
Transactions of A. Razmadze
Mathematical Institute
Vol. 177 (2023), issue 3, 495–499

ONE-SIDED POTENTIALS IN WEIGHTED CENTRAL MORREY SPACES
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Abstract. The boundedness of one-sided potential operators defined, generally speaking, with re-
spect to a Borel measure µ, in the classical and central Morrey spaces is established. Weighted

estimates for these operators in the case of power-type weights are derived in central Morrey spaces

and in complementary central Morrey spaces. Similar problems are studied for vanishing Morrey
spaces.

1. Preliminaries

The well-known Riemann–Liouville and Weyl fractional integrals can be viewed as a one-sided
variants of the Riesz potential playing an important role in harmonic analysis and partial differential
equations (PDEs). The study of weighted theory for one-sided operators was first introduced by
Sawyer [8], Andersen and Sawyer [3]. Many of their results show that for a class of smaller operators
(one-sided operators) and a class of wider weights (one-sided weights), many of the famous findings
of harmonic analysis still hold, however, it should be mentioned that, for example, one-sided Muck-
enhoupt classes are much wider than two-sided ones, which plays a crucial role in the one-weight
theory.

One-sided weighted Morrey spaces were introduced by S. Shi and Z. Fu (see [9]). In that paper,
the authors established the boundedness of some classical one-sided operators including the Riemann–
Liouville fractional integrals on these spaces.

Let 0 < α < n. The fractional integral operator (Riesz potential operator)

Jα(f)(x) =

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn,

plays a fundamental role in harmonic analysis; it also finds applications in PDEs such as in the theory
of Sobolev embeddings (see, e.g., Maz’ya [7]).

We are interested in the fractional integrals defined on R or R+. For R and 0 < α < 1, we define
the fractional integral operators Iα, Wα and Rα given by

Iα(f)(x) :=

∫
R

f(y)

|x− y|1−α
dy, Wα(f)(x) :=

∞∫
x

f(y)

(y − x)1−α
dy,

Rα(f)(x) :=

x∫
−∞

f(y)

(x− y)1−α
dy, x ∈ R,

respectively, for a suitable f .
For R+ and 0 < α < 1, we consider the fractional integral operators Iα, Wα and Rα defined as

follows:

Iα(f)(x) :=
∫
R+

f(y)

|x− y|1−α
dy, Wα(f)(x) :=

∞∫
x

f(y)

(y − x)1−α
dy,
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Rα(f)(x) :=

x∫
0

f(y)

(x− y)1−α
dy, x ∈ R+,

respectively, for a suitable f .
We are also interested in fractional integral operators with measure. Let µ be a Borel measure on

R+ and let

Jα,µ(f)(x) :=

∫
R+

f(y)

|x− y|1−α
dµ(y), Wα,µ(f)(x) :=

∫
(x,∞)

f(y)

(y − x)1−α
dµ(y),

Rα,µ(f)(x) :=

∫
(0,x)

f(y)

(x− y)1−α
dµ(y), x ∈ R+.

Classical Morrey spaces were introduced in 1938 by C. B. Morrey in relation to regularity problems
of solutions of PDEs. They Suppose that µ is a Borel measure on R, 0 ≤ λ < 1 and 1 ≤ p < ∞. Let
Lp,λ(R, µ) be the Morrey space with measure µ, that is the space of all functions f ∈ Lp

loc(R, µ) such
that

∥f∥Lp,λ(R,µ) := sup
I

(
1

|I|λ

∫
I

|f(y)|pdµ(y)
) 1

p

< ∞,

where the supremum is taken over all intervals I in R.
If λ = 0, then Lp,λ(R, µ) = Lp(R, µ) is the Lebesgue space with measure µ and the norm is defined

as follows:

∥f∥Lp(R,µ) :=

(∫
R

|f(y)|pdµ(y)
) 1

p

.

If µ is the Lebesgue measure, then we use the symbol Lp,λ(R) for Lp,λ(R, µ).
Central Morrey spaces were introduced by Garćıa–Cuerva and Herrero [5] (see also [2]). In this

note, we are interested in one-sided central Morrey space Mp,λ
β (R+, µ), which is a collection of all

µ-measurable functions f such that

∥f∥Mp,λ
β (R+,µ) := sup

r>0

(
1

rλ

∫
(0,r]

|f(y)|pyβdµ(y)
) 1

p

< ∞.

If β = 0, then we use the notation Mp,λ
β (R+, µ) := Mp,λ(R+, µ).

Complementary classical Morrey space was introduced by Guliyev [6]. By Mp,λ
β (R+, µ) we denote a

complementary central Morrey space with measure µ, which is the set of all µ-measurable functions f
such that

∥f∥Mp,λ
β (R+,µ) := sup

r>0

(
1

rλ

∫
(r,∞)

|f(y)|pyβdµ(y)
) 1

p

< ∞.

If β = 0, then we denote Mp,λ
β (R+, µ) by the symbol Mp,λ(R+, µ).

