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THE NORM AND ALMOST EVERYWHERE CONVERGENCE OF

APPROXIMATE IDENTITY AND FEJÉR MEANS OF TRIGONOMETRIC AND

VILENKIN SYSTEMS

NATO NADIRASHVILI, GIORGI TEPHNADZE AND GIORGI TUTBERIDZE

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. In this paper we investigate some very general approximation kernels with special prop-
erties, called an approximate identity, and prove norm and almost everywhere convergences of these

general methods with respect to the trigonometric system. Investigations of these summation meth-

ods can be used also to obtain norm convergence of Fejér means with respect to the Vilenkin system,
but they are not useful to study a.e. convergence in this case due to some special properties of the

kernels of Vilenkin–Fejér means. Despite these different properties, we give alternative methods to

prove a.e. convergence of Vilenkin–Fejér means.

1. Introduction

Let us define Fourier coefficients, partial sums, Fejér means and kernels with respect to the Vilenkin
and trigonometric systems of any integrable function in the usual manner:

f̂w(k) : =

∫
fwkdµ (k ∈ N, w = ψ or w = T ) ,

Swn f : =

n−1∑
k=0

f̂ (k)ψk (n ∈ N+, S0f := 0, w = ψ or w = T ) ,

σwn f : =
1

n

n−1∑
k=0

Swk f (n ∈ N+ ) ,

Kw
n : =

1

n

n−1∑
k=0

Dw
k (n ∈ N+, w = ψ or w = T ) ,

where N+ denotes the set of positive integers, N := N+ ∪ {0}.
It is well-known (for details see, e.g., [1, 4] and [19]) that the Fejér means

σwn f (w = ψ or w = T ) ,

where σψn and σTn are, respectively, the Vilenkin–Fejér and trigonometric-Fejér means converging to
the function f in Lp norm, that is,

∥σwn f − f∥p → 0, as n→ ∞ (w = ψ or w = T )

for any f ∈ Lp, where 1 ≤ p < ∞. Moreover, (see, e.g., [2] and [3]), if we consider the maximal
operator of Fejér means with respect to Vilenkin and trigonometric systems defined by

σ∗,wf := sup
n∈N

|σwn f | (w = ψ or w = T ) ,

then the weak type inequality

µ (σ∗,wf > λ) ≤ c

λ
∥f∥1 (f ∈ L1(Gm), λ > 0) ,
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was proved in Zygmund [23] for the trigonometric series, in Schipp [16] for the Walsh series and in
Pál, Simon [13] (see also [14,18,21,22]) for the bounded Vilenkin system.

The research in this paper is also related to the important contribution of Vakhtang Kokilashvili,
see e.g. [9, 10], and references therein. It follows that the Fejér means with respect to trigonometric
and Vilenkin systems of any integrable function converge a.e. to this function.

Very general approximation kernels with special properties, called an approximate identity consist-
ing of a class of summability methods such as Fejér means, were investigated in [4, 12] and [15].

In this paper, we investigate more general summability methods which are called the approximation
identities consisting of a class of summability methods and provide the norm and a.e. convergence
of these summability methods with respect to the trigonometric system. Investigations of these sum-
mations can be used to obtain the norm convergence of Fejér means with respect to the Vilenkin
system also, but these methods are not useful to study a.e. convergence in this case, because of some
special properties of the kernels of the Vilenkin–Fejér means. Despite these different properties, we
give alternative methods to prove almost everywhere convergence of Fejér means with respect to the
Vilenkin systems.

This paper is organized as follows: in order not to disturb our discussions later on, some definitions
and notations are presented in Sections 2 and 3. Moreover, to prove the main results, we will need
some auxiliary Lemmas, some of them are new and of independent interest. These results are also
presented in Sections 2 and 3. The main result with the proof is given in Sections 4 and 5.

2. Fejér Means with Respect to the Vilenkin Systems

Let m := (m0,m1, . . . ) denote a sequence of positive integers, not less than 2. Denote by

Zmk
:= {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the group Zmj

with the product of the
discrete topologies of Zmj

’s. In this paper, we discuss the bounded Vilenkin groups only, that is,
supn∈Nmn <∞.

