ONE-SIDED POTENTIALS IN WEIGHTED CENTRAL MORREY SPACES

GIORGI IMERLISHVILI^{1,2}, ALEXANDER MESKHI^{1,3}, MARIA ALESSANDRA RAGUSA^{4,5}

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. The boundedness of one-sided potential operators defined, generally speaking, with respect to a Borel measure μ , in the classical and central Morrey spaces is established. Weighted estimates for these operators in the case of power-type weights are derived in central Morrey spaces and in complementary central Morrey spaces. Similar problems are studied for vanishing Morrey spaces.

1. Preliminaries

The well-known Riemann–Liouville and Weyl fractional integrals can be viewed as a one-sided variants of the Riesz potential playing an important role in harmonic analysis and partial differential equations (PDEs). The study of weighted theory for one-sided operators was first introduced by Sawyer [8], Andersen and Sawyer [3]. Many of their results show that for a class of smaller operators (one-sided operators) and a class of wider weights (one-sided weights), many of the famous findings of harmonic analysis still hold, however, it should be mentioned that, for example, one-sided Muckenhoupt classes are much wider than two-sided ones, which plays a crucial role in the one-weight theory.

One-sided weighted Morrey spaces were introduced by S. Shi and Z. Fu (see [9]). In that paper, the authors established the boundedness of some classical one-sided operators including the Riemann–Liouville fractional integrals on these spaces.

Let $0 < \alpha < n$. The fractional integral operator (Riesz potential operator)

$$J_{\alpha}(f)(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha}} dy, \quad x \in \mathbb{R}^n,$$

plays a fundamental role in harmonic analysis; it also finds applications in PDEs such as in the theory of Sobolev embeddings (see, e.g., Maz'ya [7]).

We are interested in the fractional integrals defined on \mathbb{R} or \mathbb{R}_+ . For \mathbb{R} and $0 < \alpha < 1$, we define the fractional integral operators I_{α} , W_{α} and R_{α} given by

$$I_{\alpha}(f)(x) := \int_{\mathbb{R}} \frac{f(y)}{|x-y|^{1-\alpha}} dy, \quad W_{\alpha}(f)(x) := \int_{x}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} dy,$$
$$R_{\alpha}(f)(x) := \int_{-\infty}^{x} \frac{f(y)}{(x-y)^{1-\alpha}} dy, \quad x \in \mathbb{R},$$

respectively, for a suitable f.

For \mathbb{R}_+ and $0 < \alpha < 1$, we consider the fractional integral operators \mathcal{I}_{α} , \mathcal{W}_{α} and \mathcal{R}_{α} defined as follows:

$$\mathcal{I}_{\alpha}(f)(x) := \int\limits_{\mathbb{R}_{+}} \frac{f(y)}{|x-y|^{1-\alpha}} dy, \quad \mathcal{W}_{\alpha}(f)(x) := \int\limits_{x}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} dy,$$

²⁰²⁰ Mathematics Subject Classification. 26A33, 42B35 47B38.

Key words and phrases. One-sided potentials; Fractional integrals; Power-type weights; Central Morrey spaces; Complementary Morrey spaces; Vanishing Morrey spaces; Boundedness.

$$\mathcal{R}_{\alpha}(f)(x) := \int_{0}^{x} \frac{f(y)}{(x-y)^{1-\alpha}} dy, \quad x \in \mathbb{R}_{+},$$

respectively, for a suitable f.

We are also interested in fractional integral operators with measure. Let μ be a Borel measure on \mathbb{R}_+ and let

$$\mathcal{J}_{\alpha,\mu}(f)(x) := \int_{\mathbb{R}_+} \frac{f(y)}{|x-y|^{1-\alpha}} d\mu(y), \quad \mathcal{W}_{\alpha,\mu}(f)(x) := \int_{(x,\infty)} \frac{f(y)}{(y-x)^{1-\alpha}} d\mu(y),$$
$$\mathcal{R}_{\alpha,\mu}(f)(x) := \int_{(0,x)} \frac{f(y)}{(x-y)^{1-\alpha}} d\mu(y), \quad x \in \mathbb{R}_+.$$