We need the definition of one-sided weighted vanishing Morrey space. Unlike classical Morrey
spaces, in those spaces it is possible to have approximation by “nice” functions. We use the sym-

bol VMp,λ
β (R+, µ) for one-sided weighted vanishing Morrey space, being the class of all functions

f ∈ Mp,λ
β (R+, µ) such that

lim
r→0

(
1

rλ

∫
(0,r]

|f(y)|pyβdµ(y)
) 1

p

= 0.

Classical vanishing Morrey spaces were introduced in the works of Vitanza (see [10,11]) to describe
the regularity of elliptic PDEs more precisely than that in the Lebesgue spaces.
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By VMp,λ
β (R+, µ) we denote one-sided weighted vanishing complementary Morrey space with mea-

sure µ, being the set of all functions f ∈ Mp,λ
β (R+, µ) such that

lim
r→∞

(
1

rλ

∫
(r,∞)

|f(y)|pyβdµ(y)
) 1

p

= 0.

We need the definition of growth condition for µ.

Definition 1.1. We say that a measure µ on R (resp., on R+) satisfies the growth condition, if there
exists c > 0 such that µ(I) ≤ c|I| for all open intervals I.

The following statements are known for fractional integrals in Rn, but we formulate them for n = 1
(i.e., in this case, Jα is Iα).

Theorem A (Spanne, unpublished). Let 1 < p < ∞, 0 < α < 1 and q = p
1−αp . Then Iα is bounded

from Lp,λ1(R) to Lq,λ2(R) if λ1

p = λ2

q .

Theorem B ([1]). Let 0 ≤ λ < 1, 1 < p < ∞, 0 < α < 1 and q = p
1−αp . Then Iα is bounded from

Lp,λ(R) to Lq,λ(R).

The following trace inequality characterization for Iα formulated in the case of the real line is
well-known (see [4]).

Theorem C. Let 1 < p < q < ∞. Suppose that 0 < α < 1
p , 0 < λ1 < 1− αp and λ2

q = λ1

p . Then Iα

is bounded from Lp,λ1(R) to Lq,λ2(R, ν) if and only if there is a positive constant c such that

ν(I) ≤ c|I|q
(

1
p−α

)
,

for all intervals I.

2. Main Results

In this section we formulate the main results of the note.

Theorem 2.1. Let 1 < p < q < ∞. Suppose that 0 < α < 1
p , 0 < λ1 < 1−αp and λ2

q = λ1

p . Let ν be

a Borel measure on R. Then the following four statements are equivalent:

a) Iα is bounded from Lp,λ1(R) to Lq,λ2(R, ν);
b) Rα is bounded from Lp,λ1(R) to Lq,λ2(R, ν);
c) Wα is bounded from Lp,λ1(R) to Lq,λ2(R, ν);
d) There is a positive constant c such that for all intervals I,

ν(I) ≤ c|I|q
(

1
p−α

)
.

The next statement is a consequence of Theorem 2.1.

Theorem 2.2. Let 1 < p < q < ∞. Suppose that 0 < α < 1
p , 0 < λ1 < 1 − αp and λ2

q = λ1

p . Then

the following four statements are equivalent:

a) Iα is bounded from Lp,λ1(R) to Lq,λ2(R);
b) Rα is bounded from Lp,λ1(R) to Lq,λ2(R);
c) Wα is bounded from Lp,λ1(R) to Lq,λ2(R);
d) q = p

1−αp .

We have investigated the boundedness of the Riemann–Liouville integral operator defined on R+

acting between the weighted Morrey spaces.
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Theorem 2.3. Let the Borel measure µ on R+ satisfy the growth condition. Suppose that 1 < p ≤
q < ∞ and α = 1

p −
1
q . Suppose also that β < p−1, 0 < λ1 < 1 and λ1q = λ2p. Then Rα,µ is bounded

from Mp,λ1

β (R+, µ) to Mq,λ2
γ (R+, µ), where

γ = β
q

p
. (1)

For the Weyl integral operator Wα,µ we derived the boundedness in weighted complementary
Morrey spaces.

Theorem 2.4. Let the Borel measure µ on R+ satisfy the growth condition. Suppose that 1 < p ≤
q < ∞ and α = 1

p −
1
q . Suppose also that p−1 < β, 0 < λ1 < 1 and λ1q = λ2p. Then Wα,µ is bounded

from Mp,λ1

β (R+, µ) to Mq,λ2
γ (R+, µ), where

γ = β
q

p
+ αq − q. (2)

Further, the following statements hold.

Theorem 2.5. Let the Borel measure µ on R+ satisfy the growth condition. Suppose that 1 < p ≤
q < ∞ and α = 1

p −
1
q . Suppose also that β < p−1, 0 < λ1 < 1 and λ1q = λ2p. Then Rα,µ is bounded

from VMp,λ1

β (R+, µ) to VMq,λ2
γ (R+, µ), where γ satisfies condition (1).

Theorem 2.6. Let the Borel measure µ on R+ satisfy the growth condition. Suppose that 1 < p ≤
q < ∞ and α = 1

p −
1
q . Suppose also that p−1 < β, 0 < λ1 < 1 and λ1q = λ2p. Then Wα,µ is bounded

from VMp,λ1

β (R+, µ) to VMq,λ2
γ (R+, µ), where γ satisfies condition (2).
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