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SOME CHARACTERIZATIONS OF BMO SPACES VIA COMMUTATORS OF
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Abstract. We give the necessary and sufficient conditions for the boundedness of the commutators

of the fractional maximal operator [b,Mη ] in Orlicz spaces LΦ(X) over spaces of homogeneous type
X = (X, d, µ) when b belongs to BMO(X) spaces. We obtain some new characterizations for certain

subclasses of BMO(X) spaces.

1. Introduction

Let X = (X, d, µ) be a space of homogeneous type, i.e., X is a topological space endowed with a
quasi-distance d and a positive measure µ. The fractional maximal function Mηf is defined by

Mηf(x) = sup
B∋x

µ(B)η−1

∫
B

|f(y)|dµ(y), 0 ≤ η < 1,

where the supremum is taken over all balls B ⊂ X containing x.
The fractional maximal commutator Mb,η generated by b ∈ L1

loc(X) and the operator Mη, is defined
by

Mb,η(f)(x) = sup
B∋x

µ(B)η−1

∫
B

|b(x)− b(y)||f(y)|dµ(y), 0 ≤ η < 1.

If η = 0, then we get the maximal commutator Mb,0 ≡ Mb.
The commutator [b,Mη] generated by a function b and the operator Mη, is defined by

[b,Mη](f)(x) = b(x)Mη(f)(x)−Mη(bf)(x).

If η = 0, then we get the commutator of maximal operator [b,M ] = [b,M0].
Mb,η and [b,Mη] essentially differ from each other since Mb,η is positive and sublinear and [b,Mη]

is neither positive, nor sublinear. The operators Mη, [b,Mη] and Mb,η play an important role in real
and harmonic analysis and applications [4, 8, 10,20–22,32,34].

The aim of this paper is to study the boundedness of commutators [b,Mη] of the fractional maximal
operator in Orlicz spaces LΦ(X) over the spaces of homogeneous type X = (X, d, µ). We characterize
the commutator functions b, involved in the boundedness in Orlicz spaces of the commutator [b,Mη]
of the fractional maximal operator (Theorems 4.3 and 4.6).

It is well known that the commutator estimates play an important role in many applications in
harmonic analysis and partial differential equations [5,15,25,31,32]. The mapping properties of Mb,η

and [b,Mη] have been studied extensively by many authors (see [1, 2, 6, 13, 17–19, 22, 25, 33, 34]). In
the study of commutators of singular integral operators with BMO symbols the use is made of the
operator Mb := Mb,0 (see [13,24,31]). Note that the boundedness of the operator Mb on Lp spaces was
proved by Garcia–Cuerva et al. in [13]. The nonlinear commutator [b,M ] of the maximal operator is
used in studying the product of a function in H1 and a function in BMO (see [3]). In [2], Bastero et
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al. studied the necessary and sufficient conditions for the boundedness of [b,M ] on Lp spaces. In [33],
Zhang and Lu considered the same problem for [b,Mη] (see also [34]).

By A ≲ B we mean that A ≤ CB with some positive constant C, independent of appropriate
quantities. If A ≲ B and B ≲ A, we write A ≈ B and say that A and B are equivalent.

2. Preliminaries

Let X = (X, d, µ) be a space of homogeneous type, i.e., X is a topological space endowed with a
quasi-distance d and a positive measure µ such that

d(x, y) ≥ 0; d(x, y) = 0 if and only if x = y; d(x, y) = d(y, x),

d(x, y) ≤ κ (d(x, z) + d(z, y)).

The balls B(x, r) = {y ∈ X : d(x, y) < r}, r > 0, form a basis of neighborhoods of the point x, µ is
defined on a σ-algebra of subsets of X which contains the balls, and

0 < µ(B(x, 2r)) ≤ K µ(B(x, r)) < ∞, (2.1)

where κ,K ≥ 1 are the constants, independent of x, y, z ∈ X and r > 0. As usual, the dilation of a
ball B = B(x, r) will be denoted by λB = B(x, λr) for every λ > 0. Note that (2.1) implies that for
all λ ≥ 1.

Macias and Segovia showed that on any space of homogeneous type X = (X, d, µ) there exists an
equivalent quasi-metric ρ such that the quasi-metric balls with respect to ρ are open. Therefore we
could have assumed from the outset that our σ-algebra is the Borel algebra and that µ is a positive
Borel measure which is doubling.

