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Abstract. We focus our attention on the de Rham operators’ underlying properties which are

specified by intrinsic effects of differential geometry structures. And then we apply the procedure of

regularization in the context of Lipschitz version of de Rham calculus on metric simplicial complexes
with bounded geometry.

1. Introduction

The reasons which lie at the roots of the present text could be abstracted as follows. Despite the fact
that the notion of de Rham’s regularization operators has a long history and some useful applications,
primarily, it was a tool that allowed to reduce cohomology of Banach chain complexes to the case
which is more familiar and convenient since it is presented by a subcomplex of smooth objects. It does
not leave the impression of clarity. Indeed, de Rham’s initial exposition on the subject and further
applications, focusing on the analytic aspect of the matter, seem to tend cloud intrinsic elegance and
simplicity of that construction. Such situation inherently encourages us to reopen the discourse on
the subject in order to embellish the prevailing approach and see how far that construction could be
generalized.

Beginning with the first decades of the 20th century when the basic notions of the exterior calculus
were formulated thanks to Élie Cartan’s works and further through Georges de Rham’s contribution,
one got the perfectly clear language to talk about global properties of manifolds. In particular, his
explorations led up to the emergence of the concept of the so-called de Rham’s complex, namely, that
work elucidated the analogies between differential forms and chains. One can notice that the concept
of chain complex was quite known within the frames of algebraic topology and homological algebra
that was being formed at that time. Also, we should attribute to that period (around the thirties) the
de Rham’s theorem establishing an isomorphism between the cohomogy of differential forms and the
singular cohomology. Eventually, those reasons led up to the notion of current generalizing essential
characteristics shared by both chains and forms. Later, de Rham extensively developed the theory
of currents involving as the foundation of Lauren Schwartz’s work on distributions. That yielded
subsequently the results on the approximation of currents by smooth forms and required to introduce
the regularization operators defined in the weak sense. It was regarded as relying on a duality between
currents and compactly supported smooth forms. Let us take a closer look at the subject.

There is the well-known idea to approximate a value of locally integrable function f at every
point with its mean value over a bounded neighbourhood of a such point. More generally, using a
convolution with a smooth kernel φ such that

∫
Rn φ(x)dx = 1, we can define a regularization operator

Φε(f) = f ∗ φε.
Let D ′(Rn) be a space of continuous functionals on the space C∞

0 (Rn) endowed with the usual
topology. The convolution T ∗ φ of a distribution T ∈ D ′(Rn) and a function φ(y) ∈ C∞

0 (Rn) is
defined by {T ∗ φ}(x) = T (φ(x − y)), that is, the operator T 7→ ⟨T, τxφ̃⟩ where φ̃(y) = φ(−y),
τxφ(y) = φ(y + x).

We can sum up that approach in the following way (see, e.g., [7]).
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Theorem 1. Let φε ∈ C∞
0 (Rn) be a sequence of positive functions such that

∫
Rn φε(x)dx = 1 and

supp(φϵ) is a ball with radius ε. If T ∈ D ′(Rn), it follows that T ∗ φε ∈ C∞(Rn) and T ∗ φε → T in
D ′(Rn) as ε → 0.

In the light of the above-mentioned, it is reasonable to talk about the regularization of distributions
in the following sense: Φε(T ) = T ∗ φε. If φε is a symmetric kernel, that is, φε(x) = φε(−x) and
g ∈ C∞

0 (Rn), we have ⟨T ∗ φε, g⟩ = ⟨T, g ∗ φε⟩. Then we can define a regularization operator with a
symmetric kernel on the space of distributions as follows: {Φε(T )}(g) = T (Φε(g)).

Let M be a differentiable manifold and let (Ω∗(M), d) be the de Rham DG-algebra (a differential
graded algebra) on M , that is, the algebra of smooth differential forms. In particular, there is defined
a chain complex

0 // C∞(M) // Ω1(M) // · · · // Ωn(M) // 0 .

Following the de Rham approach, we turn to the subcomplex of compactly supported forms and its
dual complex of currents. According to what has been said above, we intend to define a regularization
operator on currents analogously to the case of distributions RT [ω] = T [R∗ω]. In line with the above,
there emerges a reasonable question what we should think of a procedure of computing the mean value
of a differential form R∗ω. It is quite clear that we need to define the operator under consideration
in such a manner that preserves cohomology classes.