The direct product µ of the measures

µk ({j}) := 1/mk (j ∈ Zmk
)

is the Haar measure on Gm with µ (Gm) = 1.
The elements of Gm are represented by the sequences

x := (x0, x1, . . . , xk, . . . ) ( xk ∈ Zmk
) .

It is easy to give a base for the neighbourhood of Gm, namely,

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N).

Denote In := In (0) for n ∈ N and In := Gm\In.
Let en := (0, . . . , 0, xn = 1, 0, . . . ) ∈ Gm (n ∈ N). If we define the so-called generalized number

system based on m in the form

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be expressed uniquely as n =
∑∞
k=0 njMj , where nj ∈ Zmj

(j ∈ N), and only
a finite number of nj ‘s differ from zero. Let |n| := max {j ∈ N; nj ̸= 0}.

If we define In := In (0) for n ∈ N and In := Gm\In, and

Ik,lN :=

{
IN (0, . . . , 0, xk ̸= 0, 0, . . . , 0, xl ̸= 0, xl+1, . . . , xN−1, . . .), for k < l < N,

IN (0, . . . , 0, xk ̸= 0, xk+1 = 0, . . . , xN−1 = 0, xN , . . .), for l = N,

then

IN =
(N−2⋃
k=0

N−1⋃
l=k+1

Ik,lN

)⋃(N−1⋃
k=0

Ik,NN

)
. (1)
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Next, we introduce on Gm an orthonormal system which is called the Vilenkin system. First, define
the complex-valued function rk (x) : Gm → C, the generalized Rademacher functions, as

rk (x) := exp (2πıxk/mk)
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as

ψn (x) :=

∞∏
k=0

rnk

k (x) (n ∈ N) .

By a Vilenkin polynomial we mean a finite linear combination of Vilenkin functions. We denote
the collection of Vilenkin polynomials by P.

The Vilenkin system is orthonormal and complete in L2 (Gm) (for details see, e.g., [1, 17, 20]).
Specially, we call this system the Walsh-Paley one if m ≡ 2 (for details see [7] and [17]).

Recall that (for details see, e.g., [1, 5] and [6]) if n > t, t, n ∈ N, then

Kψ
Mn

(x) =


Mt

1−rt(x) , x ∈ It\It+1, x− xtet ∈ In,
Mn+1

2 , x ∈ In,

0, otherwise

(2)

and

n
∣∣Kψ

n

∣∣ ≤ c

|n|∑
l=0

Ml

∣∣∣Kψ
Ml

∣∣∣ . (3)

By using these two properties of Fejér kernels, we obtain the following

Lemma 1. For any n, N ∈ N+, we have∫
Gm

Kψ
n (x)dµ(x) = 1, (4)

sup
n∈N

∫
Gm

∣∣Kψ
n (x)

∣∣ dµ(x) ≤ c <∞, (5)

∫
IN

∣∣Kψ
n (x)

∣∣ dµ(x) → 0, as n→ ∞, for any N ∈ N+, (6)

where c is an absolute constant.

Proof. According to the orthonormality of Vilenkin systems, we immediately get the proof of (4). It
is easy to prove that ∫

Gm

∣∣∣Kψ
Mn

(x)
∣∣∣ dµ(x) ≤ c <∞.

Combining (2) and (3), we can conclude that∫
Gm

∣∣Kψ
n (x)

∣∣ dµ (x) ≤ 1

n

|n|∑
l=0

Ml

∫
Gm

∣∣∣Kψ
Ml

(x)
∣∣∣ dµ (x) ≤ 1

n

|n|∑
l=0

Ml < c <∞,

so, (5) is proved, as well.

Let x ∈ Ik,lN , k = 0, . . . , N − 2, l = k + 1, . . . , N − 1. Using again (2) and 3, we get

∣∣Kψ
n (x)

∣∣ ≤ c

n

l∑
s=0

Ms

∣∣∣Kψ
Ms

(x)
∣∣∣ ≤ c

n

l∑
s=0

MsMk ≤ cMlMk

n
. (7)

Let x ∈ Ik,NN , where x ∈ Ik,qq+1, for some N ≤ q < |n|, i.e.,

x =
(
x0 = 0, . . . , xk−1 = 0, xk ̸= 0, . . . , xN−1 = 0, xq ̸= 0, xq+1 = 0, . . . , x|n|−1, . . .