Now we recall the definition of Young functions.

Definition 2.1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex, left-
continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) = ∞.

From the convexity and due to the fact that Φ(0) = 0, it follows that any Young function is
increasing. If there exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. Let Y be the
set of all Young functions Φ such that 0 < Φ(r) < ∞ for 0 < r < ∞. If Φ ∈ Y, then Φ is absolutely
continuous on every closed interval in [0,∞) and bijective from [0,∞) to itself. For a measurable set
Ω ⊂ X, a measurable function f and t > 0, let m(Ω, f, t) = µ({x ∈ Ω : |f(x)| > t}). In the case
Ω = X, we shortly denote it by m(f, t).

The Orlicz spaces and the weak Orlicz spaces on spaces of homogeneous type are defined as follows.

Definition 2.2. For a Young function Φ,

LΦ(X) =

{
f ∈ L1

loc(X) :

∫
X

Φ(ϵ|f(x)|)dµ(x) < ∞ for some ϵ > 0

}
,

∥f∥LΦ ≡ ∥f∥LΦ(X) = inf

{
λ > 0 :

∫
X

Φ
( |f(x)|

λ

)
dµ(x) ≤ 1

}
,

WLΦ(X) :=

{
f ∈ L1

loc(X) : sup
r>0

Φ(r)m(r, ϵf) < ∞ for some ϵ > 0

}
,

∥f∥WLΦ ≡ ∥f∥WLΦ(X) = inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t

)
≤ 1

}
.

We note that ∥f∥WLΦ ≤ ∥f∥LΦ ,

sup
t>0

Φ(t)m(Ω, f, t) = sup
t>0

tm(Ω, f, Φ−1(t)) = sup
t>0

tm(Ω, Φ(|f |), t)

and ∫
Ω

Φ
( |f(x)|
∥f∥LΦ(Ω)

)
dx ≤ 1, sup

t>0
Φ(t)m

(
Ω,

f

∥f∥WLΦ(Ω)

, t
)
≤ 1,

where ∥f∥LΦ(Ω) = ∥fχ
Ω
∥LΦ and ∥f∥WLΦ(Ω) = ∥fχ

Ω
∥WLΦ .
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For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s} (inf ∅ = ∞).

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < ∞.

We also note that

∥χ
B
∥WLΦ = ∥χ

B
∥LΦ =

1

Φ−1 (µ(B)−1)
, (2.2)

where B is a µ-measurable set in X with µ(B) < ∞ and χ
B
is the characteristic function of B.

A Young function Φ is said to satisfy the ∆2-condition denoted by Φ ∈ ∆2, if Φ(2r) ≤ kΦ(r) for
r > 0 for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy the ∇2-condition,
denoted also by Φ ∈ ∇2, if Φ(r) ≤ 1

2kΦ(kr), r ≥ 0 for some k > 1. The function Φ(r) = r satisfies
the ∆2-condition, but does not satisfy the ∇2-condition. If 1 < p < ∞, then Φ(r) = rp satisfies both
the conditions. The function Φ(r) = er − r − 1 satisfies the ∇2-condition, but does not satisfy the
∆2-condition.

For a Young function Φ, the complementary function Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞),

∞, r = ∞.

The complementary function Φ̃ is also a Young function and
˜̃
Φ = Φ. If Φ(r) = r, then Φ̃(r) = 0 for

0 ≤ r ≤ 1 and Φ̃(r) = ∞ for r > 1. If 1 < p < ∞, 1/p+1/p′ = 1 and Φ(r) = rp/p, then Φ̃(r) = rp
′
/p′.

If Φ(r) = er − r− 1, then Φ̃(r) = (1 + r) log(1 + r)− r. Note that Φ ∈ ∇2 if and only if Φ̃ ∈ ∆2. It is
known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0. (2.3)

Note that by the convexity of Φ and concavity of Φ−1, we have the following properties:{
Φ(ηt) ≤ ηΦ(t), if 0 ≤ η ≤ 1

Φ(αt) ≥ αΦ(t), if α > 1
and

{
Φ−1(ηt) ≥ ηΦ−1(t), if 0 ≤ η ≤ 1

Φ−1(αt) ≤ αΦ−1(t), if α > 1.
(2.4)

The following analogue of Hölder’s inequality∫
X

|f(x)g(x)|dµ(x) ≤ 2∥f∥LΦ∥g∥LΦ̃

is known. In proving our main estimates we have used the following lemma which follows from Hölder’s
inequality, (2.2) and (2.3).

