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DYNAMICAL CONTACT PROBLEMS FOR A VISCOELASTIC HALF-SPACE

WITH AN ELASTIC INCLUSION

NUGZAR SHAVLAKADZE1,2 AND BACHUKI PACHULIA2

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. The dynamical contact problem for viscoelastic half-space which is reinforced by an
elastic inclusion in the form of a strip, is considered. The solution of the problem is reduced to the

integro-differential equation. Using the method of orthogonal polynomials, the integral equation is
reduced to an infinite system of linear algebraic equations. The quasi-completely regularity of the

obtained system is proved and the method of reduction for approximate solution is developed.

1. Statement of the problem

We investigate the dynamical contact problem for a viscoelastic half-space (−∞ < x, z < ∞, y > 0)
which is reinforced by an elastic inclusion in the form of a strip (0 ≤ y ≤ b, −∞ < z < ∞) lying in the
plane x = 0. The outer border of the inclusion is under the action of uniformly distributed shearing
harmonic (acting along the oz axis) load of intensity τ0e

−iktδ(y), where δ(y) is the Dirac function, k
is oscillation frequency, t is time. In the linear theory of viscoelasticity, for Kelvin–Voigt materials,
only displacement component ω = ω(x, y, t) and tangential stresses components τyz = G∂ω

∂y +G0
∂ω̇
∂y ,

τxz = G∂ω
∂x + G0

∂ω̇
∂x are other than zero (the so-called anti-plane deformation), where G and G0 are

the elastic and viscoelastic shear modulus, respectively. The dot means a derivative with respect to
the variable t, ω̇ ≡ ∂ω

∂t .

Figure 1

The problem is equivalent to the boundary value problem

G∆ω +G0∆ω̇ = ρω̈, |x| < ∞, y > 0,
∂ω(x, 0, t)

∂y
+

∂ω̇(x, 0, t)

∂y
= 0 (1)
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(these equations are satisfied everywhere, except the domain occupied by the inclusion). ρ is the
material density of the half-space [2, 4–7,10,11].

Passing through the inclusion, the tangential stress has discontinuities, the displacement is contin-
uous

⟨τxz(0, y, t)⟩ = µ(y, t), 0 < y < 1; µ(y, t) = 0, y ≥ 1

ω(−0, y, t) = ω(+0, y, t) = ω(1)(y, t)
(2)

and the displacement of the points of an inclusion ω(1)(y, t) satisfies the condition

∂

∂y
h(y)

∂ω(1)(y, t)

∂y
− ρ0h(y)

E0
ω̈(1)(y, t) = − 1

E0
µ(y, t)− 1

E0
τ0e

−iktδ(y), (3)

where µ(y, t) is an unknown contact stress at the point y at time moment t, acting onto the inclusion
along the surface of its contact with a half-space, ρ0 is a density and E0 is the elasticity modulus of
the inclusion material, h(y) is its thickness. It is required to find fields of stresses and displacements.

2. Reduction to the Integral Equation

Considering steady oscillations of the half-space and inclusion, we assume that

ω(x, y, t) = ω0(x, y)e
−ikt, ω(1)(y, t) = ω1(y)e

−ikt, µ(y, t) = µ1(y)e
−ikt.

Thus from (1), (2), we obtain the following boundary value problem:

(G− ikG0)∆ω0 = −ρk2ω0, |x| < ∞, y > 0,
∂ω0(x, 0)

∂y
= 0,

(G− ikG0)⟨
∂ω0(0, y)

∂x
⟩ = µ1(y), 0 < y < 1, µ1(y) ≡ 0, y ≥ 1.

(4)

Based on the condition (3), the amplitude of the displacement of boundary points on the inclusion
satisfies the condition

d

dy
h(y)

dω1(y)

dy
+

ρ0h(y)

E0
k2ω1(y) = − 1

E0
µ1(y)−

1

E0
τ0δ(y), 0 < y < 1. (5)

Multiplying equations (4) by eiαx and integrating by parts separately on the intervals (−∞, 0) and
(0,∞), for the Fourier transform, we obtain the one-dimensional boundary value problem [12,13]

ω′′
α(y)− (α2 − k20)ωα(y) = f(y), 0 < y < ∞, ω′

α(0) = 0, (6)

where

k20 =
ρk2

G̃
, f(y) = −µ1(y)

G̃
, G̃ = G− ikG0.

The decreasing at infinity fundamental function of equation (6) is defined by the methods of integral
transformations and contour integration. Since Green’s function Gα(y, η) of the boundary value
problem (6) must satisfy the equation Gα(0, η) = 0, it can be constructed in the form of a simple
combination of the above-mentioned fundamental functions, that is,

Gα(y, η) = Φ(y, η) + Φ(y,−η).

