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TWO-WEIGHT CRITERIA FOR MULTIPLE FRACTIONAL INTEGRALS IN

MIXED-NORMED LEBESGUE SPACES

ALEXANDER MESKHI

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. Two-weight norm estimates for multiple fractional integral operators are established in

the mixed-normed Lebesgue spaces. As a consequence, we have a complete characterization of the
trace inequality for a strong fractional maximal operator M−→α . Fefferman–Stein type inequality for

M−→α is also derived. Finally, we present one-weight characterization for multiple Riesz potential

operator in mixed-normed Lebesgue spaces.

1. Preliminaries

Our aim is to study the two-weight norm inequality∥∥∥V (M−→α f)
∥∥∥
L

−→q
≤ C

∥∥∥Wf
∥∥∥
L

−→p
, −→q := (q1, . . . , qn),

−→p := (p1, . . . , pn), (1)

where L
−→p and L

−→q are the mixed-normed Lebesgue spaces defined on Rd×n, M−→α is the strong fractional
maximal operator and V and W are weight functions on Rd×n. Here, under the symbol Rd×n we mean
an n-fold Cartesian product of Rd, i.e., Rd×n := Rd × · · · × Rd.

If −→p = (p, . . . , p), then L
−→p coincides with the classical Lebesgue space Lp(Rd×n).

As a consequence, we have a complete characterization of the D. Adams-type [1] trace inequality∥∥∥V (M−→α f)
∥∥∥
L

−→q
≤ C

∥∥∥f∥∥∥
L

−→p
(2)

for strong fractional maximal operator M−→α .
Throughout this note, by the symbols −→p and −→q we mean n− tuples (n ≥ 1), −→p = (p1, . . . , pn)

and −→q = (q1 . . . , qn), respectively. The relation −→p < −→q means that pj < qj for every j = 1, . . . , n.
The identity φ(−→p ,−→q , . . . ,−→α ) = 0 means that φ(pj , qj , . . . , αj) = 0, j = 1, . . . , n. We also assume that
−→p ′ = (p′1, . . . , p

′
n), where p′j =

pj

pj−1 , j = 1, . . . , n.

The space L
−→p , 1 < −→p < ∞, is defined with respect to the norm

∥φ∥L−→p := ∥φ∥L−→p (Rd×n) :=
∥∥∥∥ · · · ∥∥φ∥∥

Lp1 (Rd)
· · ·

∥∥
Lpn−1 (Rd)

∥∥
Lpn (Rd)

:=

{∫
Rd

[ ∫
Rd

· · ·
[ ∫
Rd

|φ(x1, . . . , xn)|p1dx1

] p2
p1

· · · dxn−1

] pn
pn−1

dxn

} 1
pn

which is reflexive, and its dual space is L
−→p ′

. For this and some other essential properties of the
space L

−→p we refer, e.g., to [2].
It is easy to see that in a particular case, where φ(x1, . . . , xn) = φ1(x1) . . . φn(xn), we have

∥φ∥L−→p (Rd×n) =

n∏
j=1

∥φj∥Lpj (Rd).

For f ∈ Lloc(Rd×n), a strong fractional maximal operator M−→α is defined as follows:
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(M−→α f)(x1, . . . , xn) = sup
1∏n

j=1 |Qj |1−
αj
d

∫
Q1×···×Qn

|f(y1, . . . , yn)|dy1 . . . dyn,

where the supremum is taken over all cubes Qj ⊂ Rd with sides parallel to the coordinate axes such
that xj ∈ Qj , j = 1, . . . , n, −→α = (α1, . . . , αn).

It can be checked immediately that there is a positive constant C−→α ,n,d such that for f ≥ 0,

(M−→α f)(x1, . . . , xn) ≤ C−→α ,n,d(I−→α f)(x1, . . . , xn),

where I−→α f is the multiple fractional integral operator given by the formula

(I−→α f)(x1, . . . , xn) =

∫
Rn

· · ·
∫
Rn

f(y1, . . . , yn)∏n
j=1 |xj − yj |d−αj

dy1 · · · dxn.

The one–weight problem for the classical fractional maximal operator

(Mαf)(x) = sup
Q∋x

1

|Q|1−α
d

∫
Q

|f(y)|dy, 0 < α < d, x ∈ Rd,

was solved by B. Muckenhoupt and R. L. Wheeden [6] under the so-called Muckenhoupt-Wheeden
condition. For the solution of the two–weight problem for Mα under various type of conditions we
refer to [7, 8] (see also monograph [3, Ch. 4]).

The two-weight problem for the operator M−→α in the case p1 = · · ·= pn was studied in [4]. The com-
plete characterization of the one-weight problem for the strong Hardy–Littlewood maximal operator
for multiple weight w(x1, . . . , xn) = w1(x1) . . . wn(xn) was obtained by D. Kurtz [5].

2. Main Results

To formulate the general statement of this note, we need the following

Definition 2.1. Let D be a dyadic grid in Rd. We say that a weight function ρ on Rd satisfies
the dyadic reverse doubling condition (ρ ∈ RDd(Rd)) if there is a constant C > 1 such that for all
Q,Q′ ∈ D with Q′ ⊂ Q, |Q| = 2d|Q′|, the inequality

C

∫
Q′

ρ(x)dx ≤
∫
Q

ρ(x)dx

holds.

Definition 2.2. We say that −→p ≺ −→q if 1 < max{pj}nj=1 < min{qj}nj=1 < ∞. Further, we say that

1 < −→r < ∞ if 1 < min{r1, . . . , rn} ≤ max{r1, . . . , rn} < ∞.

Theorem A. Let 1 < −→p ≺ −→q < ∞ and let V and W be the weights of the functions on Rd×n,

provided that W (x1, . . . , xn) =
∏n

j=1 Wj(xj) with W
−p′

j

j ∈ RD(Rd), j = 1, . . . , n. Then two-weight

inequality (1) holds if and only if

sup
Q1,...,Qn

∥∥∥χQ1(x1) . . . χQn(xn)V (x1, . . . , xn)
∥∥∥
L

−→q

×
∥∥∥χQ1

(x1) . . . χQn
(xn)W

−1(x1, . . . , xn)
∥∥∥
L

−→p ′

n∏
j=1

|Qj |
αj
d −1 < ∞.

Theorem A implies the following statements.

Theorem B (Characterization of the trace inequality). Let 1 < −→p ≺ −→q < ∞ and let V be a weight
function on Rd×n. Then the trace inequality (2) holds if and only if

sup
Q1,...,Qn

∥∥∥χQ1(x1) . . . χQn(xn)V (x1, . . . , xn)
∥∥∥
L

−→q

n∏
j=1

|Qj |
αj
d − 1

pj < ∞.
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Theorem C (Fefferman–Stein inequality). Let 1 < −→p ⪯ −→q < ∞, −→α < d−→p , and let V be weight

function on Rd×n. Then the following inequality∥∥∥V (
M−→α f

)∥∥∥
L

−→q
≤ C

∥∥∥f(M̃−→p ,−→q ,−→α V
)∥∥∥

L
−→p

holds, where M̃−→p ,−→q ,−→α is the fractional maximal operator having the form

(M̃−→p ,−→q ,−→α V )(x1, . . . , xn) := sup
1

n∏
j=1

|Qj |
1
pj

−
αj
d

∥∥∥χQ1(x1) . . . χQn(xn)V (x1, . . . , xn)
∥∥∥
L

−→q

and the supremum is taken over all cubes Qj ⊂ Rd with sides parallel to the coordinate axis such that
xj ∈ Qj, j = 1, . . . , n.

Finally we formulate the one-weight characterization for operators M−→α and I−→α :

Theorem D (One-weight characterization). Let 1 < −→p < ∞, 1−→p − 1−→q =
−→α
d . Let W (x1, x2, . . . , xn) =

W1(x1) . . .Wn(xn), where Wj are weight functions on Rd, j = 1, . . . , n. Then the following statements
are equivalent:

(i) the one-weight inequality ∥∥∥W (I−→α f)
∥∥∥
L

−→q
≤ C

∥∥∥Wf
∥∥∥
L

−→p

holds;
(ii) the one-weight inequality ∥∥∥W (M−→α f)

∥∥∥
L

−→q
≤ C

∥∥∥Wf
∥∥∥
L

−→p

is fulfilled;
(iii)

sup
Q1,...,Qn

∥∥∥χQ1
(x1) . . . χQn

(xn)W (x1, . . . , xn)
∥∥∥
L

−→q

×
∥∥∥χQ1

(x1) . . . χQn
(xn)W

−1(x1, . . . , xn)
∥∥∥
L

−→p ′

n∏
j=1

|Qj |
αj
d −1 < ∞.
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