Lemma 2.3. Let (X, d, µ) be a space of homogeneous type. For a Young function Φ and B = B(x, r),
the inequality

∥f∥L1(B) ≤ 2µ(B) Φ−1
(
µ(B)−1

)
∥f∥LΦ(B)

is valid.

3. Fractional Maximal Commutator in Orlicz Spaces

We recall the boundedness property of M in Orlicz spaces since it will be used later.

Theorem 3.1 ([14]). Let (X, d, µ) be a space of homogeneous type and Φ be a Young function.
(i) The operator M is bounded from LΦ(X) to WLΦ(X) and the inequality

∥Mf∥WLΦ ≤ C0∥f∥LΦ

holds with the constant C0, independent of f .
(ii) The operator M is bounded on LΦ(X), and the inequality

∥Mf∥LΦ ≤ C0∥f∥LΦ

holds with the constant C0, independent of f if and only if Φ ∈ ∇2.
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The following result completely characterizes the boundedness of Mη in Orlicz spaces.

Theorem 3.2 ([7]). Let 0 < η < 1, Φ,Ψ be the Young functions and Φ ∈ Y. The condition

µ(B)η Φ−1
(
µ(B)−1

)
≤ C Ψ−1

(
µ(B)−1

)
(3.1)

for all balls B ⊂ X, where C > 0 does not depend on B, is necessary and sufficient for the boundedness
of Mη from LΦ(X) to WLΨ(X). Moreover, if Φ ∈ ∇2, condition (3.1) is necessary and sufficient for
the boundedness of Mη from LΦ(X) to LΨ(X).

Remark 3.3. Note that Theorem 3.2 in the case X = Rn was proved in [19].

Suppose that b ∈ L1
loc(X). Then b is said to be in BMO(X) if the seminorm given by

∥b∥∗ = sup
B

1

µ(B)

∫
B

|b(x)− bB |dµ(x)

is finite, where the supremum is taken over all balls B ⊂ X and

bB =
1

µ(B)

∫
B

b(x)dµ(x).

For any measurable set E with µ(E) < ∞ and any suitable function f , the norm ∥f∥L(logL),E is
defined by

|f∥L(logL),E = inf

{
λ > 0 :

1

µ(E)

∫
E

|f(x)|
λ

log
(
2 +

|f(x)|
λ

)
dµ(x) ≤ 1

}
.

The norm ∥f∥expL,E is defined by

|f∥expL,E = inf

{
λ > 0 :

1

µ(E)

∫
E

exp
( |f(x)|

λ

)
dµ(x) ≤ 2

}
.

Then for any suitable functions f and g, the generalized Hölder’s inequality

1

µ(E)

∫
E

|f(x)||g(x)|dµ(x) ≲ ∥f∥expL,E ∥g∥L(logL),E (3.2)

holds (see [30]).
The following John-Nirenberg inequalities on spaces of homogeneous type come from [27, Proposi-

tions 6, 7].

Lemma 3.4. Let b ∈ BMO(X). Then there exist the constants C1, C2 > 0 such that for every ball
B ⊂ X and every α > 0, we have

µ
({

x ∈ B : |b(x)− bB | > α
})

≤ C1 µ(B) exp
{
− C2

∥b∥∗
α
}
.

By the generalized Hölder’s inequality in Orlicz spaces (see [30, page 58]) and John-Nirenberg’s
inequality (see also [28, (2.14)]), we get

1

|B|

∫
B

∣∣b(x)− bB
∣∣|g(x)|dµ(x) ≲ ∥b∥∗ ∥g∥L(logL),B .

For details on this space and properties we refer, for instance, to [26] and [29].
For the given ball B and 0 ≤ η < 1, we define the following maximal function:

Mη,Bf(x) = sup
B⊇B′∋x

µ(B′)−1+η

∫
B′

|f(y)|dµ(y),

where the supremum is taken over all balls B′ such that x ∈ B′ ⊆ B. Moreover, we denoteMB = M0,B

when η = 0.
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For a function b defined on X, we denote

b−(x) :=

{
0, if b(x) ≥ 0,

|b(x)|, if b(x) < 0

and b+(x) := |b(x)| − b−(x). Obviously, b+(x)− b−(x) = b(x).
Before proving our theorems, we need the following lemmas and theorem.