First of all, we should clarify the notion of homotopy. Let A be an additive category. Consider the
category of chain complexes Ch(A). We can introduce the homotopy category of chain complexes K(A)
by taking into account a concept of ‘equivalent deformation’ η of morphisms f, g ∈ HomCh(A)(V, W ),

V

f

""

g

>>�� η W .

Let us take a look at this construction in more detail. The homotopy η we assume to be a set of
morphisms {ηi ∈ HomA(V

i, W i−1)} which satisfy f i − gi = di−1
W ηi + ηi+1diV . It should be noted that

we do not involve the requirement that η is a chain morphism. The condition of the existence of such a
homotopy between morphisms equips the set HomCh(A)(V, W ) with an equivalence relation. So, K(A)
can be introduced as a category of chain complexes with morphisms defined modulo homotopy. We
can reveal the point by turning to the well-studied case of Abelian categories which are the classical
setting for the treatment of homological algebra. It is not hard to see that homotopic morphisms induce
the same morphism between the corresponding cohomology groups, and every homotopy equivalence
f : V → W defines the isomorphism of cohomologies. Thus a two-sided invertible morphism in the
category K(A) corresponds to an isomorphism of cohomologies. In particular, a homotopy equivalence
between topological spaces induces isomorphism between the singular chain complexes in K(A).

Another example of chain homotopy will serve as the central part of our interpretation of the
regularization operators. Assume that X is a vector field, then the Lie derivative LX is the 0-
derivation of the DG-algebra such that there exists a -1-derivation ιX being the homotopy between
LX and the zero map

(Ω∗(M), d)

0

&&

LX

88�� ιX (Ω∗(M), d) .

That is to say, the Lie derivative satisfies Cartan’s formula LX = dιX + ιXd. At every point x, the
map ω 7→ LXω induces a function with values in the exterior power of the cotangent space at x,

LXωx : R →
∧n

T ∗
xM,
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LXω is precisely nothing else than the instantaneous velocity in the exterior power of the cotangent
space, that is, a magnitude of change of the form ω under the infinitesimal translation along an integral
curve ϕX(t). That corresponds to the zero endomorphism of (Ω∗(M), d) in the homotopy category of
chain complexes. In other words, for every closed form ω, the form LXω is an exact form.

We can compute the integral of the function LXωx. Owing to the linearity of integration and the

fact that it commutes with the exterior differential, we can see that the following
∫ 1

0
LXωdt = ϕ∗

t=1ω−ω
implies the homotopy

(Ω∗(M), d)

ϕ∗
t=1

&&

Id

88�� (Ω∗(M), d) .

That makes sense to talk about the procedure of regularization on differential forms. Namely, the
pullback of translation along vector fields preserves cohomology classes. And as a result, combining
the intrinsic attribute of smooth manifolds expressed in the Cartan formula and the classic idea of
mollifier, we can define a form representing the mean value of the given differential form at every point
of smooth manifold.

Turning back to de Rham’s construction, it is not hard to see that the operator RT [ω] = T [R∗ω]
defined on currents inherits the property to preserve cohomology classes

RT [ω] = T [R∗ω] = T [A∗dω + dA∗ω] = T [A∗dω] + T [dA∗ω]

= AT [dω] + ∂T [A∗ω] = {∂AT +A∂T}[ω].

The next step in that direction was made in [4], where the authors focused on a special kind of
currents which can be presented as the elements of Sobolev space of differential forms Ω∗

p, p(M). It is
clear that being a special case of currents, such forms hold all basic properties of the regularization.
The crucial result consists in the proof that we have the same diagram

(Ω∗
p, p(M), d)

R

&&

Id

77�� (Ω∗
p, p(M), d)

in the category of chain complexes of Banach spaces. That allows us to generalize de Rham’s theorem
to the case of Lp-cohomology of triangulable noncompact manifolds.

We call a simplicial complex K having bounded geometry if every vertex of the 1-skeleton of K
has a uniformly bounded degree as a vertex of graph, and the length of every edge is in the interval
[L−1, L] for some L ≥ 1.