)
,
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then ∣∣Kψ
n (x)

∣∣ ≤ c

n

q−1∑
i=0

MiMk ≤ cMkMq

n
. (8)

Let x ∈ I
k,|n|
|n| ⊂ Ik,NN , i.e.,

x =
(
x0 = 0, . . . , xm−1 = 0, xk ̸= 0, xk+1 = 0, . . . , xN = 0, . . . , x|n|−1 = 0, . . .

)
,

then ∣∣Kψ
n (x)

∣∣ ≤ c

n

|n|−1∑
i=0

MiMk ≤
cMkM|n|

n
. (9)

Combining (8) and (9), we can conclude that∫
Ik,N
N

∣∣Kψ
n

∣∣ dµ =

|n|−1∑
q=N

∫
Ik,q
q+1

∣∣Kψ
n

∣∣ dµ+

∫
I
k,|n|
|n|

∣∣Kψ
n

∣∣ dµ
≤

|n|−1∑
q=N

cMk

n
+
cMk

n

≤c(|n| −N)Mk

M|n|
. (10)

Hence, if we apply (1), (7) and (10), we find that∫
IN

∣∣Kψ
n

∣∣ dµ
=

N−2∑
k=0

N−1∑
l=k+1

mj−1∑
xj=0,j∈{l+1,...,N−1}

∫
Ik,l
N

∣∣Kψ
n

∣∣ dµ+

N−1∑
k=0

∫
Ik,N
N

∣∣Kψ
n

∣∣ dµ
≤c

N−2∑
k=0

N−1∑
l=k+1

ml+1 . . .mN−1

MN

cMlMk

n
+ c

N−1∑
k=0

(|n| −N)Mk
1

M|n|

:=I + II.

It is evident that

I =

N−2∑
k=0

N−1∑
l=k+1

Mk

M|n|
≤ c

N−2∑
k=0

(N − k)Mk

M|n|

≤c
N−2∑
k=0

|n| − k

2|n|−k
= c

N−2∑
k=0

|n| − k

2(|n|−k)/2
1

2(|n|−k)/2

≤ c

2(|n|−N)/2

N−2∑
k=0

|n| − k

2(|n|−k)/2
≤ C

2(|n|−N)/2
→ 0, as n→ ∞.

Analogously, we see that

II ≤ c(|n| −N)

2|n|−N
→ 0, as n→ ∞,

so, (6) holds also and thus the proof is complete. □

The next lemma is very important to prove almost everywhere convergence of the Vilenkin–Fejér
means.
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Lemma 2. Let n ∈ N. Then ∫
IN

sup
n>MN

∣∣Kψ
n

∣∣ dµ ≤ C <∞,

where C is an absolute constant.

Proof. Let n > MN and x ∈ Ik,lN , k = 0, . . . , N − 2, l = k + 1, . . . , N − 1. Using (7) in the proof of
Lemma 1, we get

sup
n>MN

∣∣Kψ
n (x)

∣∣ ≤ cMlMk

MN
.

Let n > MN and x ∈ Ik,NN . Then, using (2), we find that
∣∣Kψ

n (x)
∣∣ ≤ cMk, so,

sup
n>MN

∣∣Kψ
n (x)

∣∣ ≤ cMk.

Hence, if we apply (1), we get∫
IN

sup
n>MN

∣∣Kψ
n

∣∣ dµ
=

N−2∑
k=0

N−1∑
l=k+1

mj−1∑
xj=0,j∈{l+1,...,N−1}

∫
Ik,l
N

sup
n>MN

∣∣Kψ
n

∣∣ dµ
+

N−1∑
k=0

∫
Ik,N
N

sup
n>MN

∣∣Kψ
n

∣∣ dµ
≤c

N−2∑
k=0

N−1∑
l=k+1

ml+1 . . .mN−1

MN

MlMk

MN
+ c

N−1∑
k=0

Mk

MN

≤
N−2∑
k=0

(N − k)Mk

MN
+ c < C <∞.