Lemma 3.5 ([11]). Let b ∈ L1
loc(X). Then the following statements are equivalent:

1. b ∈ BMO(X) and b− ∈ L∞(X).
2. There exists s ∈ [1,∞) such that

sup
B

∥∥(b− µ(B)−ηMη,B(b)
)
χ

B

∥∥
Ls(X)

∥χ
B
∥Ls(X)

≤ C. (3.3)

3. For all s ∈ [1,∞), we have (3.4).

Lemma 3.6 ([11]). Let b ∈ L1
loc(X). Then the following statements are equivalent:

1. b ∈ BMO(X) and b− ∈ L∞(X).
2. There exists s ∈ [1,∞) such that

sup
B

∥∥(b−MB(b)
)
χ

B

∥∥
Ls(X)

∥χ
B
∥Ls(X)

≤ C. (3.4)

3. For all s ∈ [1,∞), we have (3.4).

Lemma 3.7 ([11]). Let b ∈ L1
loc(X). Then the following statements are equivalent:

1. b ∈ BMO(X) and b− ∈ L∞(X).
2. There exists s ∈ [1,∞) such that

sup
B

∥∥(b− 2M ♯
(
b χ

B

))
χ

B

∥∥
Ls(X)

∥χ
B
∥Ls(X)

≤ C. (3.5)

3. For all s ∈ [1,∞), we have (3.5).

Lemma 3.8 ([23]). Let b ∈ BMO(X) and Φ be a Young function with Φ ∈ ∆2, then

∥b∥∗ ≈ sup
B

Φ−1
(
µ(B)−1

) ∥∥(b− bB
)
χ

B

∥∥
LΦ . (3.6)

From Lemmas 3.5 and 3.8, we get

Lemma 3.9. Let b ∈ L1
loc(X) and Φ be a Young function. Then the following statements are equiva-

lent:
1. b ∈ BMO(X) and b− ∈ L∞(X).
2. There exists Φ ∈ ∆2 such that

sup
B

Φ−1
(
µ(B)−1

) ∥∥(b− µ(B)−ηMη,B(b)
)
χ

B

∥∥
LΦ < ∞. (3.7)

3. For all Φ ∈ ∆2, we have (3.7).

From Lemmas 3.6 and 3.8, we get

Lemma 3.10. Let b ∈ L1
loc(X) and Φ be a Young function. Then the following statements are

equivalent:
1. b ∈ BMO(X) and b− ∈ L∞(X).
2. There exists Φ ∈ ∆2 such that

sup
B

Φ−1
(
µ(B)−1

) ∥∥(b−MB(b)
)
χ

B

∥∥
LΦ < ∞. (3.8)

3. For all Φ ∈ ∆2, we have (3.8).

From Lemmas 3.7 and 3.8, we get
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Lemma 3.11. Let b ∈ L1
loc(X) and Φ be a Young function. Then the following statements are

equivalent:
1. b ∈ BMO(X) and b− ∈ L∞(X).
2. There exists Φ ∈ ∆2 such that

sup
B

Φ−1
(
µ(B)−1

) ∥∥(b− 2M ♯
(
b χ

B

))
χ

B

∥∥
LΦ < ∞. (3.9)

3. For all Φ ∈ ∆2, we have (3.9).

The known boundedness statements for the commutator operator Mb in Orlicz spaces run as follows
(see [17, Theorem 1.9 and Corollary 2.3]). Note that a more general case of multi-linear commutators
was studied in [12].

Theorem 3.12 ([12]). Let b ∈ BMO(X) and Φ be a Young function with Φ ∈ ∇2 ∩ ∇2. Then the
operator Mb is bounded on LΦ(X) and the inequality

∥Mbf∥LΦ ≤ C0∥b∥∗∥f∥LΦ

holds with the constant C0, independent of f .

We say that (X, d, µ) is Ahlfors regular (Q-homogeneous) if there exist the constants C1, C2, Q > 0
such that for every x ∈ X and r,

C−1
1 rQ ≤ µ(B(x, r)) ≤ C2 r

Q. (3.10)

The n-dimensional Euclidean space Rn is n-homogeneous. Thanks to (3.10) and (2.4), we have

Φ−1(µ(B(x, r))−1) ≈ Φ−1(r−Q).