We introduce a class of differential forms SL ∗
p (K) on a simplicial complex K which are locally

pullbacks of smooth forms defined on a subsets of Rn under bi-Lipschitz homomorphisms and having

a finite graph norm on the domain of SL k(K)
d−→ SL k+1(K) in the sense of Lp-spaces. Let Ω

∗
p, p(K)

denote the closure of that class under a topology induced from the graph norm. The main result of
the present work can be summed up in the following two assertions:
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• Let K be a complex of bounded geometry. Then there exists the diagram

· · · d // Ωk−1
p, p (K)

d //

R��

Ωk
p, p(K)

d //

A

xx

R��

Ωk+1
p, p (K)

A

xx

d //

R��

· · ·

· · · SL k−1
p (K)
_�

��

SL k
p (K)
_�

��

SL k+1
p (K)
_�

��

· · ·

· · ·
d
// Ωk−1

p, p (K)
d

// Ωk
p, p(K)

d
// Ωk+1

p, p (K)
d
// · · ·

with the commutative squares in the category of Banach spaces Ban∞. Moreover, the map R
is homotopic to the identity

(Ω∗
p, p(M), d)

R

&&

IdΩ∗
p, p

77�� A (Ω∗
p, p(M), d) .

• Under the same conditions, the following commutative triangle of isomorphisms takes place
in the category VecR,

Hk(SL ∗
p (K))

I

##
Hk(Ω∗

p,p(K))

R

;;

// Hk(C∗
p (K))

It should be noted that such complexes could be useful as a bi-Lipschitz triangulation of Riemannian
manifolds with bounded geometry. It is not hard to see that the obtained results hold for an arbitrary
L ≥ 1. Moreover, a specified type of complexes emerges naturally (see, for example, [1, 2]).

Theorem 2. Let M be an n-dimenthional Riemannian manifold of bounded geometry with geometric
bounds a, b, ϵ. Then M admits a triangulation K of bounded geometry (whose geometric bounds
depend on n, a, b, ϵ) and an L-bi-Lipcshitz homeomorphism f : K → M , where L = L(n, a, b, ϵ).

2. Homotopy and Lie Derivative

Most of the content included in this section can be found in [9].
Let C∞(Rn) be a ring of smooth functions on Rn. The differentiation of smooth functions defines

a derivation in C∞(Rn) with values in C∞-module consisting of 1-forms on Rn d : C∞(Rn) → Ω(Rn),
that is, a homomorphism of the respective additive groups which satisfies the condition d(fg) =
fdg + gdf. As usual, we define all operations in C∞(Rn) pointwisely. There are the well-known
algebraic reasons which imply a number of facts about local structure of C∞(Rn). Let C∞

x (Rn)
be the space of germs of smooth functions at a point x. Then C∞

x (Rn) is a commutative local
ring, that means that non-invertible elements, namely germs of functions which vanish at x, form a
maximal ideal mx. As a consequence, the quotient ring C∞

x (Rn)/mx is a field. As a result, we can
conclude that mx/m

2
x is a vector space. Assume that f ∈ C∞

x (Rn), then due to Taylor’s theorem,
we can write down the following: f − f(x) = ⟨∇xf,

∑n
i=1(ξi − ξi(x))e⃗i⟩ + h, h ∈ m2

x and as a
result, we obtain the representation of f at the point x as an element of the vector space mx/m

2
x:

f 7→ f−f(x) ∈ mx/m
2
x. To summarize, the fibers x 7→ mx/m

2
x specify a vector bundle. Considering that

the components of the vector f−f(x) change smoothly on Rn, we obtain a vector field, corresponding
to the element of C∞(Rn). So, we can sum up that the procedure outlined above allows us to define
a derivation in the commutative ring C∞(Rn) with values in C∞-module consisting of vector fields.
As a consequence, there exists a related derivation in C∞(Rn) with values in the dual C∞-module
consisting of 1-forms d : C∞(Rn) → Ω(Rn). Now, we can define the de Rham DG-algebra on Rn as a
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graded algebra Ω∗(Rn) =
⊕n

k=0

∧k
Ω(Rn),

∧0
Ω(Rn) = C∞(Rn) endowed with an antiderivation, i.e.,

an endomorphism satisfying the graded Leibnitz rule with a commutator factor −1, which is specified
as the exterior derivative d in the usual sense:

• define the derivative in accordance with the derivation in a ring d : C∞(Rn) → Ω(Rn) for
0-forms;

• d2 = 0;
• d(ω ∧ θ) = (dω) ∧ θ + (−1)degωω ∧ (dθ).