The proof is complete. □

3. Fejér Means with Respect to the Trigonometric System

If we consider the Fejér kernels with respect to the trigonometric system {(1/2π)einx,
n = 0,±1,±2, . . . }, for x ∈ [−π, π], we have KT

n (x) ≥ 0 and

KT
n (x) =

1

n

( sin((nx)/2)
sin(x/2)

)2

.

Moreover, the Fejér kernel KT
n (n ∈ N+) with respect to the trigonometric system has an upper

envelope

0 ≤ KT
n (x) ≤ min(n, π(n|x|2)−1

). (11)

It also follows that every Fejér kernels have one integrable upper envelope

sup
n∈N

KT
n (x) ≤ π|x|−2.

Lemma 3. Let n ∈ N. Then, for any n,N ∈ N+, we have∫
[−π,π]

∣∣KT
n (x)

∣∣ dµ(x) = ∫
[−π,π]

KT
n (x)dµ(x) = 1, (12)

∫
[−π,π]\[−ε,ε]

∣∣KT
n (x)

∣∣ dµ(x) → 0, as n→ ∞, for any ε > 0. (13)
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Figure 1. Fejér kernel and the upper envelope min(n, π(n|x|2)−1
).

Moreover,

lim
n→∞

sup
[−π,π]\[−ε,ε]

∣∣KT
n (x)

∣∣ = 0, for any ε > 0. (14)

Proof. According to the property KT
n (x) ≥ 0 and the orthonormality of trigonometric system, we

immediately get the proof of (12). On the other hand, (13) and (14) follow estimate (11) so, we leave
out the details. □

4. Approximate Identity

The properties established in Lemma 1 and Lemma 3 ensure that the kernel of the Fejér means
{Kw

N}∞N=1 (w = ψ or w = T ) , with respect to Vilenkin and trigonometric systems, forms the so-called
approximation identity. To unify the proofs for trigonometric and Vilenkin systems we mean that I
denotes Gm or [−π, π] and IN denotes IN (0) or [−1/2N , 1/2N ] for N ∈ N+.

Definition 1. The family {Φn}∞n=1 ⊂ L∞(I) forms an approximate identity provided that

(A1)
∫
I

Φn(x)d(x) = 1,

(A2) sup
n∈N

∫
I

|Φn(x)| dµ(x) <∞,

(A3)
∫

I\IN
|Φn(x)| dµ(x) → 0, as n→ ∞, for any N ∈ N+.

The term “approximate identity” is used due to the fact that Φn ∗ f → f as n → ∞ in any
reasonable sense.

Next, we prove an important result, which will be used to obtain the norm convergence of some
well-known and general summability methods.

Theorem 1. Let f ∈ Lp(I), where 1 ≤ p <∞ and the family {Φn}∞n=1 ⊂ L∞(I) forms an approximate
identity. Then

∥Φn ∗ f − f∥p → 0 as n→ ∞.

Proof. Let ε > 0. Using the continuity of Lp norm and (A2) condition, we get

sup
t∈IN

∥f(x− t)− f(x)∥p sup
n∈N

∥Φn∥1 < ε/2.
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Applying now Minkowski’s integral inequality and (A1) and (A3) conditions, we find that

∥Φn ∗ f − f∥p =
∥∥∥∥∫
I

Φn(t)(f(x− t)− f(x))dµ(t)

∥∥∥∥
p

≤
∫
I

|Φn(t)| ∥f(x− t)− f(x)∥p dµ(t)

=

∫
IN

|Φn(t)| ∥f(x− t)− f(x)∥p dµ(t)

+

∫
I\IN

|Φn(t)| ∥f(x− t)− f(x)∥p dµ(t)

≤ sup
t∈IN

∥f(x− t)− f(x)∥p sup
n∈N

∥Φn∥1

+sup
t∈I

∥f(x− t)− f(x)∥p
∫

I\IN

|Φn(t)| dµ(t) < ε/2 + ε/2 < ε.

The proof is complete. □

According to Lemma 1 and Lemma 3, we immediately get that the following results hold.