Classical Morrey spaces were introduced in 1938 by C. B. Morrey in relation to regularity problems of solutions of PDEs. They Suppose that μ is a Borel measure on \mathbb{R} , $0 \le \lambda < 1$ and $1 \le p < \infty$. Let $L^{p,\lambda}(\mathbb{R},\mu)$ be the Morrey space with measure μ , that is the space of all functions $f \in L^p_{loc}(\mathbb{R},\mu)$ such that

$$||f||_{L^{p,\lambda}(\mathbb{R},\mu)}:=\sup_{\mathbb{I}}\left(\frac{1}{|\mathbb{I}|^{\lambda}}\int_{\mathbb{I}}|f(y)|^{p}d\mu(y)\right)^{\frac{1}{p}}<\infty,$$

where the supremum is taken over all intervals \mathbb{I} in \mathbb{R} .

If $\lambda = 0$, then $L^{p,\lambda}(\mathbb{R}, \mu) = L^p(\mathbb{R}, \mu)$ is the Lebesgue space with measure μ and the norm is defined as follows:

$$\|f\|_{L^p(\mathbb{R},\mu)}:=igg(\int\limits_{\mathbb{D}}|f(y)|^pd\mu(y)igg)^{rac{1}{p}}.$$

If μ is the Lebesgue measure, then we use the symbol $L^{p,\lambda}(\mathbb{R})$ for $L^{p,\lambda}(\mathbb{R},\mu)$.

Central Morrey spaces were introduced by García–Cuerva and Herrero [5] (see also [2]). In this note, we are interested in one-sided central Morrey space $M_{\beta}^{p,\lambda}(\mathbb{R}_+,\mu)$, which is a collection of all μ -measurable functions f such that

$$\|f\|_{M^{p,\lambda}_\beta(\mathbb{R}_+,\mu)}:=\sup_{r>0}\left(\frac{1}{r^\lambda}\int\limits_{(0,r]}|f(y)|^py^\beta d\mu(y)\right)^{\frac{1}{p}}<\infty.$$

If $\beta = 0$, then we use the notation $M_{\beta}^{p,\lambda}(\mathbb{R}_+, \mu) := M^{p,\lambda}(\mathbb{R}_+, \mu)$.

Complementary classical Morrey space was introduced by Guliyev [6]. By $\mathbb{M}^{p,\lambda}_{\beta}(\mathbb{R}_+,\mu)$ we denote a complementary central Morrey space with measure μ , which is the set of all μ -measurable functions f such that

$$||f||_{\mathbb{M}^{p,\lambda}_{\beta}(\mathbb{R}_+,\mu)} := \sup_{r>0} \left(\frac{1}{r^{\lambda}} \int\limits_{(r,\infty)} |f(y)|^p y^{\beta} d\mu(y) \right)^{\frac{1}{p}} < \infty.$$

If $\beta = 0$, then we denote $\mathbb{M}_{\beta}^{p,\lambda}(\mathbb{R}_+, \mu)$ by the symbol $\mathbb{M}^{p,\lambda}(\mathbb{R}_+, \mu)$.

We need the definition of one-sided weighted vanishing Morrey space. Unlike classical Morrey spaces, in those spaces it is possible to have approximation by "nice" functions. We use the symbol $VM_{\beta}^{p,\lambda}(\mathbb{R}_+,\mu)$ for one-sided weighted vanishing Morrey space, being the class of all functions $f \in M_{\beta}^{p,\lambda}(\mathbb{R}_+,\mu)$ such that

$$\lim_{r \to 0} \left(\frac{1}{r^{\lambda}} \int_{(0,r]} |f(y)|^p y^{\beta} d\mu(y) \right)^{\frac{1}{p}} = 0.$$

Classical vanishing Morrey spaces were introduced in the works of Vitanza (see [10,11]) to describe the regularity of elliptic PDEs more precisely than that in the Lebesgue spaces.

By $V\mathbb{M}_{\beta}^{p,\lambda}(\mathbb{R}_+,\mu)$ we denote one-sided weighted vanishing complementary Morrey space with measure μ , being the set of all functions $f \in \mathbb{M}_{\beta}^{p,\lambda}(\mathbb{R}_+,\mu)$ such that

$$\lim_{r \to \infty} \left(\frac{1}{r^{\lambda}} \int_{(r,\infty)} |f(y)|^p y^{\beta} d\mu(y) \right)^{\frac{1}{p}} = 0.$$

We need the definition of growth condition for μ .