Thus

ωα(y) =

1∫
0

[Φ(y, η) + Φ(y,−η)]f(η)dη =

1∫
−1

Φ(y, η)f(η)dη.

We have taken here into account the fact that the right-hand side of equation (6) is equal to zero
for y > 1, and its continuation is realized evenly by negative values of the argument.

Consequently, a solution of the boundary value problem (6) can be represented in the form

G̃ωα(y) =

1∫
−1

e−
√

α2−k2
0|y−η|

2
√
α2 − k20

µ1(η)dη.
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Using the inverse transformation, we find that

G̃ω0(x, y) =

1∫
−1

µ1(η)dη

∞∫
0

e−
√

α2−k2
0|y−η| cosαxdα

2
√

α2 − k20
. (7)

For the conditions of diverging wave to be fulfilled, it is assumed that γ(α) =
√
α2 − k20 → |α|,

as |α| → ∞, and when k0 is a real number,
√
α2 − k20 = −i

√
k20 − α2, that is, the real axis of the

complex plane z = α+ iσ goes around the branch points −k0 from above and k0 from below.
Since the integrand of the interior integral in formula (7) may have at infinity the behavior α−1,

its Fourier transformation (in a sense of the theory of generalized functions) is represented as a sum
of its principal and regular part [10]:

R(x, |y − η|) = 1

2
ln

1

x2 + (y − η)2
+R0(x, |y − η|), (8)

where

R0(x, |y − η|) =
∞∫
0

(
e−

√
α2−k2

0|y−η| cosαx√
α2 − k20

− e−α|y−η| cosαx− e−α|η|

α

)
dα.

Thus the function can be represented as follows:

G̃ω0(x, y) =
1

4π

1∫
−1

ln
1

x2 + (y − η)2
µ1(η)dη +

1∫
−1

R0(x, |y − η|)µ1(η)dη.

Taking into account the contact condition of the inclusion and the half-space ω0(0, y) = ω1(y), in
view of formulas (8) and (5), we obtain the following integro-differential equation:

( d

dy
h(y)

d

dy
+

ρ0k
2h(y)

E0

)( 1

2πG̃

1∫
−1

ln
1

|y − η|
µ1(η)dη +

1

G̃

1∫
−1

R0(0, |y − η|)µ1(η)dη

)

= − 1

E0
µ1(y)−

1

E0
τ0δ(y) (9)

under the condition that
1∫

−1

µ1(η)dη = 2τ0. (10)

The subject of our investigation is the integro-differential equation (9) with condition (10).

3. Reduction of Problem (9), (10) to an Infinite System of Linear Algebraic
Equations

A solution of problem (9), (10) will be sought in the form

µ1(y) =
a0√
1− y2

+
1√

1− y2

∞∑
m=1

amTm(y), (11)

where Tm(y) is the first kind Chebyshev’s orthogonal polynomial, {an}n≥1 are unknown sequences.
By virtue of the equilibrium conditions of inclusion (10), we obtain a0 = 2τ0

π .
a) If h(y) = h = const, using Rodrigue’s formula for Jacobi’s polynomials and the following spectral

relation

1

π

1∫
−1

ln
1

|x− y|
Tm(y)dy√
1− y2

= µmTm(x), µm =

ln 2, m = 0,
1

m
, m ̸= 0,
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from the integro-differential equation (9), we have [14]:

√
π

8

∞∑
m=2

amµm
(m+ 1)!m

Γ(m+ 2−1)
P

(3/2,3/2)
m−2 (y) +

ρ0k
2

2E0

∞∑
m=0

amµmTm(y) +

∞∑
m=0

am

1∫
−1

K(|y − η|) Tm(η)√
1− η2

dη

= − G̃

E0h

1√
1− y2

∞∑
m=0

amTm(y)− G̃

E0h
τ0δ(y),

where K(|y − η|) = ∂2R0(0,|y−η|)
∂y2 + ρ0k

2

E0
R0(0, |y − η|).