Corollary 1. Let f ∈ Lp(I), where 1 ≤ p <∞. Then

∥σwn f − f∥p → 0, as n→ ∞ (w = ψ or w = T ) ,

where σψn and σTn are the Vilenkin–Fejér and trigonometric–Fejér means, respectively.

Theorem 2. Suppose that f ∈ L1(I) and the family {Φn}∞n=1 ⊂ L∞(I) forms an approximate identity.
In addition, let

(A4) lim
n→∞

sup
I\IN

|Φn(x)| = 0, for any N ∈ N+.

a) If the function f is continuous at t0, then

Φn ∗ f(t0) → f(t0) as n→ ∞.

b) If the functions {Φn}∞n=1 are even and the left and right limits f(t0 − 0) and f(t0 + 0) do exist
and are finite, then

Φn ∗ f(t0) → L, as n→ ∞,

where

L =:
f(t0 + 0) + f(t0 − 0)

2
. (15)

Proof. It is evident that

|Φn ∗ f(t0)− f(t0)| =
∣∣∣∣ ∫
I

Φn(t)(f(t0 − t)− f(t0))dµ(t)

∣∣∣∣
≤

∣∣∣∣ ∫
IN

Φn(t)(f(t0 − t)− f(t0))dµ(t)

∣∣∣∣
+

∣∣∣∣ ∫
I\IN

Φn(t)f(t0 − t)dµ(t)

∣∣∣∣+ ∣∣∣∣ ∫
I\IN

Φn(t)f(t0)dµ(t)

∣∣∣∣
=: I + II + III.

Let f be continuous at t0. For any ε > 0, there exists N such that

I ≤ sup
t∈IN

|f(t0 + t)− f(t0))| sup
n∈N

∥Φn∥1 < ε/2.
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Using (A4) condition, we get

II ≤ sup
t∈I\IN

|Φn(t)| ∥f∥1 → 0, as n→ ∞.

We conclude from (A3) that

III ≤ |f(t0)|
∫

I\IN

|Φn(t)|dµ(t) → 0, as n→ ∞.

Thus part a) is proved.
Since the functions {Φn}∞n=1 are even, for the proof of part b), we first note that

(Φn ∗ f)(t0)− L =

∫
I

Φn(t)
(f(t0 − t) + f(t0 + t)

2
− f(t0 − 0) + f(t0 + 0)

2

)
dµ(t).

Thus if we use part a), we immediately get the proof of part b) so, the proof is complete. □

Corollary 2. Let f ∈ L1[−π, π]. Then the following statements hold true.
a) If the function f is continuous at t0, then

σTn f(t0) → f(t0) as n→ ∞.

b) Let the left and right limits f(t0 − 0) and f(t0 + 0) do exist and are finite. Then

σTn f(t0) → L as n→ ∞,

where L is defined by (15).

Remark 1. Conditions (A4) and (11) do not hold for the Vilenkin–Fejér kernels. Indeed, by using
(2), for any k ∈ N+ and for any e0 ∈ In(e0) ⊂ Gm\In, (n ∈ N+), we get

|Kψ
Mk

(e0)| =
∣∣∣ M0

1− r0 (e0)

∣∣∣ = ∣∣∣ M0

1− exp (2πı/m0)

∣∣∣ = 1

2 sin(π/m0)
≥ 1

2
,

so,

lim
k→∞

sup
In(e0)⊂Gm\In

∣∣Kψ
Mk

(x)
∣∣ ≥ lim

k→∞

∣∣Kψ
Mk

(e0)
∣∣ ≥ 1

2
> 0, for any n ∈ N+.

Hence (A4) and (11) are not true for the Fejér kernels with respect to the Vilenkin system. However,
in some publications one can find that some researchers use such an estimate (for details see [8]).

Moreover, for any x ∈ Ik\Ik−1, we have

|Kψ
Mk

(x)| =
∣∣∣ Mk−1

1− exp (2πı/mk−1)

∣∣∣ = Mk−1

2 sin(π/mk−1)
≥ Mk

2π
,

and it follows that the Fejér kernels with respect to the Vilenkin system have no one integrable upper
envelope. In particular, the following lower estimate:

sup
n∈N

|Kψ
n (x)| ≥ (2πλ|x|)−1, where λ := sup

n∈N
mn,

holds.

