DYNAMICAL CONTACT PROBLEMS FOR A VISCOELASTIC HALF-SPACE WITH AN ELASTIC INCLUSION

NUGZAR SHAVLAKADZE 1,2 AND BACHUKI PACHULIA 2

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. The dynamical contact problem for viscoelastic half-space which is reinforced by an elastic inclusion in the form of a strip, is considered. The solution of the problem is reduced to the integro-differential equation. Using the method of orthogonal polynomials, the integral equation is reduced to an infinite system of linear algebraic equations. The quasi-completely regularity of the obtained system is proved and the method of reduction for approximate solution is developed.

1. STATEMENT OF THE PROBLEM

We investigate the dynamical contact problem for a viscoelastic half-space $(-\infty < x, z < \infty, y > 0)$ which is reinforced by an elastic inclusion in the form of a strip $(0 \le y \le b, -\infty < z < \infty)$ lying in the plane x = 0. The outer border of the inclusion is under the action of uniformly distributed shearing harmonic (acting along the oz axis) load of intensity $\tau_0 e^{-ikt} \delta(y)$, where $\delta(y)$ is the Dirac function, kis oscillation frequency, t is time. In the linear theory of viscoelasticity, for Kelvin–Voigt materials, only displacement component $\omega = \omega(x, y, t)$ and tangential stresses components $\tau_{yz} = G \frac{\partial \omega}{\partial y} + G_0 \frac{\partial \dot{\omega}}{\partial y}$, $\tau_{xz} = G \frac{\partial \omega}{\partial x} + G_0 \frac{\partial \dot{\omega}}{\partial x}$ are other than zero (the so-called anti-plane deformation), where G and G_0 are the elastic and viscoelastic shear modulus, respectively. The dot means a derivative with respect to the variable $t, \dot{\omega} \equiv \frac{\partial \omega}{\partial t}$.

FIGURE 1

The problem is equivalent to the boundary value problem

$$G\Delta\omega + G_0\Delta\dot{\omega} = \rho\ddot{\omega}, \quad |x| < \infty, \quad y > 0, \quad \frac{\partial\omega(x,0,t)}{\partial y} + \frac{\partial\dot{\omega}(x,0,t)}{\partial y} = 0$$
 (1)

²⁰²⁰ Mathematics Subject Classification. 45J05, 74K20, 45D05, 41A10.

Key words and phrases. Contact problem; Viscoelasticity; Integro-differential equation; Fourier transform; Orthogonal polynomials.

(these equations are satisfied everywhere, except the domain occupied by the inclusion). ρ is the material density of the half-space [2, 4–7, 10, 11].

Passing through the inclusion, the tangential stress has discontinuities, the displacement is continuous $\langle \tau_{xz}(0, y, t) \rangle = \mu(y, t), \quad 0 < y < 1; \quad \mu(y, t) = 0, \quad y > 1$

$$\begin{aligned} \langle (0, y, t) \rangle &= \mu(y, t), \quad 0 < y < 1; \quad \mu(y, t) = 0, \quad y \ge 1 \\ \omega(-0, y, t) &= \omega(+0, y, t) = \omega^{(1)}(y, t) \end{aligned}$$

$$(2)$$

and the displacement of the points of an inclusion $\omega^{(1)}(y,t)$ satisfies the condition

$$\frac{\partial}{\partial y}h(y)\frac{\partial\omega^{(1)}(y,t)}{\partial y} - \frac{\rho_0 h(y)}{E_0}\ddot{\omega}^{(1)}(y,t) = -\frac{1}{E_0}\mu(y,t) - \frac{1}{E_0}\tau_0 e^{-ikt}\delta(y),\tag{3}$$

where $\mu(y,t)$ is an unknown contact stress at the point y at time moment t, acting onto the inclusion along the surface of its contact with a half-space, ρ_0 is a density and E_0 is the elasticity modulus of the inclusion material, h(y) is its thickness. It is required to find fields of stresses and displacements.

