interesting and important (see, e.g., [4, 18]). In the present paper, Problem B plays an auxiliary role
and is used for checking the reliability of the scheme, and the corresponding program is needed for a
numerical solution of Problem A. First, we solve Problem B and then compare the obtained results
with the exact solution and solve Problem A under the boundary conditions (2.5).

In this paper, the MPS is applied to two examples. In the tables, N denotes a number of trajectories
in the simulated Wiener process for the given points xi = (xi

1, x
i
2, x

i
3) ∈ D, and nq is the number of

quantifications. For the sake of simplicity, in the examples under consideration, the values of nq and
N are the same. The tables below present for the problems of type B the numerical absolute errors
∆i at the points xi ∈ D of uN (x), in the MPS approximation, for nq = 200 and various values of N ,
and the numbers are given in scientific format. In particular,

∆i = max |uN (xi)− u(x0, xi)|, (i = 1, 2, . . . , 5),

where uN (xi) is the approximate solution of Problem B at the point xi, which is defined by using
formula (3.2), and the exact solution u(x0, xi) of the test problem is given by (4.1). In the tables, for
problems of type A, the probabilistic solution uN (x) is calculated at the points xi, defined by (3.2).

Remark 2. Problems of type A and B for ellipsoidal, spherical, cylindrical, conic, prismatic, regular
pyramidal, axisymmetric finite domains with a cylindrical hole, external Dirichlet generalized problem
for a sphere are considered in [14–17,19,20].

5. Numerical Examples

In order to determine the intersection points yj = (yj1, y
j
2, y

j
3) (j = 1, N) of the simulated process

path and the surface S of Pn, first of all, for each current point x(tk) we check whether it belongs to
Pn or not.

Knowing two parameters n, h and coordinates of the vertices M,A1, A2, . . . , An of Pn, we can find:
1) angles αn of inclination of the lateral faces with respect to the plane of the base of Pn; 2) equations
of lateral faces; 3) equations of edges of Pn.

Example 1. In the first example, the domain D is the interior of the irregular 3-sided pyramid P3(h),
where h is its height.

We consider the case, where h, lying on Ox3,is the lateral edge of P3. Besides, the angle between
lateral faces containing h is to equal π/2, and A1 = (a, 0, 0), A2 = (0, b, 0), A3 ≡ O = (0, 0, 0),
M = (0, 0, h).

In the rectangular coordinate system Ox1x2x3, the equation of the plane passing through the points
A1, A2, M , has the following form:

bhx1 + ahx2 + abx3 − abh = 0. (5.1)

It is evident that the equations of the planes A1MA3, A2MA3 and A1A3A2 are x2 = 0, x1 = 0,
x3 = 0, respectively.

The equations of the lines A1A2, A1M , A2M are

(−b/a)x1 − x2 + b = 0, (−h/a)x1 − x3 + h = 0, (−h/b)x2 − x3 + h = 0, (5.2)

respectively.
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Table 5.1A. Results for Problem A (in Example 1).

xi (0.8, 0.6, 0.5) (0.8, 0.6, 1) (0.6, 0.4, 1.2) (0.4, 0.2, 1.5) (0.2, 0.1, 1.6)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.95330 1.53880 1.44480 1.37130 1.31410
1E + 4 1.94440 1.53160 1.45600 1.36585 1.31100
5E + 4 1.94815 1.53196 1.44918 1.36937 1.31430
1E + 5 1.94504 1.53303 1.45021 1.37063 1.31180
5E + 5 1.94667 1.53151 1.45245 1.37135 1.31160
1E + 6 1.94656 1.53133 1.45113 1.37101 1.31272

Table 5.1B. Results for Problem B (in Example 1).

xi (0.8, 0.6, 0.5) (0.8, 0.6, 1) (0.6, 0.4, 1.2) (0.4, 0.2, 1.5) (0.2, 0.1, 1.6)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.20E − 3 0.47E − 4 0.18E − 3 0.30E − 4 0.12E − 4
1E + 4 0.97E − 4 0.24E − 3 0.34E − 4 0.88E − 4 0.66E − 5
5E + 4 0.10E − 3 0.83E − 4 0.70E − 4 0.65E − 5 0.55E − 4
1E + 5 0.32E − 4 0.97E − 4 0.27E − 4 0.77E − 4 0.47E − 4
5E + 5 0.57E − 5 0.44E − 4 0.50E − 4 0.53E − 4 0.37E − 4
1E + 6 0.18E − 5 0.44E − 4 0.54E − 4 0.35E − 4 0.33E − 4