Theorem 3.13 ([7]). Let 0 ≤ η < 1, b ∈ L1
loc(X), Φ,Ψ be Young functions with Φ ∈ ∆2∩∇2, Ψ ∈ ∆2

and Ψ−1
(
µ(B)−1

)
≈ µ(B)η Φ−1

(
µ(B)−1

)
. If the condition

sup
r<t<∞

(
1 + ln

t

r

)
µ(B(x, t))η Φ−1

(
µ(B(x, t))−1

)
≤ Cµ(B(x, r))η Φ−1

(
µ(B(x, r))−1

)
(3.11)

holds, then the condition b ∈ BMO(X) is necessary and sufficient for the boundedness of Mb,η from
LΦ(X) to LΨ(X).

4. Commutators of Fractional Maximal Operator in Orlicz Spaces

In this section, we find the necessary and sufficient conditions for the boundedness of the com-
mutator [b,Mη] of the fractional maximal operator Mη in Orlicz spaces LΦ(X) over the spaces of
homogeneous type X = (X, d, µ).

The following relations between [b,Mη] and Mb,η are valid.
Let b be any non-negative locally integrable function. Then for all f ∈ L1

loc(X) and x ∈ X, we have
the following inequality:∣∣[b,Mη]f(x)

∣∣ = ∣∣b(x)Mηf(x)−Mη(bf)(x)
∣∣

=
∣∣Mη(b(x)f)(x)−Mη(bf)(x)

∣∣ ≤ Mη(|b(x)− b|f)(x) ≤ Mb,η(f)(x).

If b is any locally integrable function on X, then

|[b,Mη]f(x)| ≤ Mb,η(f)(x) + 2b−(x)Mηf(x), x ∈ X (4.1)

holds for all f ∈ L1
loc(X) (see [8, 34]).

By Theorem 3.13, we have

Corollary 4.1. Let 0 ≤ η < 1, b ∈ L1
loc(X), Φ,Ψ be the Young functions with Φ ∈ ∆2 ∩ ∇2,

Ψ ∈ ∆2 and Ψ−1
(
µ(B)−1

)
≈ µ(B)η Φ−1

(
µ(B)−1

)
. If condition (3.11) holds, then the operator [b,Mη]

is bounded from LΦ(X) to LΨ(X).
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Theorem 4.2. Let 0 ≤ η < 1, b ∈ L1
loc(X), Φ,Ψ be the Young functions with Φ ∈ ∇2 ∩ Y and

Ψ−1
(
µ(B)−1

)
≈ µ(B)η Φ−1

(
µ(B)−1

)
. Then the following statements are equivalent:

1. b ∈ BMO(X) and b− ∈ L∞(X).
2. [b,Mη] is bounded from LΦ(X) to LΨ(X).
3. There exists Φ ∈ ∆2 such that

sup
B

Φ−1
(
µ(B)−1

) ∥∥b− µ(B)−ηMη,B(b)
∥∥
LΦ(B)

< ∞. (4.2)

4. There exists a constant C > 0 such that

sup
B

µ(B)−1
∥∥b− µ(B)−ηMη,B(b)

∥∥
L1(B)

≤ C. (4.3)

Proof. Since the implication “(1) ⇒ (2)” follows readily by Corollary 4.1 and the equivalence of (1)
and (4) follows from Lemma 3.9, we only need to prove the implications “(2) ⇒ (3)” and “(3) ⇒ (4)”.

(2) ⇒ (3). From the definition of Mη,B , it is not difficult to check that Mη,BχB
(x) = µ(B)η for all

x ∈ B.
Note that for any x ∈ B,Mη

(
bχ

B

)
(x) = Mη,B(b)(x) (see [33]) and thenMη

(
χ

B

)
(x) = Mη,BχB

(x) =
µ(B)η.

Then for any x ∈ B,

b(x)− µ(B)−ηMη,B(b)(x) = µ(B)−η
(
b(x)µ(B)η −Mη,B(b)(x)

)
= µ(B)−η

(
b(x)Mη

(
χ

B

)
(x)−Mη

(
bχ

B

)
(x)

)
= µ(B)−η[b,Mη]

(
χ

B

)
(x).