Multiplying both parts of the above equality by (1− y2)3/2P
(3/2,3/2)
n−2 (y), integrating in the interval

(−1, 1) and based on the orthogonality of Jacobi’s polynomials, we obtain the infinite system of linear
algebraic equations

γnαn +

∞∑
m=1

Rnmam = τ0fn, n = 2, 3, . . . , (12)

where

Rnm =
ρ0k

2

2
√
πE0

R(1)
mn +

1√
π
R(2)

mn +
G̃√
πE0h

R(3)
mn, R(1)

nm =
1

m

1∫
−1

(1− y2)3/2P
(3/2,3/2)
n−2 (y)Tm(y)dy,

R(2)
nm =

1∫
−1

(1− y2)3/2P
(3/2,3/2)
n−2 (y)

( 1∫
−1

K|y − η|Tm(η)dη√
1− η2

)
dy,

R(3)
nm =

1∫
−1

(1− y2)P
(3/2,3/2)
n−2 (y)Tm(y)dy,

fn = −ρ0k
2 ln 2

π
√
πE0

1∫
−1

(1− y2)3/2P
(3/2,3/2)
n−2 (y)dy − 2

π
√
π

1∫
−1

(1− y2)3/2l(y)P
(3/2,3/2)
n−2 (y)dy

− 2G̃

π
√
πE0h

1∫
−1

(1− y2)P
(3/2,3/2)
n−2 (y)− G̃

πE0h

1∫
−1

(1− y2)3/2P
(3/2,3/2)
n−2 (y)δ(y)dy,

l(y) =

1∫
−1

K(|y − η|)dη√
1− η2

, γn =
Γ(n+ 1/2)

nΓ(n− 1)
.

Using Stirling’s formula for the Gamma function Γ(z) [1], we have

γn = O(n1/2), n → ∞. (13)

Using now Rodrigue’s formula and Darboux asymptotic formula for the Jacobi’s polynomials [14],
after some calculations, we get

R(1)
nm =

1√
π(n− 2)m


0, m ̸= n, m ̸= n± 2,

π, m = n

−π/2, m = n± 2,

+O(n−3/2)
1

m


0, m ̸= 2, 4

−π/4, m = 2, n → ∞
−π/16, m = 4

,

R(2)
mn =

√
πΓ(m+ 1)

8Γ(m+ 1/2)(n− 2)m(m− 1)

1∫
−1

d

dy
(1− y2)5/2P

(5/2,5/2)
n−3 (y)

×
( 1∫
−1

K(|y − η|) d2

dη2
(1− η2)3/2P

(3/2,3/2)
m−2 (η)dη

)
dy
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=

√
πΓ(m+ 1)

8Γ(m+ 1/2)(n− 2)m(m− 1)

1∫
−1

(1− y2)5/2P
(5/2,5/2)
n−3 (y)

×
( 1∫
−1

(1− η2)3/2P
(3/2,3/2)
m−2 (η)

∂3K(|y − η|)
∂y∂η2

dη

)
dy,

R(3)
mn ∼ 2((−1)m+n + 1)

√
π
√
(n− 2)

[ 1

(m+ n)2 − 1
+

1

(m− n)2 − 1)

]
+O(n−3/2)

(−1)m + 1

m2 − 1
, n → ∞,

fn = O
( 1√

n

)
, n → ∞. (14)

Now, investigating the regularity of the infinite system (12) and taking into account estimations
(13), (14), for the system (12), we obtain the following conditions:

∑
m=1,n=2

(
Rmn

γn

)2

< ∞,
∑
n=2

(
fn
γn

)2

< ∞. (15)

b) If h(x) = h0

√
1− x2, |x| < 1, a solution of problem (9), (10) will be sought in the form (11) and

from (9), we have

h0

2

∞∑
m=1

mTm(y)√
1− y2

am +
ρ0k

2h0

2E0

∞∑
m=0

amµm

√
1− y2Tm(y)

+

∞∑
m=0

am

1∫
−1

K̃(|y − η|) Tm(η)√
1− η2

dη = − G̃

E0

1√
1− y2

∞∑
m=0

amTm(y)− G̃

E0
τ0δ(y),

where

K̃(|y − η|) = ∂

∂y

√
1− y2

∂R0(0, |y − η|)
∂y

+
ρ0k

2

E0

√
1− y2R0(0, |y − η|).