2. Reduction to the Integral Equation

Considering steady oscillations of the half-space and inclusion, we assume that

$$\omega(x, y, t) = \omega_0(x, y)e^{-ikt}, \quad \omega^{(1)}(y, t) = \omega_1(y)e^{-ikt}, \quad \mu(y, t) = \mu_1(y)e^{-ikt},$$

Thus from (1), (2), we obtain the following boundary value problem:

$$(G - ikG_0)\Delta\omega_0 = -\rho k^2\omega_0, \quad |x| < \infty, \quad y > 0, \quad \frac{\partial\omega_0(x,0)}{\partial y} = 0,$$

$$(G - ikG_0)\langle \frac{\partial\omega_0(0,y)}{\partial x} \rangle = \mu_1(y), \quad 0 < y < 1, \quad \mu_1(y) \equiv 0, \quad y \ge 1.$$
(4)

Based on the condition (3), the amplitude of the displacement of boundary points on the inclusion satisfies the condition

$$\frac{d}{dy}h(y)\frac{d\omega_1(y)}{dy} + \frac{\rho_0h(y)}{E_0}k^2\omega_1(y) = -\frac{1}{E_0}\mu_1(y) - \frac{1}{E_0}\tau_0\delta(y), \quad 0 < y < 1.$$
(5)

Multiplying equations (4) by $e^{i\alpha x}$ and integrating by parts separately on the intervals $(-\infty, 0)$ and $(0, \infty)$, for the Fourier transform, we obtain the one-dimensional boundary value problem [12, 13]

$$\omega_{\alpha}''(y) - (\alpha^2 - k_0^2)\omega_{\alpha}(y) = f(y), \quad 0 < y < \infty, \quad \omega_{\alpha}'(0) = 0, \tag{6}$$

where

$$k_0^2 = \frac{\rho k^2}{\widetilde{G}}, \quad f(y) = -\frac{\mu_1(y)}{\widetilde{G}}, \quad \widetilde{G} = G - ikG_0.$$

The decreasing at infinity fundamental function of equation (6) is defined by the methods of integral transformations and contour integration. Since Green's function $G_{\alpha}(y,\eta)$ of the boundary value problem (6) must satisfy the equation $G_{\alpha}(0,\eta) = 0$, it can be constructed in the form of a simple combination of the above-mentioned fundamental functions, that is,

$$G_{\alpha}(y,\eta) = \Phi(y,\eta) + \Phi(y,-\eta)$$

Thus

$$\omega_{\alpha}(y) = \int_{0}^{1} [\Phi(y,\eta) + \Phi(y,-\eta)]f(\eta)d\eta = \int_{-1}^{1} \Phi(y,\eta)f(\eta)d\eta.$$

We have taken here into account the fact that the right-hand side of equation (6) is equal to zero for y > 1, and its continuation is realized evenly by negative values of the argument.

Consequently, a solution of the boundary value problem (6) can be represented in the form

$$\widetilde{G}\omega_{\alpha}(y) = \int_{-1}^{1} \frac{e^{-\sqrt{\alpha^2 - k_0^2}|y-\eta|}}{2\sqrt{\alpha^2 - k_0^2}} \mu_1(\eta) d\eta.$$

Using the inverse transformation, we find that

$$\widetilde{G}\omega_0(x,y) = \int_{-1}^{1} \mu_1(\eta) d\eta \int_{0}^{\infty} \frac{e^{-\sqrt{\alpha^2 - k_0^2}|y-\eta|} \cos \alpha x d\alpha}{2\sqrt{\alpha^2 - k_0^2}} \,. \tag{7}$$

For the conditions of diverging wave to be fulfilled, it is assumed that $\gamma(\alpha) = \sqrt{\alpha^2 - k_0^2} \rightarrow |\alpha|$, as $|\alpha| \rightarrow \infty$, and when k_0 is a real number, $\sqrt{\alpha^2 - k_0^2} = -i\sqrt{k_0^2 - \alpha^2}$, that is, the real axis of the complex plane $z = \alpha + i\sigma$ goes around the branch points $-k_0$ from above and k_0 from below.