It is clear that the equations of the lines A1A3, A2A3, A3M are: x2 = 0 and x3 = 0; x1 = 0 and
x3 = 0; x1 = 0 and x2 = 0, respectively. The angle α1 of inclination of the plane A1A2M with respect
to the plane of the base of P3 is α1 = arctan(h/∆1), where ∆1 is a distance between the point O and

the line A1A2. By the equation of line A1A2 (see (5.2)), ∆1 = |b|/
√
kk2 + 1, where kk = −b/a. It is

evident that the analogous angles for the planes A2MA3 and A1MA3 are α2 = α3 = π/2.
We have now the necessary information about the pyramid P3 in order to establish whether each

current point x(tk) defined from (3.3) belongs to P3 or not. For each step of the simulated Wiener
process we calculate the angles βm (m = 1, 3) of inclination of the planes passing through the points
x(tk), Am, Am+1 (A4 ≡ A1, with respect to the plane of the base of P3. It is easy to see that

β1 = arctan(x3(tk)/∆
∗), β2 = arctan(x3(tk)/x1(tk)), β3 = arctan(x3(tk)/x2(tk)),

where ∆∗ is a distance between the point (x1(tk), x2(tk)) and the line A1A2. It is known that

∆∗ = |kkx1(tk)− x2(tk) + b|/
√
(kk)2 + 1.

After having calculated the angles βm (m = 1, 2, 3), we compare them with the angle αm(m =
1, 2, 3). In particular: (1∗) if βm < αm and 0 < x3(tk) < h and x1(tk) > 0 and x2(tk) > 0
for m = 1, 2, 3, then the process continues until it crosses the boundary S; (2∗) if β1 = α1 and

0 < x3(tk) < h and x1(tk) > 0 and x2(tk) > 0, then x(tk) ∈ S1 or yj = (yj1, y
j
2, y

j
3) = x(tk); (3

∗) if
β1 > α1 and 0 < x3(tk) < h, this means that the trajectory of the simulated Wiener process intersects
the lateral face S1 ≡ A1A2M of P3 or x(tk−1) ∈ D for the moment t = tk−1, and x(tk)∈P3 for the
moment t = tk. In this case, for an approximate determination of the point yj , a parametric equation
of a line L passing through the points x(tk−1) and x(tk) is obtained initially; it has the following form:

x1 = x1(tk−1) + (x1(tk)− x1(tk−1))θ,

x2 = x2(tk−1) + (x2(tk)− x2(tk−1))θ,

x3 = x3(tk−1) + (x3(tk)− x3(tk−1))θ,

(5.3)

where (x1, x2, x3) is the current point of L and θ is a parameter (−∞ < θ < ∞).
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If we substitute the expressions of x1, x2, x3 defined from (5.3) into (5.1), then we obtain the
equation with respect to θ, which has the form

(b1 + b2 + b3)θ = abh− a1− a2− a3. (5.4)

In (5.4),

b1 = bh(x1(tk)− x1(tk−1)); b2 = ah(x2(tk)− x2(tk−1)); b3 = ab(x3(tk)− x3(tk−1));

a1 = bhx1(tk−1); a2 = ahx2(tk−1); a3 = abx3(tk−1).

In the considered case, due to the existence of the intersection point, we have (b1 + b2 + b3) ̸= 0
and yj = (x1(θ), x2(θ), x3(θ)), where θ is defined by (5.4).

It is easy to see that on the basis of (5.3) and the equations of faces S2 = A2A3M , S3 = A1A3M ,
S4 = A1A2A3, for the parameter θ, we have

S2 : x1 = 0, θ = −x1(tk−1)/(x1(tk)− x1(tk−1)),

S3 : x2 = 0, θ = −x2(tk−1)/(x2(tk)− x2(tk−1)), (5.5)

S4 : x3 = 0, θ = −x3(tk−1)/(x3(tk)− x3(tk−1)),

respectively.
It is evident that in the cases under consideration: if (the intersection point) yj ∈ S2, then

yj = (0, x2(θ), x3(θ); if y
j ∈ S3, then yj = (x1(θ), 0, x3(θ)), if y

j ∈ S4, then yj = (x1(θ), x2(θ), 0),
where θ is defined by (5.5), accordingly.