Let X be a vector field on Rn and ϕX : Rn × R → Rn be a corresponding flow.
Consider a -1-antiderivation on the graded algebra Ω∗(Rn) defined in the following

Definition 1. Let X be a vector field on Rn. The interior product is a map ιX : Ωn(Rn) → Ωn−1(Rn)
satisfying a number of conditions:

• If ω ∈ Ω1(Rn), we put ιXω = ⟨ω, X⟩, i.e., ι is the canonical pairing;
• ι(ω ∧ θ) = (ιXω) ∧ θ + (−1)degωω ∧ (ιXθ).

Definition 2. Let X be a vector field on Rn. The Lie derivative is a map LX : Ωn(Rn) → Ωn(Rn)

defined in the following way: LX : ω 7→ d
dt

∣∣∣∣
t=0

ϕ∗
Xω.

Theorem 3. Under the above assumptions, Cartan’s magic formula LXω = ιX ◦ dω + d ◦ ιXω holds.

Remark 1. The Poincaré lemma, that is, Hi(Ω∗(U)) = 0 for i < n, where U is an open ball in Rn,
can be derived from Cartan’s formula.

Let us consider the change of the form ω along a segment ϕX(x, t) : [0, 1] → Rn of the integral
curve which starts at the point x. A parametrized differential form ϕ∗

Xω(t) ∈ Ωk(Rn) defines a family
of multilinear skew-symmetric maps on the tangent space TxRn for an integral curve that starts at

the point x f(t)A0
x(t) ∧ · · · ∧Ak−1

x (t) :
∧k Rn → R, Ai

x(t) ∈ (Rn)∗, that is, there is specified function

F (t) = f(t) det(Ai
x(t)ξj) at every ξ0 ∧ · · · ∧ ξk−1, and so, we can define d

dtF (t) and
∫ 1

0
F ′(t)dt.

This induces a couple of maps: LXω(t) :
∧k Rn → R, at every point t, where {LXω(t)}(x) =

LX(ϕt(x)){ϕ∗
X(t)}ω and

∫ 1

0
LXω(t)dt :

∧k Rn → R.
Then we have

1∫
0

LXωdt =ϕ∗
X

∣∣
t=1

ω − ω

=

1∫
0

ιX(ϕt(x)) ◦ {ϕ
∗
X(t)}(dω)dt+ d

( 1∫
0

ιX(ϕt(x)) ◦ {ϕ
∗
X(t)}(ω)dt

)
.

Definition 3. Let v ∈ Rn. Define an associated flow sv : Rn × R → Rn as the translation along v:
stv(x) = x+ tv.

Then we can use Cartan’s formula s∗vω − ω = Qvdω + dQvω, where Qv =
{ ∫ 1

0
dt
}
◦ ιv ◦ ϕ∗

X(t).

3. De Rham Operators on Ω∗(Rn)

Let f : Rn → R be a compactly supported smooth function such that supp(f) ⊂ B1,
∫
Rnf(v)dv

0 . . .

dvn−1 = 1, f(v) ≥ 0 and f(v) = f(−v). Let us put τ(v) = f(v)dv0 . . . dvn−1. Using the previous
argumentation, we can integrate the equation s∗vω · τ(v) − ω · τ(v) = dQv(ω) · τ(v) + Qv(dω) · τ(v)
at every point x, namely, this integration procedure is induced by integration of forms of the type
g(v) det(⟨Ai(v), ∗⟩)τ , where ω(x) = g(v)A0(v) ∧ · · · ∧Ak(v)(∗ ∧ · · · ∧ ∗):∫

Rn

(s∗vω(x) · τ(v)− ω(x) · τ(v)) =
∫
Rn

(dQv(ω(x)) · τ(v) +Qv(dω(x)) · τ(v)) ,

that is which allows us to specify a chain homotopy R(ω)− ω = dA(ω) +A(dω).
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There is a diffeomorphism h of Rn onto the open ball B1 with centre 0 and radius 1. Let U ⊂ Rn

and B1 ⊂ U . We can define sv : U → U as

svx =

{
hsvh

−1(x), if x ∈ B1;

x, if x /∈ B1.