Since the integrand of the interior integral in formula (7) may have at infinity the behavior α^{-1} , its Fourier transformation (in a sense of the theory of generalized functions) is represented as a sum of its principal and regular part [10]:

$$R(x,|y-\eta|) = \frac{1}{2}\ln\frac{1}{x^2 + (y-\eta)^2} + R_0(x,|y-\eta|),$$
(8)

where

$$R_0(x, |y-\eta|) = \int_0^\infty \left(\frac{e^{-\sqrt{\alpha^2 - k_0^2}|y-\eta|}\cos\alpha x}{\sqrt{\alpha^2 - k_0^2}} - \frac{e^{-\alpha|y-\eta|}\cos\alpha x - e^{-\alpha|\eta|}}{\alpha}\right) d\alpha$$

Thus the function can be represented as follows:

$$\widetilde{G}\omega_0(x,y) = \frac{1}{4\pi} \int_{-1}^{1} \ln \frac{1}{x^2 + (y-\eta)^2} \mu_1(\eta) d\eta + \int_{-1}^{1} R_0(x,|y-\eta|) \mu_1(\eta) d\eta.$$

Taking into account the contact condition of the inclusion and the half-space $\omega_0(0, y) = \omega_1(y)$, in view of formulas (8) and (5), we obtain the following integro-differential equation:

$$\left(\frac{d}{dy}h(y)\frac{d}{dy} + \frac{\rho_0 k^2 h(y)}{E_0}\right) \left(\frac{1}{2\pi \widetilde{G}} \int_{-1}^{1} \ln \frac{1}{|y-\eta|} \mu_1(\eta) d\eta + \frac{1}{\widetilde{G}} \int_{-1}^{1} R_0(0, |y-\eta|) \mu_1(\eta) d\eta \right)$$

$$= -\frac{1}{E_0} \mu_1(y) - \frac{1}{E_0} \tau_0 \delta(y)$$
(9)

under the condition that

$$\int_{-1}^{1} \mu_1(\eta) d\eta = 2\tau_0.$$
(10)

The subject of our investigation is the integro-differential equation (9) with condition (10).

3. Reduction of Problem (9), (10) to an Infinite System of Linear Algebraic Equations

A solution of problem (9), (10) will be sought in the form

$$\mu_1(y) = \frac{a_0}{\sqrt{1-y^2}} + \frac{1}{\sqrt{1-y^2}} \sum_{m=1}^{\infty} a_m T_m(y), \tag{11}$$

where $T_m(y)$ is the first kind Chebyshev's orthogonal polynomial, $\{a_n\}_{n\geq 1}$ are unknown sequences. By virtue of the equilibrium conditions of inclusion (10), we obtain $a_0 = \frac{2\tau_0}{\pi}$.

a) If h(y) = h = const, using Rodrigue's formula for Jacobi's polynomials and the following spectral relation

$$\frac{1}{\pi} \int_{-1}^{1} \ln \frac{1}{|x-y|} \frac{T_m(y)dy}{\sqrt{1-y^2}} = \mu_m T_m(x), \qquad \mu_m = \begin{cases} \ln 2, & m = 0, \\ \frac{1}{m}, & m \neq 0, \end{cases}$$

from the integro-differential equation (9), we have [14]:

$$\begin{split} \frac{\sqrt{\pi}}{8} \sum_{m=2}^{\infty} a_m \mu_m \frac{(m+1)!m}{\Gamma(m+2^{-1})} P_{m-2}^{(3/2,3/2)}(y) + \frac{\rho_0 k^2}{2E_0} \sum_{m=0}^{\infty} a_m \mu_m T_m(y) + \sum_{m=0}^{\infty} a_m \int_{-1}^{1} K(|y-\eta|) \frac{T_m(\eta)}{\sqrt{1-\eta^2}} d\eta \\ &= -\frac{\widetilde{G}}{E_0 h} \frac{1}{\sqrt{1-y^2}} \sum_{m=0}^{\infty} a_m T_m(y) - \frac{\widetilde{G}}{E_0 h} \tau_0 \delta(y), \end{split}$$
 where $K(|y-\eta|) = \frac{\partial^2 R_0(0,|y-\eta|)}{\partial y^2} + \frac{\rho_0 k^2}{E_0} R_0(0,|y-\eta|).$