Multiplying both parts of the above equality by Tn(y), integrating in the interval (−1, 1) and using
the conditions of orthogonality of Chebyshev’s polynomials of the first kind, we obtain the infinite
system of linear algebraic equations

δnan +

∞∑
m=1

Lmnam = τ0gm, n = 1, 2, 3, . . . , (16)

where

Lmn =
ρ0k

2h0

2E0
L(1)
mn + L(2)

mn, L(1)
mn =

1

m

1∫
−1

√
1− y2Tm(y)Tn(y)dy,

L(2)
mn =

1∫
−1

Tn(y)

( 1∫
−1

K̃(|y − η|)Tm(η)dη√
1− η2

)
dy,

gn = − G̃

E0

1∫
−1

Tn(y)δ(y)dy −
ρ0k

2h0

πE0
ln 2

1∫
−1

√
1− y2Tn(y)−

2

π

1∫
−1

Tn(y)

( 1∫
−1

K̃(|y − η|)dη√
1− η2

)
dy,

δn =
πh0

4
n+

πG̃

2E0
.
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Using the properties of the first kind Chebyshev’s orthogonal polynomials and Gamma function,
we have

L(1)
mn =

1

m


π/8 m = n = 1

π/4, m = n ̸= 1

−π/8, m = n± 2

0, m ̸= n, m ̸= n± 2

,

L(2)
mn =

√
πΓ(m+ 1)

8Γ(m+ 1/2)m(m− 1)

1∫
−1

Tn(y)×
( 1∫
−1

K̃(|y − η|) d2

dη2
(1− η2)3/2P

(3/2,3/2)
m−2 (η)dη

)
dy

=

√
πΓ(m+ 1)

8Γ(m+ 1/2)m(m− 1)

1∫
−1

Tn(y)×
( 1∫
−1

(1− η2)3/2P
(3/2,3/2)
m−2 (η)

δ2K̃(|y − η|)
δη2

dη

)
dy,

gn = − G̃

E0
cos

πn

2
− 2

π

1∫
−1

Tn(y)

( 1∫
−1

K̃(|y − η|)dη√
1− η2

)
dy, n ̸= 2

g2 =
G̃

E0
+

ρ0k
2h0

4E0
ln 2− 2

π

1∫
−1

T2(y)

( 1∫
−1

K̃(|y − η|)dη√
1− η2

)
dy,

δn = O(n), n → ∞.

If we rewrite the system (16) in following form

an +

∞∑
m=1

Lnm

δn
am = τ0

gn
δn

, n = 1, 2, 3, . . . (17)

based on the previous representations for system (17), we obtain the conditions

∞∑
n=1,m=1

(Lnm

δn

)2

< ∞,

∞∑
n=1

(gn
δn

)2

< ∞. (18)

Conditions (15) and (18) prove that the infinite systems (12) and (17) are quasi-completely regular

in the space l2, that is, their solutions satisfy the condition
∞∑

n=1
a2n < ∞.

On the basis of the Hilbert alternative [8,9], if the determinants of the corresponding finite system
of linear algebraic equations are nonzero, then systems (12), (17) will have a unique solution in the
class l2, and problem (9), (10) has the unique solution in the form (11).

The results of [8, p. 534], are applicable to an infinite system (17). Relying on this fact, the system

aNn +

N∑
m=1

L̃nmaNm = g̃n, n = 1, 2, . . . , N, g̃n = τ0
gn
δn

, L̃nm =
Lnm

δn
(19)

is solvable for sufficiently large N and the convergence of approximate solutions {aNn }n=1,...,N to
{an}n≥1 is valid in the sense of the norm of the space l2.

The convergence rate is determined by the inequality

∥a− φ−1
0 aN∥l2 ≤ C1

[ ∞∑
n=N+1

∞∑
m=1

|L̃nm|2
]1/2

+ C2

( ∞∑
n=N+1

g̃2n

∞∑
n=1

g̃2n

)1/2

,

where a = {an}n≥1 = (a1, a2, . . . , an, . . . ) is the solution of system (17), aN = (aN1 , aN2 , . . . , aNN ) is the

solution of system (19), φ−1
0 aN = (aN1 , aN2 , . . . , aNN , 0, 0, . . .).
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Considering the expression for L̃nm, we have

C1

[ ∞∑
n=N+1

∞∑
m=1

|L̃nm|2
]1/2

≤ C∗
1

[ ∞∑
n=1

1

(n+N)4

]1/2
= C∗

1 [ζ(4, N)]1/2,

C2


∞∑

n=N+1

g̃2n

∞∑
n=1

g̃2n


1/2

≤ C∗
2

( ∞∑
n=1

1

(n+N)2

)1/2

≤ C∗
2 [ζ(2, N)]1/2

where ζ(s,N) is the known generalized Zeta-function.
Using the asymptotic formula for the generalized Zeta-function [3, p. 62], we obtain

∥a− φ−1
0 aN∥l2 ≤ CN−1/2.

Thus the solutions of systems (12) and (17) can be constructed by the reduction method with any
accuracy [8, 9].

Theorem. The infinite systems of linear algebraic equations (12) and (17) are quasi-completely reg-
ular in the space l2. Accordingly, problem (9), (10) has the unique solution in the form (11).
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