It was shown in de Rham’s book [6] that s∗tv produces a group action of the additive group of real
numbers on U , that is, s∗(t0+t1)v

= s∗t1v ◦s
∗
t0v. Also, we can say that if Xv = dh−1(x)h(v) is a vector field

consisting of tangent vectors to stv(x), then we have d
dt

∣∣∣∣∣
t=0

s∗tvω = d◦ ιXv
(ω)+ ιXv

◦d(ω); and Rε(ω)−

ω = dAε(ω) + Aε(dω), where Rεω =
∫
Rn s∗εvω(x) · τ(v) and Aε(ω) =

∫
Rn

( ∫ 1

0
ιXεv(sεvt(x))(s

∗
εvtω)dt

)
·

τ(v). It was shown [4] that the following lemma holds.

Lemma 1. For every ε > 0, the maps Rε and Aε are bounded on Ωk
p(B1) with respect to the Lp-norm

and, moreover, the following estimations ∥Rε∥p ≤ C(ε), and ∥Aε∥p ≤ M(ε) hold, where C(ε) → 1,
M(ε) → 0 as ε → 0.

From now on, we will use resV, U for the restriction map Ωk(U) → Ωk(V ) where V ⊂ U if it is
well-defined in the context of our consideration.

Lemma 2. Let B1 be a closed ball in Rn with centre 0 and radius 1, B1 ⊂ U ⊂ Rn. Then for every
ε > 0 and any compact F ⊂ IntB1, the map resF,U ◦ Rε is a bounded operator Ωk

p(U) → Ωk
∞(F ).

Proof. Let ω ∈ Ωk
p(U), then |Rεω| is a smooth function which implies that it is bounded and there is

a point ξ such that supx∈F |Rεω|(x) = |Rεω|(ξ).

|Rεω|p(ξ) ≤
( ∫
supp(f)

|s∗εvω|(ξ) · τ(v)
)p

≤ C

∫
supp(f)

|s∗εvω|p(ξ)dv0 . . . dvn−1 ≤ C∥ω∥p
Ωk

p(U),

where C = mes(supp(f))p−1(supx∈supp(f) f)
p. □

It follows that taking the closure of Ωk(B1) with respect to the Lp-norm induces bounded maps
on the Banach spaces Ωk

p(B1) and there exists the diagram

· · · d // Ωk−1
p (B1)

d //

Rε ��

Ωk
p(B1)

d //
Aε

vv Rε ��

Ωk+1
p (B1)

Aε

vv

d //

Rε��

· · ·

· · ·
d
// Ωk−1

p (B1)
d
// Ωk

p(B1)
d
// Ωk+1

p (B1)
d
// · · ·

with commutative squares and morphisms such that the equation R(ω)− ω = dA(ω) +A(dω) holds.

Consider the bi-Lipschitz homomorphism φ : B1 → B ⊂ Rn. Then we can define the operators R̃ε

and Ãε:

Ωk
p(B)

R̃ε //

φ∗
��

∧k
ΩL (B)

Ωk
p(B1) Rε

// Ωk
smooth(B1)

(φ−1)∗
OO Ωk

p(B)
Ãε //

φ∗
��

Ωk−1
p (B)

Ωk
p(B1) Aε

// Ωk−1
p (B1)

(φ−1)∗
OO

It is not difficult to see that the commutative squares are the squares in the category of normed
Banach spaces because all the arrows are bounded maps and, moreover, we have ∥R̃ε∥p ≤ C̃(ε) and

∥Ãε∥p ≤ M̃(ε).
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Just as we did above, take the closure of Ωk(B) with respect to the Lp-norm; this induces bounded
maps on the Banach spaces Ωk

p(B) and there exists the diagram

· · · d // Ωk−1
p (B)

d //

R̃ε��

Ωk
p(B)

d //

Ãε

{{

R̃ε��

Ωk+1
p (B)

Ãε

{{

d //

R̃ε��

· · ·

· · ·
∧k−1

ΩL (B)
_�

��

∧k
ΩL (B)
_�

��

∧k+1
ΩL (B)
_�

��

· · ·

· · ·
d
// Ωk−1

p (B)
d

// Ωk
p(B)

d
// Ωk+1

p (B)
d
// · · ·

with commutative squares and morphisms such that the equation R̃ε(ω)−ω=dÃε(ω)+Ãε(dω) holds.