Multiplying both parts of the above equality by $(1-y^2)^{3/2}P_{n-2}^{(3/2,3/2)}(y)$, integrating in the interval (-1, 1) and based on the orthogonality of Jacobi's polynomials, we obtain the infinite system of linear algebraic equations

$$\gamma_n \alpha_n + \sum_{m=1}^{\infty} R_{nm} a_m = \tau_0 f_n, \quad n = 2, 3, \dots,$$
 (12)

where

$$\begin{split} R_{nm} &= \frac{\rho_0 k^2}{2\sqrt{\pi}E_0} R_{mn}^{(1)} + \frac{1}{\sqrt{\pi}} R_{mn}^{(2)} + \frac{\tilde{G}}{\sqrt{\pi}E_0 h} R_{mn}^{(3)}, \qquad R_{nm}^{(1)} = \frac{1}{m} \int_{-1}^{1} (1 - y^2)^{3/2} P_{n-2}^{(3/2,3/2)}(y) T_m(y) dy, \\ R_{nm}^{(2)} &= \int_{-1}^{1} (1 - y^2)^{3/2} P_{n-2}^{(3/2,3/2)}(y) \left(\int_{-1}^{1} K |y - \eta| \frac{T_m(\eta) d\eta}{\sqrt{1 - \eta^2}} \right) dy, \\ R_{nm}^{(3)} &= \int_{-1}^{1} (1 - y^2) P_{n-2}^{(3/2,3/2)}(y) T_m(y) dy, \\ f_n &= -\frac{\rho_0 k^2 \ln 2}{\pi \sqrt{\pi}E_0} \int_{-1}^{1} (1 - y^2)^{3/2} P_{n-2}^{(3/2,3/2)}(y) dy - \frac{2}{\pi \sqrt{\pi}} \int_{-1}^{1} (1 - y^2)^{3/2} l(y) P_{n-2}^{(3/2,3/2)}(y) dy \\ &- \frac{2\tilde{G}}{\pi \sqrt{\pi}E_0 h} \int_{-1}^{1} (1 - y^2) P_{n-2}^{(3/2,3/2)}(y) - \frac{\tilde{G}}{\pi E_0 h} \int_{-1}^{1} (1 - y^2)^{3/2} P_{n-2}^{(3/2,3/2)}(y) \delta(y) dy, \\ &l(y) &= \int_{-1}^{1} \frac{K(|y - \eta|) d\eta}{\sqrt{1 - \eta^2}}, \qquad \gamma_n = \frac{\Gamma(n + 1/2)}{n\Gamma(n - 1)}. \end{split}$$

Using Stirling's formula for the Gamma function $\Gamma(z)$ [1], we have

$$\gamma_n = O(n^{1/2}), \quad n \to \infty.$$
⁽¹³⁾

Using now Rodrigue's formula and Darboux asymptotic formula for the Jacobi's polynomials [14], after some calculations, we get

$$\begin{split} R_{nm}^{(1)} &= \frac{1}{\sqrt{\pi(n-2)}m} \begin{cases} 0, & m \neq n, \quad m \neq n \pm 2, \\ \pi, & m = n \\ -\pi/2, & m = n \pm 2, \end{cases} + O(n^{-3/2}) \frac{1}{m} \begin{cases} 0, & m \neq 2, 4 \\ -\pi/4, & m = 2, \\ -\pi/16, & m = 4 \end{cases} \\ R_{mn}^{(2)} &= \frac{\sqrt{\pi}\Gamma(m+1)}{8\Gamma(m+1/2)(n-2)m(m-1)} \int_{-1}^{1} \frac{d}{dy} (1-y^2)^{5/2} P_{n-3}^{(5/2,5/2)}(y) \\ &\times \left(\int_{-1}^{1} K(|y-\eta|) \frac{d^2}{d\eta^2} (1-\eta^2)^{3/2} P_{m-2}^{(3/2,3/2)}(\eta) d\eta\right) dy \end{split}$$