Since [b,Mη] is bounded from LΦ(X) to LΨ(X), we get

I1 = Ψ−1
(
µ(B)−1

) ∥∥b− µ(B)−ηMη,B(b)
∥∥
LΨ(B)

= Ψ−1
(
µ(B)−1

)
µ(B)−η

∥∥[b,Mη]
(
χ

B

)∥∥
LΨ(B)

≤ C Ψ−1
(
µ(B)−1

)
µ(B)−η ∥χ

B
∥LΦ ≤ C, (4.4)

where at the last step we have applied (2.2) and the hypothesis Ψ−1
(
µ(B)−1

)
≈ µ(B)η Φ−1

(
µ(B)−1

)
.

(3) ⇒ (1). Now, let us prove b ∈ BMO(X) and b− ∈ L∞(X). For any ball B, let E = {y ∈ B :
b(y) ≤ bB} and E = {y ∈ B : b(y) > bB}. The following equality is true (see [2, page 3331]):∫

E

|b(y)− bB |dµ(y) =
∫
F

|b(y)− bB |dµ(y).

Since b(y) ≤ bB ≤ |bB | ≤ µ(B)−ηMη,B(b)(y) for any y ∈ E, we obtain

|b(y)− bB | ≤
∣∣b(y)− µ(B)−ηMη,B(b)(y)

∣∣, y ∈ E.

Then from Lemma 2.3 and (4.4), we have

1

µ(B)

∫
B

|b(y)− bB |dµ(y) =
2

µ(B)

∫
E

|b(y)− bB |dµ(y)

≤ 2

µ(B)

∫
E

∣∣b(y)− µ(B)−ηMη,B(b)(y)
∣∣dµ(y)

≤ 2

µ(B)

∫
B

∣∣b(y)− µ(B)−ηMη,B(b)(y)
∣∣dµ(y)

≲ Ψ−1
(
µ(B)−1

) ∥∥b− µ(B)−ηMη,B(b)
∥∥
LΨ(B)

≤ C.

So, using the definition of BMO(X), we have b ∈ BMO(X).
Now, let us show that b− ∈ L∞(X). Observe that 0 ≤ b+(y) ≤ |b(y)| ≤ MB(b)(y) for y ∈ B,

therefore for any y ∈ B, we get

0 ≤ b−(y) ≤ MB(b)(y)− b+(y) + b−(y) = MB(b)(y)− b(y).
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Then for any ball B, we have

1

µ(B)

∫
B

b−(y)dµ(y) ≤ 1

µ(B)

∫
B

(
MB(b)(y)− b(y)

)
dµ(y)

=
1

µ(B)

∫
B

∣∣b(y)−MB(b)(y)
∣∣dµ(y) ≤ C.

Let µ(B) → 0 with x ∈ B. Lebesgue’s differentiation theorem assures that

0 ≤ b−(x) = lim
µ(B)→0

1

µ(B)

∫
B

b−(y)dµ(y) ≤ C.

Thus b− ∈ L∞(X).
(3) ⇒ (4). We deduce (4.3) from (4.2). Assume (4.2) holds, then for any fixed balls B, it follows

from Lemma 2.3 that

µ(B)−1
∥∥b− µ(B)−ηMη,B(b)

∥∥
L1(B)

≤ C Ψ−1
(
µ(B)−1

)∥∥b− µ(B)−ηMη,B(b)
∥∥
LΨ(B)

≤ C,

where the constant C is independent of B. So, we obtain (4.3). □

Theorem 4.3. Let 0 ≤ η < 1, b ∈ L1
loc(X), Φ,Ψ be the Young functions with Φ ∈ ∇2 ∩ Y and

Ψ−1
(
µ(B)−1

)
≈ µ(B)η Φ−1

(
µ(B)−1

)
. Then the following statements are equivalent:

1. b ∈ BMO(X) and b− ∈ L∞(X).
2. [b,Mη] is bounded from LΦ(X) to LΨ(X).
3. There exists Φ ∈ ∆2 such that

sup
B

Ψ−1
(
µ(B)−1

)
∥b−MB(b)∥LΨ(B) < ∞. (4.5)

4. There exists a constant C > 0 such that

sup
B

µ(B)−1 ∥b−MB(b)∥L1(B) ≤ C. (4.6)

Proof. Since the implication “(1) ⇒ (2)” follows readily by Corollary 4.1 and the equivalence of (1)
and (4) follows from Lemma 3.10, we only need to prove the implications “(2) ⇒ (3)” and “(3) ⇒ (4)”.

(2) ⇒ (3). We divide the proof into two cases according to the range of η.
Case 1. Assume η = 0. For any fixed ball B and x ∈ B, we have

b(x)−MB(b)(x) = b(x)M
(
χ

B

)
(x)−M

(
bχ

B

)
(x) = [b,M ]

(
χ

B

)
(x).