4. Classes of Differential Forms on a Metric Simplicial Complex

Denote by Fin+ the category of finite nonempty sets and partial maps and by Set the usual category
of sets. A simplicial complex K can be defined as a functor K : Finop+ → Set, where Finop+ is the opposite
category of Fin+. Fix some set V and put K([n]) = {ρ : [n] → V | ρ is a partial injective function}. In
other words, the elements of K([n]) = K[n] serve as indices to n-simplices and f : [m] → [n] induces
the embedding of faces of K, K(f) : K[n] → K[m], as follows: K(f)⟨ρ⟩ = ρ ◦ f.

The condition below was introduced in [5] in the context of studying triangulated Riemannian
manifolds.

Definition 4 (The star-boudness condition). We call K star-bounded if there exists C > 0 such that
for every v ∈ K[0] the cardinality of a set Ψv = {ι ∈ Hom(K[0], K[1]) | v ∈ Dom ι} satisfies the
following |Ψv| ≤ C.

Define a geometric realization of the simplicial complex K as a topological space |K| =
∐n

i=0(∆i ×
K[i])/ ∼, where

∆n =

{
(t0, . . . , tn) ∈ Rn+1

∣∣∣∣ n−1∑
i=0

ti = 1, ti ≥ 0

}
and ∼ is an equivalence relation defined by gluing of simplices. We also can endow |K| with the
simplicial metric, that is, Euclidian on each simplex. From now on, we will follow the terminology
of [2]. Let every simplex of K be isometric to the standard simplex in the Euclidian space. Thus each
morphism [k] → [m] induces for each m-simplex σm an isometric embedding of its face σk, that is,
σk → σm. Also, as was mentioned in [2], we can introduce a length-metric on K in such a manner that
each simplex is isometrically embedded in K. In more detail, a piecewise-linear path γ : [a, b] → K
is a path such that its domain can be broken into finitely many intervals [ai, ai+1] so that the image
γ([ai, ai+1]) is a piecewise-linear path contained in a single simplex of K. The length of γ is defined
by using Euclidian metric on simplices of K: |γ| =

∑
i |γ([ai, ai+1])| and so, we can define the distance

as follows: d(x, y) = infγ |γ|, where the infimum is taken over all paths connecting x and y in the
class of piecewise-linear maps.

Remark 2. The path-metric d is complete and turns K to a geodesic metric space.

Definition 5. A metric simplicial complex K has bounded geometry if it is connected, star-bounded
and there exists L ≥ 1 such that the length of every edge is in the interval [L−1, L].

Below, we will assume that all complexes have bounded geometry with L = 1.
Let Lloc(|K|) be a space of locally Lipschitz functions on |K|. We require that for every morphism

f : [k] → [m] there is a restriction resK[k], K[m] : Lloc(|K[m]|) → Lloc(|K[k]|) induced by an isometric
embedding of its face which can be implemented by the consecutive vanishing of m − k -sets of
barycentric coordinates tj with indices j /∈ {j0, . . . , jk} on every m-simplex ∆.

Define C∞L (|K|) ⊂ Lloc(|K|) as a space of locally Lipschitz functions from the class C∞ on every
topological space (∆n, α), α ∈ K[n].

Theorem 4 (Rademacher’s theorem). Let U ⊂ Rn, and let f : U → R be locally Lipschitz. Then f is
differentiable at almost every point in U .
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Let K be a simplicial complex define barycentric coordinates ti : |K| → R, where
∑

i ti = 1, ti ≥ 0.
The restrictions of coordinate functions to every simplex of K are smooth and the function germs,

which are locally Lipschitz on |K| and smooth inside simplices, generate a correctly defined tangent
space for every interior point x of each simplex of K. If x ∈ |K[n−1]|, then every coordinate function
ti is not differentiable at x as a function on |K|. This implies that every Lipschitz function f(t0, . . . , tn)
is not differentiable at x, as well. In spite of that fact, Rademacher’s theorem allows us to define the
n−1-dimensional tangent space almost everywhere on the n−1-dimensional skeleton of our complex by
using the restriction of coordinate functions to the |K[n−1]|. It follows that we can define the tangent
space almost everywhere on a skeleton of each dimension. Let C∞L c(|K|) be a subspace of compactly
supported functions in C∞L (|K|). Suppose f ∈ Lloc(|K|) and define df in the sense of distributions.
Due to Rademacher’s theorem, at almost every point x of |K|, we can consider a continuous germ
f−f(x) = ⟨∇xf,