$$= \frac{\sqrt{\pi}\Gamma(m+1)}{8\Gamma(m+1/2)(n-2)m(m-1)} \int_{-1}^{1} (1-y^2)^{5/2} P_{n-3}^{(5/2,5/2)}(y) \\ \times \left(\int_{-1}^{1} (1-\eta^2)^{3/2} P_{m-2}^{(3/2,3/2)}(\eta) \frac{\partial^3 K(|y-\eta|)}{\partial y \partial \eta^2} d\eta\right) dy, \\ R_{mn}^{(3)} \sim \frac{2((-1)^{m+n}+1)}{\sqrt{\pi}\sqrt{(n-2)}} \Big[\frac{1}{(m+n)^2 - 1} + \frac{1}{(m-n)^2 - 1} \Big] + O(n^{-3/2}) \frac{(-1)^m + 1}{m^2 - 1}, \quad n \to \infty, \\ f_n = O\Big(\frac{1}{\sqrt{n}}\Big), \quad n \to \infty.$$
(14)

Now, investigating the regularity of the infinite system (12) and taking into account estimations (13), (14), for the system (12), we obtain the following conditions:

$$\sum_{m=1,n=2} \left(\frac{R_{mn}}{\gamma_n}\right)^2 < \infty, \qquad \sum_{n=2} \left(\frac{f_n}{\gamma_n}\right)^2 < \infty.$$
(15)

b) If $h(x) = h_0 \sqrt{1 - x^2}$, |x| < 1, a solution of problem (9), (10) will be sought in the form (11) and from (9), we have

$$\begin{split} \frac{h_0}{2} \sum_{m=1}^{\infty} \frac{mT_m(y)}{\sqrt{1-y^2}} a_m + \frac{\rho_0 k^2 h_0}{2E_0} \sum_{m=0}^{\infty} a_m \mu_m \sqrt{1-y^2} T_m(y) \\ + \sum_{m=0}^{\infty} a_m \int_{-1}^{1} \widetilde{K}(|y-\eta|) \frac{T_m(\eta)}{\sqrt{1-\eta^2}} d\eta = -\frac{\widetilde{G}}{E_0} \frac{1}{\sqrt{1-y^2}} \sum_{m=0}^{\infty} a_m T_m(y) - \frac{\widetilde{G}}{E_0} \tau_0 \delta(y), \end{split}$$

where

$$\widetilde{K}(|y-\eta|) = \frac{\partial}{\partial y}\sqrt{1-y^2}\,\frac{\partial R_0(0,|y-\eta|)}{\partial y} + \frac{\rho_0 k^2}{E_0}\sqrt{1-y^2}R_0(0,|y-\eta|).$$

Multiplying both parts of the above equality by $T_n(y)$, integrating in the interval (-1, 1) and using the conditions of orthogonality of Chebyshev's polynomials of the first kind, we obtain the infinite system of linear algebraic equations

$$\delta_n a_n + \sum_{m=1}^{\infty} L_{mn} a_m = \tau_0 g_m, \qquad n = 1, 2, 3, \dots,$$
 (16)

where

Using the properties of the first kind Chebyshev's orthogonal polynomials and Gamma function, we have