Definition 1.1. We say that a measure μ on \mathbb{R} (resp., on \mathbb{R}_+) satisfies the growth condition, if there exists c > 0 such that $\mu(I) \leq c|I|$ for all open intervals I.

The following statements are known for fractional integrals in \mathbb{R}^n , but we formulate them for n=1 (i.e., in this case, J_{α} is I_{α}).

Theorem A (Spanne, unpublished). Let $1 , <math>0 < \alpha < 1$ and $q = \frac{p}{1-\alpha p}$. Then I_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R})$ if $\frac{\lambda_1}{p} = \frac{\lambda_2}{q}$.

Theorem B ([1]). Let $0 \le \lambda < 1$, $1 , <math>0 < \alpha < 1$ and $q = \frac{p}{1-\alpha p}$. Then I_{α} is bounded from $L^{p,\lambda}(\mathbb{R})$ to $L^{q,\lambda}(\mathbb{R})$.

The following trace inequality characterization for I_{α} formulated in the case of the real line is well-known (see [4]).

Theorem C. Let $1 . Suppose that <math>0 < \alpha < \frac{1}{p}$, $0 < \lambda_1 < 1 - \alpha p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Then I_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R},\nu)$ if and only if there is a positive constant c such that

$$\nu(I) \le c|I|^{q\left(\frac{1}{p} - \alpha\right)},$$

for all intervals I.

2. Main Results

In this section we formulate the main results of the note.

Theorem 2.1. Let $1 . Suppose that <math>0 < \alpha < \frac{1}{p}$, $0 < \lambda_1 < 1 - \alpha p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Let ν be a Borel measure on \mathbb{R} . Then the following four statements are equivalent:

- a) I_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R},\nu)$;
- b) R_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R},\nu)$;
- c) W_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R},\nu)$;
- d) There is a positive constant c such that for all intervals I,

$$\nu(I) \le c|I|^{q\left(\frac{1}{p} - \alpha\right)}.$$

The next statement is a consequence of Theorem 2.1.

Theorem 2.2. Let $1 . Suppose that <math>0 < \alpha < \frac{1}{p}$, $0 < \lambda_1 < 1 - \alpha p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Then the following four statements are equivalent:

- a) I_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R})$;
- b) R_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R})$;
- c) W_{α} is bounded from $L^{p,\lambda_1}(\mathbb{R})$ to $L^{q,\lambda_2}(\mathbb{R})$;
- d) $q = \frac{p}{1-\alpha p}$.

We have investigated the boundedness of the Riemann–Liouville integral operator defined on \mathbb{R}_+ acting between the weighted Morrey spaces.

Theorem 2.3. Let the Borel measure μ on \mathbb{R}_+ satisfy the growth condition. Suppose that $1 and <math>\alpha = \frac{1}{p} - \frac{1}{q}$. Suppose also that $\beta , <math>0 < \lambda_1 < 1$ and $\lambda_1 q = \lambda_2 p$. Then $\mathcal{R}_{\alpha,\mu}$ is bounded from $M_{\beta}^{p,\lambda_1}(\mathbb{R}_+,\mu)$ to $M_{\gamma}^{q,\lambda_2}(\mathbb{R}_+,\mu)$, where

$$\gamma = \beta \frac{q}{p}.\tag{1}$$

For the Weyl integral operator $W_{\alpha,\mu}$ we derived the boundedness in weighted complementary Morrey spaces.

Theorem 2.4. Let the Borel measure μ on \mathbb{R}_+ satisfy the growth condition. Suppose that $1 and <math>\alpha = \frac{1}{p} - \frac{1}{q}$. Suppose also that $p - 1 < \beta$, $0 < \lambda_1 < 1$ and $\lambda_1 q = \lambda_2 p$. Then $\mathcal{W}_{\alpha,\mu}$ is bounded from $\mathbb{M}_{\beta}^{p,\lambda_1}(\mathbb{R}_+,\mu)$ to $\mathbb{M}_{\gamma}^{q,\lambda_2}(\mathbb{R}_+,\mu)$, where

$$\gamma = \beta \frac{q}{p} + \alpha q - q. \tag{2}$$

Further, the following statements hold.