Remark 3. In addition, during a numerical implementation, with the help of the corresponding
equations (see (5.2)), it is checked whether the intersection point yj is situated on the edge or not.

Problems A and B are solved when h = 2, a = 4, b = 3, x0 = (2, 1,−4), and in Problem A, the
boundary function g(y) ≡ g(y1, y2, y3) has the form

g(y) =



1.5, y ∈ S1,

2, y ∈ S2,

1, y ∈ S3,

3, y ∈ S4,

0, y ∈ lk (k = 1, 6).

(5.6)

In (5.6): Si (i = 1, 3) and S4 are the lateral faces and the base of P3 without discontinuity curves
(edges), respectively; lk (k = 1, 6) are the edges of P3. In the physical sense, lk are non-conductors
(or dielectrics).

In the examples, considered by us for determination of the intersection points yj = (yj1, y
j
2, y

j
3)

(j = 1, N) of the trajectory of the Wiener process and the surface S, we have used the scheme,
described above. As it is noted in Section 3, for verification, first of all, we solve the auxiliary Problem
B with the calculating program of Problem A.

In Table 5.1B, the numerical absolute errors ∆i of the approximate solution uN (x) of the test
problem B at the points xi ∈ D (i = 1, 5) are presented.

The results, presented in Table 5.1B, show that the algorithm elaborated for Problem A is effective.
As nq → ∞ (see Section 3), the discrete process approaches to the continuous Wiener process

and the accuracy of probabilistic solution is increasing. We conducted numerical experiment, i.e.,
calculated the probabilistic solution of Problem B at the point (0.8,0.6,0.5) for N = 1E+5, nq = 400,
and obtained ∆1 = 0.23E − 4 (see, Table 5.1B). This result agrees with the above noted. If more
accuracy is needed, then the calculations for sufficiently large values of nq and N must be carried out.

In Table 5.1A, the values of approximate solution uN (x) of Problem A at the same points xi

(i = 1, 5) are given. The results have sufficient accuracy for many practical problems and are in
agreement with the real physical picture.

Example 2. Here, in the capacity of the domain D, the interior of an irregular 4-sided pyramid P4(h)
is taken, where h is its height.
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Table 5.2A. Results for Problem A (in Example 2).

xi (2, 1.5, 0.5) (2, 1.5, 1) (2, 1.5, 1.8) (1, 1.5, 0.5) (3, 1.5, 0.5)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 2.43350 2.02430 1.82350 2.11640 2.12180
1E + 4 2.43150 2.04070 1.83740 2.11030 2.11750
5E + 4 2.42634 2.03708 1.83515 2.12035 2.11918
1E + 5 2.43157 2.04039 1.83449 2.11672 2.11452
5E + 5 2.43160 2.04011 1.83373 2.11512 2.11525
1E + 6 2.43125 2.04055 1.83390 2.11447 2.11542

Table 5.2B. Results for Problem B (in Example 2).

xi (2, 1.5, 0.5) (2, 1.5, 1) (2, 1.5, 1.8) (1, 1.5, 0.5) (3, 1.5, 0.5)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.56E − 3 0.76E − 3 0.24E − 4 0.15E − 3 0.31E − 3
1E + 4 0.17E − 3 0.25E − 3 0.17E − 3 0.12E − 3 0.15E − 3
5E + 4 0.25E − 4 0.31E − 3 0.69E − 4 0.30E − 4 0.12E − 3
1E + 5 0.77E − 5 0.75E − 4 0.58E − 4 0.10E − 4 0.65E − 5
5E + 5 0.58E − 5 0.15E − 4 0.74E − 4 0.37E − 4 0.63E − 4
1E + 6 0.40E − 4 0.54E − 4 0.64E − 4 0.10E − 4 0.60E − 4

In this case, we consider Problem A for the irregular pyramid MA1A2A3A4, whose base A1A2A3A4

is a rectangle with the vertices A1 = (a, 0, 0), A2 = (a, b, 0), A3 = (0, b, 0), A4 = (0, 0, 0),
M = (a/2, b/2, h). It is evident that the base of P4 lies in the first quarter of the plane Ox1x2

and a project of the vertex M is the centre of the rectangle A1A2A3A4.
First of all, we have to define the angles αn (n = 1, 2, 3, 4) of inclination of the lateral faces:

S1 = MA1A2; S2 = MA2A3; S3 = MA3A4; S4 = MA4A1, with respect to the plane of the base
of P4. It is clear that

α1 = arctan(2h/a), α2 = arctan(2h/b), α3 = α1, α4 = α2.