$$\begin{split} L_{mn}^{(1)} &= \frac{1}{m} \begin{cases} \pi/8 & m = n = 1\\ \pi/4, & m = n \neq 1\\ -\pi/8, & m = n \pm 2\\ 0, & m \neq n, m \neq n \pm 2 \end{cases}, \\ 0, & m \neq n, m \neq n \pm 2 \end{cases}, \\ L_{mn}^{(2)} &= \frac{\sqrt{\pi}\Gamma(m+1)}{8\Gamma(m+1/2)m(m-1)} \int_{-1}^{1} T_n(y) \times \left(\int_{-1}^{1} \widetilde{K}(|y-\eta|) \frac{d^2}{d\eta^2}(1-\eta^2)^{3/2} P_{m-2}^{(3/2,3/2)}(\eta) d\eta\right) dy \\ &= \frac{\sqrt{\pi}\Gamma(m+1)}{8\Gamma(m+1/2)m(m-1)} \int_{-1}^{1} T_n(y) \times \left(\int_{-1}^{1} (1-\eta^2)^{3/2} P_{m-2}^{(3/2,3/2)}(\eta) \frac{\delta^2 \widetilde{K}(|y-\eta|)}{\delta \eta^2} d\eta\right) dy, \\ g_n &= -\frac{\widetilde{G}}{E_0} \cos \frac{\pi n}{2} - \frac{2}{\pi} \int_{-1}^{1} T_n(y) \left(\int_{-1}^{1} \frac{\widetilde{K}(|y-\eta|) d\eta}{\sqrt{1-\eta^2}}\right) dy, \qquad n \neq 2 \\ g_2 &= \frac{\widetilde{G}}{E_0} + \frac{\rho_0 k^2 h_0}{4E_0} \ln 2 - \frac{2}{\pi} \int_{-1}^{1} T_2(y) \left(\int_{-1}^{1} \frac{\widetilde{K}(|y-\eta|) d\eta}{\sqrt{1-\eta^2}}\right) dy, \\ \delta_n &= O(n), \quad n \to \infty. \end{split}$$

If we rewrite the system (16) in following form

$$a_n + \sum_{m=1}^{\infty} \frac{L_{nm}}{\delta_n} a_m = \tau_0 \frac{g_n}{\delta_n}, \quad n = 1, 2, 3, \dots$$
 (17)

based on the previous representations for system (17), we obtain the conditions

$$\sum_{n=1,m=1}^{\infty} \left(\frac{L_{nm}}{\delta_n}\right)^2 < \infty, \qquad \sum_{n=1}^{\infty} \left(\frac{g_n}{\delta_n}\right)^2 < \infty.$$
(18)

Conditions (15) and (18) prove that the infinite systems (12) and (17) are quasi-completely regular in the space l_2 , that is, their solutions satisfy the condition $\sum_{n=1}^{\infty} a_n^2 < \infty$.

On the basis of the Hilbert alternative [8,9], if the determinants of the corresponding finite system of linear algebraic equations are nonzero, then systems (12), (17) will have a unique solution in the class l_2 , and problem (9), (10) has the unique solution in the form (11).

The results of [8, p. 534], are applicable to an infinite system (17). Relying on this fact, the system

$$a_n^N + \sum_{m=1}^N \widetilde{L}_{nm} a_m^N = \widetilde{g}_n, \qquad n = 1, 2, \dots, N, \qquad \widetilde{g}_n = \tau_0 \frac{g_n}{\delta_n}, \qquad \widetilde{L}_{nm} = \frac{L_{nm}}{\delta_n}$$
(19)

is solvable for sufficiently large N and the convergence of approximate solutions $\{a_n^N\}_{n=1,...,N}$ to $\{a_n\}_{n\geq 1}$ is valid in the sense of the norm of the space l_2 .

The convergence rate is determined by the inequality

$$\|a - \varphi_0^{-1}\overline{a}^N\|_{l_2} \le C_1 \left[\sum_{n=N+1}^{\infty} \sum_{m=1}^{\infty} |\widetilde{L}_{nm}|^2\right]^{1/2} + C_2 \left(\frac{\sum_{n=N+1}^{\infty} \widetilde{g}_n^2}{\sum_{n=1}^{\infty} \widetilde{g}_n^2}\right)^{1/2},$$

where $a = \{a_n\}_{n \ge 1} = (a_1, a_2, ..., a_n, ...)$ is the solution of system (17), $\overline{a}^N = (a_1^N, a_2^N, ..., a_N^N)$ is the solution of system (19), $\varphi_0^{-1}\overline{a}^N = (a_1^N, a_2^N, ..., a_N^N, 0, 0, ...)$.