Theorem 2.5. Let the Borel measure μ on \mathbb{R}_+ satisfy the growth condition. Suppose that $1 and <math>\alpha = \frac{1}{p} - \frac{1}{q}$. Suppose also that $\beta , <math>0 < \lambda_1 < 1$ and $\lambda_1 q = \lambda_2 p$. Then $\mathcal{R}_{\alpha,\mu}$ is bounded from $VM_{\beta}^{p,\lambda_1}(\mathbb{R}_+,\mu)$ to $VM_{\gamma}^{q,\lambda_2}(\mathbb{R}_+,\mu)$, where γ satisfies condition (1).

Theorem 2.6. Let the Borel measure μ on \mathbb{R}_+ satisfy the growth condition. Suppose that $1 and <math>\alpha = \frac{1}{p} - \frac{1}{q}$. Suppose also that $p - 1 < \beta$, $0 < \lambda_1 < 1$ and $\lambda_1 q = \lambda_2 p$. Then $\mathcal{W}_{\alpha,\mu}$ is bounded from $V\mathbb{M}^{p,\lambda_1}_{\beta}(\mathbb{R}_+,\mu)$ to $V\mathbb{M}^{q,\lambda_2}_{\gamma}(\mathbb{R}_+,\mu)$, where γ satisfies condition (2).

ACKNOWLEDGEMENT

This research [PHDF-22-6359] has been supported by the Shota Rustaveli National Science Foundation of Georgia (SRNSFG).

References

- 1. D. R. Adams, A note on Riesz potentials. Duke Math. J. 42 (1975), no. 4, 765-778.
- J. Alvarez, M. Guzmán-Partida, J. D. Lakey, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect. Math. 51 (2000), no. 1, 1–47.
- 3. K. F. Andersen, E. T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators. *Trans. Amer. Math. Soc.* **308** (1988), no. 2, 547–558.
- A. Eridani, V. Kokilashvili, A. Meskhi, Morrey spaces and fractional integral operators. Expo. Math. 27 (2009), no. 3, 227–239.
- J. García-Cuerva, M. J. L. Herrero, A theory of Hardy spaces associated to the Herz spaces. Proc. London Math. Soc. 69 (1994), no. 3, 605–628.
- 6. V. S. Guliyev, Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in \mathbb{R}^n . (Russian) Doctor's Degree Dissertation. Moscow, Mat. Inst. Steklov, 1994.
- V. Maz'ya, Sobolev Spaces. Translated from the Russian by T. O. Shaposhnikova. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985.
- 8. E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. *Trans. Amer. Math. Soc.* **297** (1986), no. 1, 53–61.
- S. Shi, Z. Fu, Estimates of some operators on one-sided Weighted Morrey Spaces. Abstr. Appl. Anal. 2013, Art. ID 829218, 9 pp.
- C. Vitanza, Functions with vanishing Morrey norm and elliptic partial differential equations. Proceedings of methods of real analysis and partial differential equations, Capri, 147–150, 1990.
- 11. C. Vitanza, Regularity results for a class of elliptic equations with coefficients in Morrey spaces. *Ricerche Mat.* **42** (1993), no. 2, 265–281.

(Received 15.03.2023)

¹A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 Merab Aleksidze II Lane, Tbilisi 0193, Georgia

 $^2{\rm Georgian}$ Technical University, VI Building, Faculty of Informatics and Control Systems, Kostava 77, 0175 Tbilisi, Georgia

 $^5{\rm Faculty}$ of Fundamental Science, Industrial University, Ho
 Chi Minh City, Viet Nam

 $Email\ address: \verb| alexander.meskhi@tsu.ge; alexander.meskhi@kiu.edu.ge| \\$

 $Email\ address: \verb|imerlishvili180gmail.com| \\ Email\ address: \verb|maragusa0dmi.unict.it| \\$

 $^{^3\}mathrm{Kutaisi}$ International University, Youth Avenue, Turn 5/7, 4600 Kutaisi, Georgia

 $^{^4}$ Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria, 6-95125 Catania, Italy