Analogously to Example 1, for each step of the simulated Wiener process we have to calculate
the following angles: βm (m = 1, 2, 3, 4), which are the angles of inclination of the planes, passing
through the points x(tk), Am, Am+1 (A5 ≡ A1), with respect to the plane of P4 base. In our
case, β1 = arctan(x3(tk)/(a− x1(tk))), β2 = arctan(x3(tk)/(b− x2(tk))), β3 = arctan(x3(tk)/x1(tk)),
β4 = arctan(x3(tk)/x2(tk)).

It is not difficult to show that on the basis of (5.3) and the equations of S1, S2, S3, S4, S5 ≡
A1A2A3A4, for the parameter θ, we have

S1 : 2hx1 + ax3 − 2ah = 0, θ = (2ah− 2hx1(tk−1)− ax3(tk−1))/(2hC1 + aC3);

S2 : 2hx2 + x3 − 2bh = 0, θ = (2bh− 2hx2(tk−1)− bx3(tk−1))/(2hC2 + bC3);

S3 : 2hx1 − ax3 = 0, θ = (ax3(tk−1)− 2hx1(tk−1))/(2hC1 − aC3); (5.7)

S4 : 2hx2 − bx3 = 0, θ = (bx3(tk−1)− 2hx2(tk−1))/(2hC2 − bC3);

S5 : x3 = 0, θ = −x3(tk−1)/C3,

where C1 = x1(tk)− x1(tk−1), C2 = x2(tk)− x2(tk−1), C3 = x3(tk)− x3(tk−1).
It is evident that on the basis of (5.7), if the intersection point yj ∈ Si (i = 1, 5), then

yj = (x1(θ), x2(θ), x3(θ)), where θ is defined by (5.7), according to i.
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The problems A and B are solved for h = 2, a = 4, b = 3, x0 = (2, 1.5,−4) and the boundary
function g(y) has the form

g(y) =



1.5, y ∈ S1,

2, y ∈ S2,

1.5, y ∈ S3,

2, y ∈ S4,

3, y ∈ S5,

0, y ∈ lk (k = 1, 8),

(5.8)

In (5.8): Si (i = 1, 4) and S5 are the lateral faces and the base of P4 without discontinuity curves,
respectively; lk (k = 1, 8) are the edges of P4; the edges lk are non-conductors.

In Table 5.2B, the numerical absolute errors ∆i of the approximate solution uN (x) of the test
problem B at the points xi ∈ D (i = 1, 5) are presented.

The values of numerical solution uN (x) of Problem A at the points xi ∈ D (i = 1, 3) are presented
in Table 5.2B. Since the boundary function (5.8) is symmetric with respect to the plane x1 = 2,
therefore, in the role of xi (i = 4, 5), the points which are symmetric with respect to the plane x1 = 2
are taken for a control. The obtained results have sufficient accuracy for many practical problems and
are in agreement with the real physical picture(see Table 5.2A).

In this work, we have solved the problems of type A, while boundary functions gi(y) (i = 1, n+ 1)
are the constants. We conclude that the obtained results agree with real physical picture. It is evident
that solving Problem A under condition (2.5) is as easy as Problem B.

The analysis of numerical experiments show that the results obtained by the proposed algorithm are
reliable and effective for numerical solution of problems of type A and B. In particular, the algorithm
is sufficiently simple for numerical implementation.

The numerical solution of the considered examples by the MPS demonstrate that unlike regular
pyramids (see, e. g., [16]), an individual approach is required for numerical solution of problems of
type A and B by the same method.

6. Concluding Remarks

1. This paper demonstrates that the suggested algorithm is ideally suited for numerical solution of
problems A and B in difficult domains such as irregular pyramids.

2. According to this algorithm, there is no need to approximate the boundary function.
3. The computational outlays of this algorithm is low and the accuracy is sufficient for practical

purposes.
4. The next steps of our research are related to:
∗ The numerical solution of the Dirichlet classical and generalized harmonic problems for the infinite

space R3 with a finite number of spherical cavities.
∗ The MPS for the same type problems in finite domains which are bounded by several closed

surfaces.
∗ The MPS for the same type problem in infinite 2D domains with a finite number of circular holes.
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