∑n
i=1(ξi−ξi(x))e⃗i⟩+o

(∣∣∑n
i=1(ξi−ξi(x))e⃗i

∣∣) implying that it is reasonable to assign

to f a vector f − f(x) = ⟨∇xf,
∑n

i=1(ξi − ξi(x))e⃗i⟩( mod ox). So, the function f induces a cotangent
vector df at almost every point x, it implies that

∫
U
df ∧ h is defined for every U ⊂ |K|, where h

is of an n− 1-form defined on every simplex as an exterior product of differentials of functions from
C∞L c(|K|). Summarizing, we can define df over U as a functional df(h) = −

∫
U
fdh which holds

for every h
∫
U
df ∧ h = −

∫
U
fdh. As a result, locally almost everywhere we have a finitely generated

L∞-module and an epimorphism Ln
∞ → ΩL induced by the map df 7→ ∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn, where

ΩL is the L∞-module of Lipschitz 1-form.

Definition 6. We use the following notation for Lp-norms on Lloc(|K|):
• f ∈ Lloc(|K|), ∥f∥Lp

= (
∑

T∈K([n])

∫
T
|f(x)|pdx)

1
p .

In the case p = ∞, we put ∥f∥L∞ = ess sup |f(x)|.

Definition 7. We use the following notation for Lp-norms on spaces of differential forms on |K|:
• ω ∈

∧k
ΩL (K), ∥ω∥Ωp, p

= (∥|ω|∥p + ∥|dω|∥p)
1
p ;

• ω ∈
∧k

ΩL (K), ∥ω∥Ω∞,∞ = max{∥|ω|∥Ω∞ , ∥|dω|∥Ω∞};
• ω ∈

∧k
ΩL (K), ∥ω∥SLp

=
(∑

T∈K([n]) ∥ω∥
p
Ω∞,∞(T )

) 1
p .

Definition 8. We define Sobolev spaces of differential forms on |K| as follows: Ωk
p, p(K) =(∧k

ΩL (K)
)
Ωp, p

, i.e., Ωk
p, p(K) is the closure of the graded module of Lipschitz forms with respect

to the norm of Sobolev spaces.

Lemma 3. Let ∆ be a simplex and ∂∆ be its boundary. Then any ω ∈
∧k

ΩL (∂∆) can be extended

to the whole ∆ in such a way that ω̃ ∈
∧k

ΩL (∆) and ∥ω̃∥Ω∗
p, p(∆) ≤ ∥ω∥Ω∗

p, p(∂∆).

Proof. Let I = [0, 1]. Consider a Lipschitz form ω ∈
∧k

ΩL (∂In). Our aim is to define ω̃ ∈∧k
ΩL (∂In × I) in such a manner that ω̃

∣∣
∂In = ω and ∥ω̃∥Ω∗

p, p(∂I
n×I) ≤ ∥ω∥Ω∗

p, p(∂I
n).

Define a functions f : I → R as t 7→ 1− t. Then we can define ω̃ as the following ω̃(x, t) = f(t)ω(x)

∥ω̃∥pΩ∗
p(∂I

n×I) =

∫
∂In×I

|ω̃|pdxdt =
∫
I

dt

∫
∂In

|f(t)|p|ω(x)|pdx

=

1∫
0

|1− t|pdt
∫

∂In

|ω(x)|pdx ≤ 1

(1 + p)p
∥ω∥pΩ∗

p(∂I
n)

dω̃ = df ∧ ω + fdω = (1− t)dω(x)− dt ∧ ω(x)

|dω̃| ≤ |1− t||dω(x)|+ |ω(x)|
∥dω̃∥Ω∗

p(∂I
n×I) ≤ ∥ω∥Ω∗

p(∂I
n×I) + ∥(1− t)dω∥Ω∗

p(∂I
n×I)

∥(1− t)dω∥pΩ∗
p(∂I

n×I) =

∫
I

dt

∫
∂In

|1− t|p|dω(x)|pdx =
1

(1 + p)p
∥dω∥pΩ∗

p(∂I
n)
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∥dω̃∥Ω∗
p(∂I

n×I) ≤ ∥ω∥Ω∗
p(∂I

n) + ∥dω∥Ω∗
p(∂I

n)

∥dω̃∥pΩ∗
p(∂I

n×I) ