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ONE-SIDED POTENTIALS IN WEIGHTED CENTRAL MORREY SPACES

GIORGI IMERLISHVILI'»2, ALEXANDER MESKHI':3, MARIA ALESSANDRA RAGUSA%?

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. The boundedness of one-sided potential operators defined, generally speaking, with re-
spect to a Borel measure p, in the classical and central Morrey spaces is established. Weighted
estimates for these operators in the case of power-type weights are derived in central Morrey spaces
and in complementary central Morrey spaces. Similar problems are studied for vanishing Morrey
spaces.

1. PRELIMINARIES

The well-known Riemann—Liouville and Weyl fractional integrals can be viewed as a one-sided
variants of the Riesz potential playing an important role in harmonic analysis and partial differential
equations (PDFEs). The study of weighted theory for one-sided operators was first introduced by
Sawyer [8], Andersen and Sawyer [3]. Many of their results show that for a class of smaller operators
(one-sided operators) and a class of wider weights (one-sided weights), many of the famous findings
of harmonic analysis still hold, however, it should be mentioned that, for example, one-sided Muck-
enhoupt classes are much wider than two-sided ones, which plays a crucial role in the one-weight
theory.

One-sided weighted Morrey spaces were introduced by S. Shi and Z. Fu (see [9]). In that paper,
the authors established the boundedness of some classical one-sided operators including the Riemann—
Liouville fractional integrals on these spaces.

Let 0 < a < n. The fractional integral operator (Riesz potential operator)

L)@ = [ u_fgj)dy R,
]Rn

plays a fundamental role in harmonic analysis; it also finds applications in PDEs such as in the theory
of Sobolev embeddings (see, e.g., Maz’ya [7]).

We are interested in the fractional integrals defined on R or R;. For R and 0 < o < 1, we define
the fractional integral operators I,, W, and R, given by

oo

[ W) 2 e /()
L)) = / U Wa(h(a) / e =]
R.(f)(x) :—/(xﬂj))lady, z €R,

respectively, for a suitable f.
For R, and 0 < a < 1, we consider the fractional integral operators Z,, W, and R, defined as
follows:

fy) f()
Zo(f)(x 1=/7dy, Wa(f)(@) = | —— 7=y,
(F) (@) o=y (f) () =
Ry T
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dyv T € R+7

Ra(Dia) = [ A

/ (x —y)t—«

respectively, for a suitable f.
We are also interested in fractional integral operators with measure. Let p be a Borel measure on
R, and let

Tap D)= [ At Wi = |
B, )
fy)

Wdﬂ(y)’ reRy.

Roul D)= |

(0,2)

Classical Morrey spaces were introduced in 1938 by C. B. Morrey in relation to regularity problems

of solutions of PDFEs. They Suppose that u is a Borel measure on R, 0 < A< 1land 1 < p < oo. Let

LPA(R, i) be the Morrey space with measure p, that is the space of all functions f € LY (R, p) such
that

' .
70 = s <w / If(y)l”du(y)> < 0,
I

where the supremum is taken over all intervals I in R.
If A =0, then LP*(R, u) = LP(R, i) is the Lebesgue space with measure x4 and the norm is defined

as follows: )
1l = ( / f<y>|pdu<y>)”
R

If p is the Lebesgue measure, then we use the symbol LPA(R) for LPA(R, p).

Central Morrey spaces were introduced by Garcia—Cuerva and Herrero [5] (see also [2]). In this
note, we are interested in one-sided central Morrey space Mg’)‘(IR+, 1), which is a collection of all
p-measurable functions f such that

1 v
— — PP
e =3 (5 [ @PPaum)" <.
(0,r]
If 8 =0, then we use the notation Mé)”\(R+, p) = MPMNR, ).

Complementary classical Morrey space was introduced by Guliyev [6]. By Mg’)‘(RJr, 1) we denote a
complementary central Morrey space with measure p, which is the set of all y-measurable functions f
such that

1 »
— il PyBd
1 Nl ey sup (7,A / lFW)IPy u(y)> < 0.
(T’oo)

If p =0, then we denote Mg’)‘(RJr, ) by the symbol MP AR, ).

We need the definition of one-sided weighted vanishing Morrey space. Unlike classical Morrey
spaces, in those spaces it is possible to have approximation by “nice” functions. We use the sym-
bol VMg’A(R% u) for one-sided weighted vanishing Morrey space, being the class of all functions

fe Mg”\(RJr,,u) such that

1 v
; p,B —
lim (M / [F )"y du(y)) 0.
(0,11

Classical vanishing Morrey spaces were introduced in the works of Vitanza (see [10,11]) to describe
the regularity of elliptic PDFEs more precisely than that in the Lebesgue spaces.
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By VMZ’)‘(RJF, 1) we denote one-sided weighted vanishing complementary Morrey space with mea-
sure p, being the set of all functions f € Mg’)‘(RJﬁ 1) such that

Jm (:A / If(y>|”yﬁdu(y)); —0.

(r7m)
We need the definition of growth condition for u.

Definition 1.1. We say that a measure p on R (resp., on R, ) satisfies the growth condition, if there
exists ¢ > 0 such that u(I) < ¢|I| for all open intervals I.

The following statements are known for fractional integrals in R™, but we formulate them for n =1
(i.e., in this case, J, is I,).

Theorem A (Spanne, unpublished). Let 1 <p < oo, 0 < a <1 and ¢ = 1fap. Then I, is bounded
from LPA(R) to L2 (R) if 2 =

Az
i

Theorem B ([1]). Let 0 <A <1, 1<p<oo,0<a<1andq= 1_pap. Then I, is bounded from
LPAR) to LY(R).

The following trace inequality characterization for I, formulated in the case of the real line is
well-known (see [4]).

Theorem C. Let 1 < p < g < co. Suppose that0<a< Lo<A <1l—oapand 22 :%, Then I,
is bounded from LP*(R) to L9*2(R,v) if and only if there is a positive constant ¢ such that

v(1) < cl112(=),

for all intervals I.

2. MAIN RESULTS

In this section we formulate the main results of the note.

AL
p

Theorem 2.1. Let 1 < p < g < o0. Suppose that0<a<%,0</\1<1—ozp and%z . Let v be

a Borel measure on R. Then the following four statements are equivalent:
a) I, is bounded from LP*1(R) to L9 (R, v);
b) R, is bounded from LP M (R) to L972(R,v);
c) Wy is bounded from LP? (R) to L4*2(R,v);

d) There is a positive constant ¢ such that for all intervals I,
v(I) < C\I|q(%7°‘).
The next statement is a consequence of Theorem 2.1.

Theorem 2.2. Let 1 < p < g < 0co. Suppose that 0 < a < %, 0< AN <1l—apand ’\72 = %. Then
the following four statements are equivalent:

a) I, is bounded from LP* (R) to L9*2(R);
b) R, is bounded from LP*(R) to L9*2(R);
(R) );

c) Wy is bounded from LP* (R) to LT72(R);
d)g= l—pap'

We have investigated the boundedness of the Riemann—Liouville integral operator defined on R
acting between the weighted Morrey spaces.
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Theorem 2.3. Let the Borel measure p on Ry satisfy the growth condition. Suppose that 1 < p <

q<ooand = %— %, Suppose also that B <p—1,0 < Ay <1 and A\iqg = Xop. Then Ry, is bounded

from ME (Ry, p) to M322(Ryy, 1), where
q
’y = ﬂ—, ].
» (1)

For the Weyl integral operator W, , we derived the boundedness in weighted complementary
Morrey spaces.

Theorem 2.4. Let the Borel measure p on Ry satisfy the growth condition. Suppose that 1 < p <
g<ooanda=2%— é, Suppose also that p—1 < B, 0 < A1 <1 and A\iqg = Aap. Then W, is bounded

P
from Mg’)‘l(R+, ) to M222(Ry, ), where
q
V=P tea—g (2)
Further, the following statements hold.

Theorem 2.5. Let the Borel measure p on Ry satisfy the growth condition. Suppose that 1 < p <

q<ooanda= %— é. Suppose also that B <p—1,0 < Ay <1 and A\iq = Xop. Then R, is bounded

from VMg”\l(RJr, ) to VMI?2(Ry, u), where ~ satisfies condition (1).

Theorem 2.6. Let the Borel measure p on Ry satisfy the growth condition. Suppose that 1 < p <
qg<ooanda= %— %. Suppose also that p—1 < 5, 0 < Ay < 1 and Aiq = Aop. Then W, , is bounded

from VMI;’A1 (Ry, ) to VMIA2(Ry, ), where v satisfies condition (2).
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