Since in this case we assume Ψ−1
(
µ(B)−1

)
≈ µ(B)0 Φ−1

(
µ(B)−1

)
= Φ−1

(
µ(B)−1

)
and [b,M ] is

bounded from LΨ(X) to LΨ(X), therefore by (2.2), we have

Ψ−1
(
µ(B)−1

)∥∥b−MB(b)
∥∥
LΨ(B)

= Ψ−1
(
µ(B)−1

)∥∥[b,M ]
(
χ

B

)∥∥
LΨ(B)

≤ C Ψ−1
(
µ(B)−1

)∥∥χ
B

∥∥
LΨ(B)

= C,

which implies (4.5).
Case 2. Assume 0 ≤ η < 1. For any fixed balls B,

Ψ−1
(
µ(B)−1

)
∥b−MB(b)∥LΨ(B) ≤ Ψ−1

(
µ(B)−1

) ∥∥b− µ(B)−ηMη,B(b)
∥∥
LΨ(B)

+Ψ−1
(
µ(B)−1

) ∥∥MB(b)(·)− µ(B)−ηMη,B(b)
∥∥
LΨ(B)

:= I1 + I2. (4.7)

First, we consider I1. From (4.4), we get

I1 = Ψ−1
(
µ(B)−1

) ∥∥b− µ(B)−ηMη,B(b)
∥∥
LΨ(B)

≤ C.
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Next, we estimate I2. For any x ∈ B, MB

(
χ

B

)
(x) = χ

B
(x) (see [33]) and then M

(
χ

B

)
(x) = χ

B
(x)

and M
(
bχ

B

)
(x) = MB(b)(x) for any x ∈ B. Then∣∣µ(B)−ηMη,B(b)(x)−MB(b)(x)

∣∣ = µ(B)−η
∣∣Mη,B(b)(x)− µ(B)ηMB(b)(x)

∣∣
= µ(B)−η

∣∣Mη

(
bχ

B

)
(x)−Mη

(
χ

B

)
(x)M

(
bχ

B

)
(x)

∣∣
= µ(B)−η

∣∣Mη

(
bχ

B

)
(x)− |b(x)|Mη

(
χ

B

)
(x)

∣∣
+ µ(B)−η

∣∣|b(x)|Mη

(
χ

B

)
(x)−Mη

(
χ

B

)
(x)M

(
bχ

B

)
(x)

∣∣
= µ(B)−η

∣∣Mη

(
|b|χ

B

)
(x)− |b(x)|Mη

(
χ

B

)
(x)

∣∣
+ µ(B)−ηMη

(
χ

B

)
(x)

∣∣|b(x)|M(
χ

B

)
(x)−M

(
bχ

B

)
(x)

∣∣
= µ(B)−η

∣∣[|b|,Mη]
(
χ

B

)
(x)

∣∣+ ∣∣[|b|,M ]
(
χ

B

)
(x)

∣∣. (4.8)

Note that b ∈ BMO(X) implies |b| ∈ BMO(X).
From (4.8), for any x ∈ B, we obtain∣∣µ(B)−ηMη,B(b)(x)−MB(b)(x)

∣∣ ≤ µ(B)−η
∣∣[|b|,Mη]

(
χ

B

)
(x)

∣∣+ ∣∣[|b|,M ]
(
χ

B

)
(x)

∣∣.
Then it follows from (2.2) that

I2 = Ψ−1
(
µ(B)−1

)∥∥µ(B)−ηMη,B(b)(·)−MB(b)(·)
∥∥
LΨ(B)

≲ Ψ−1
(
µ(B)−1

)
µ(B)−η

∥∥[|b|,Mη]
(
χ

B

)∥∥
LΨ(B)

+Ψ−1
(
µ(B)−1

)∥∥[|b|,M ]
(
χ

B

)∥∥
LΨ(B)

≲ ∥b∥∗Ψ−1
(
µ(B)−1

)
µ(B)−η ∥χ

B
∥LΦ + ∥b∥∗Ψ−1

(
µ(B)−1

)
∥χ

B
∥LΨ

≲ ∥b∥∗. (4.9)

By (4.7), (4.4) and (4.9), we get

Ψ−1
(
µ(B)−1

)∥∥b−MB(b)
∥∥
LΨ(B)