This remark shows that there is an essential difference between the Vilenkin–Fejér kernels and the
Fejér kernels with respect to trigonometric system. Moreover, Theorem 2 is useless to prove almost
everywhere convergence of Vilenkin–Fejér means.
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5. Almost Everywhere Convergence of Vilenkin–Fejér Means

The next theorem is very important to study almost everywhere convergence of the Vilenkin–Fejér
means.

Theorem 3. Suppose that the sigma sub-linear operator V is bounded from Lp1 to Lp1 for some
1 < p1 ≤ ∞ and ∫

I

|V f | dµ ≤ C ∥f∥1

for f ∈ L1(Gm) and Vilenkin interval I ⊂ Gm which satisfies

supp f ⊂ I,

∫
Gm

fdµ = 0. (16)

Then the operator V is of weak-type (1, 1), i.e.,

sup
y>0

yµ ({V f > y}) ≤ ∥f∥1 .

Theorem 4. Let f ∈ L1(Gm). Then

sup
y>0

yµ
{
σ∗,ψf > y

}
≤ ∥f∥1 .

Proof. By Theorem 3, we find that the proof will be complete if we show that∫
I

∣∣σ∗,ψf
∣∣ dµ ≤ ∥f∥1,

for every function f which satisfies conditions in (16), where I denotes the support of the function f.
Without lost the generality, we may assume that f is a function with support I and µ (I) = MN .

We may assume that I = IN . It is easy to see that

σψnf =

∫
IN

Kψ
n (x− t)f(t)dµ (t) = 0, for n ≤MN .

Therefore, we may suppose that n > MN . Hence∣∣σ∗,ψf(x)
∣∣ ≤ sup

n≤MN

∣∣∣∣∫
IN

Kψ
n (x− t)f(t)dµ (t)

∣∣∣∣
+ sup
n>MN

∣∣∣∣∫
IN

Kψ
n (x− t)f(t)dµ (t)

∣∣∣∣ = sup
n>MN

∣∣∣∣∫
IN

Kψ
n (x− t)f(t)dµ (t)

∣∣∣∣.
Let t ∈ IN and x ∈ IN . Then x− t ∈ IN and if we apply Lemma 2, we get∫

IN

∣∣σ∗,ψf(x)
∣∣ dµ(x) ≤∫

IN

sup
n>MN

∫
IN

∣∣Kψ
n (x− t) f(t)

∣∣ dµ (t) dµ (x)
≤
∫
IN

∫
IN

sup
n>MN

∣∣Kψ
n (x− t) f(t)

∣∣ dµ (t) dµ (x)
≤
∫
IN

∫
IN

sup
n>MN

∣∣Kψ
n (x− t) f(t)

∣∣ dµ (x) dµ (t)
≤
∫
IN

|f(t)| dµ (t)
∫
IN

sup
n>MN

∣∣Kψ
n (x− t)

∣∣ dµ (x)
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≤
∫
IN

|f(t)| dµ (t)
∫
IN

sup
n>MN

∣∣Kψ
n (x)

∣∣ dµ (x)
= ∥f∥1

∫
IN

sup
n>MN

∣∣Kψ
n (x)

∣∣ dµ (x)
≤c ∥f∥1 .

The proof is complete. □

Theorem 5. Let f ∈ L1(Gm). Then

σψnf → f a.e., as n→ ∞.

Proof. Since

SψnP = P, for every P ∈ P,
according to the regularity of Fejér means, we obtain

σψnP → P a.e., as n→ ∞,

where P ∈ P is dense in the space L1 (for details see, e.g., [1]).
On the other hand, using Theorem 4, we obtain that the maximal operator σ∗ is bounded from the

space L1 to the space weak − L1, that is,

sup
y>0

yµ
{
x ∈ Gm :

∣∣σ∗,ψf (x)
∣∣ > y

}
≤ ∥f∥1 .

According to the usual density argument (see Marcinkiewicz and Zygmund [11]), we obtain almost
everywhere convergence of Fejér means

σψnf → f a.e., as n→ ∞.

The proof is complete. □
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