Considering the expression for L_{nm} , we have

$$C_1 \left[\sum_{n=N+1}^{\infty} \sum_{m=1}^{\infty} |\widetilde{L}_{nm}|^2 \right]^{1/2} \le C_1^* \left[\sum_{n=1}^{\infty} \frac{1}{(n+N)^4} \right]^{1/2} = C_1^* [\zeta(4,N)]^{1/2},$$
$$C_2 \left(\frac{\sum_{n=N+1}^{\infty} \widetilde{g}_n^2}{\sum_{n=1}^{\infty} \widetilde{g}_n^2} \right)^{1/2} \le C_2^* \left(\sum_{n=1}^{\infty} \frac{1}{(n+N)^2} \right)^{1/2} \le C_2^* [\zeta(2,N)]^{1/2}$$

where $\zeta(s, N)$ is the known generalized Zeta-function.

Using the asymptotic formula for the generalized Zeta-function [3, p. 62], we obtain

$$||a - \varphi_0^{-1}\overline{a}^N||_{l_2} \leq CN^{-1/2}.$$

Thus the solutions of systems (12) and (17) can be constructed by the reduction method with any accuracy [8,9].

Theorem. The infinite systems of linear algebraic equations (12) and (17) are quasi-completely regular in the space l_2 . Accordingly, problem (9), (10) has the unique solution in the form (11).

Acknowledgement

This work is supported by the Shota Rustaveli National Science Foundation of Georgia (Project No. FR-21-7307).

References

- 1. M. Abramowitz, I. A. Stegun, Reference Book on Special Functions. (Russian) Nauka, Moscow, 1979.
- 2. H. Altenbach, Creep analysis of thin-walled structures. ZAMM Z. Angew. Math. Mech. 82 (2002), no. 8, 507–533.
- 3. G. Beitmen, A. Erdein, Higher Transcendental Functions. Nauka, Moscow, 1973.
- 4. D. R. Bland, *The Theory of Linear Viscoelasticity*. International Series of Monographs on Pure and Applied Mathematics, Vol. 10 Pergamon Press, New York-London-Oxford-Paris 1960
- 5. R. M. Christensen, Theory of Viscoelasticity. New York, Academic, 1971.
- M. Fabrizio, A. Morro, *Mathematical Problems in Linear Viscoelasticity*. SIAM Studies in Applied mathematics, 12, Society for Industrial and Applied mathematics(SIAM), Philadelphia, PA, 1992.
- E. Kh. Grigoryan, On the dynamic contact problem for a half-plane reinforced by a finite elastic strip. (Russian) translated from Prikl. Mat. Meh. 38 (1974), 321–330 J. Appl. Math. Mech. 38 (1974), 292–302.
- 8. L. V. Kantorovich, G. P. Akilov, Functional Analysis. Second edition, revised. (Russian) Nauka, Moscow, 1977.
- L. V. Kantorovič, V. I. Krylov, Approximate Methods of Higher Analysis. Fifth corrected edition Gosudarstv. (Russian) Izdat. Fiz.-Mat. Lit., Moscow-Leningrad, 1962.
- Yu. S. Klimjuk, O. V. Onishchuk, G. Ja. Popov, The problem on oscillations and stability of a rectangular plate with thin inclusion. (Russian) *Izv. AN SSSR*, MTT 6 (1984), 137–144.
- G. Popov, Concentration of Elastic Stresses Near Punches, Cuts, thin Inclusions and Supports. (Russian) Nauka, Moscow, 1982.
- N. Shavlakadze, Dynamical contact problem for an elastic half-space with a rigid and elastic inclusion. Proc. A. Razmadze Math. Inst. 159 (2012), 87–94.
- 13. I. Snedon, Fourier Transformation. (Russian) Inostr. Literat., Moscow, 1955.
- 14. G. Szegö, Orthogonal Polynomials. (Russian) Fizmatgiz, Moscow, 1962.

(Received 26.01.2023)

¹A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 2 MERAB ALEKSIDZE II LANE, TBILISI 0193, GEORGIA

 $^2{\rm Georgian}$ Technical University, 77 Kostava Str., Tbilisi 0171, GeorgiaEmail~address: nusha1961@yahoo.com