≲ ∥b∥∗,

which leads us to (4.5) since B is arbitrary.
(3) ⇒ (4). We deduce (4.6) from (4.5). Assume (4.5) holds, then for any fixed balls B, it follows

from Lemma 2.3 and (4.5) that

µ(B)−1 ∥b−MB(b)∥L1(B) ≤ C Ψ−1
(
µ(B)−1

)∥∥b−MB(b)
∥∥
LΨ(B)

≤ C,

where the constant C is independent of B. So, we obtain (4.6).
The proof of Theorem 4.3 is completed. □

Corollary 4.4. Let b ∈ L1
loc(X), Φ be a Young function with Φ ∈ ∇2 ∩ Y. Then the following

statements are equivalent:
1. b ∈ BMO(X) and b− ∈ L∞(X).
2. [b,M ] is bounded on LΦ(X).
3. There exists Φ ∈ ∆2 such that

sup
B

Φ−1
(
µ(B)−1

)
∥b−MB(b)∥LΦ(B) < ∞.

4. There exists a constant C > 0 such that

sup
B

µ(B)−1 ∥b−MB(b)∥L1(B) ≤ C.

Remark 4.5. Note that in the case Φ(t) = tp, Corollary 4.4 for the case Φ(t) = tp, was proved
in [11, Theorem 2.1].

Theorem 4.6. Let 0 ≤ η < 1, b ∈ L1
loc(X), Φ,Ψ be the Young functions with Φ ∈ ∇2 ∩ Y and

Ψ−1
(
µ(B)−1

)
≈ µ(B)η Φ−1

(
µ(B)−1

)
. Then the following statements are equivalent:

1. b ∈ BMO(X) and b− ∈ L∞(X).
2. [b,Mη] is bounded from LΦ(X) to LΨ(X).
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3. There exists a constant C > 0 such that

sup
B

Ψ−1
(
µ(B)−1

)
∥b− bB∥LΨ(B) ≤ C. (4.10)

4. There exists a constant C > 0 such that

sup
B

µ(B)−1 ∥b− bB∥L1(B) ≤ C. (4.11)

Proof. Part “(1) ⇔ (2)” follows from Theorem 4.3, the implication “(1) ⇒ (4)” follows readily from
[19, Theorem 4.5] and Lemma 3.10, respectively. Since “(3) ⇒ (4)” follows directly from Lemma 3.10,
it suffices to prove the implication “(2) ⇒ (3)”.

(2) ⇒ (3).
For any given ball B, we have

|b(x)− bB | ≤
1

µ(B)

∫
B

∣∣∣|b(x)− b(y)|dµ(y)

≤ 1

µ(B)η
1

µ(B)1−η

∫
B

|b(x)− b(y)|χ
B
(y)dµ(y) ≤ µ(B)−ηMb,η

(
χ

B

)
(x)

for all x ∈ B. Since Mb,η is bounded from LΦ(X) to LΨ(X), by applying Lemma 3.8 and noting that
Ψ−1

(
µ(B)−1

)
≈ µ(B)η Φ−1

(
µ(B)−1

)
, we have

Ψ−1
(
µ(B)−1

)
∥b− bB∥LΨ(B) ≤ µ(B)−η Ψ−1

(
µ(B)−1

) ∥∥Mb,η

(
χ

B

)
(·)

∥∥
LΨ(B)

≤ µ(B)−η Ψ−1
(
µ(B)−1

)
∥χ

B
∥LΦ(B) =

Ψ−1
(
µ(B)−1

)
µ(B)η Φ−1

(
µ(B)−1

) ≤ C

which leads us to (4.10) since B is arbitrary and the constant C does not depend on B. □

Corollary 4.7. Let b ∈ L1
loc(X), Φ be a Young function with Φ ∈ ∇2 ∩ Y. Then the following

statements are equivalent:
1. b ∈ BMO(X) and b− ∈ L∞(X).
2. [b,M ] is bounded on LΦ(X).
3. There exists a constant C > 0 such that

sup
B

Φ−1
(
µ(B)−1

)
∥b− bB∥LΦ(B) ≤ C.

4. There exists a constant C > 0 such that

sup
B

µ(B)−1 ∥b− bB∥L1(B) ≤ C.

Remark 4.8. Note that in the case of Carnot groups Theorems 4.3 and 4.6 were proved in [16].
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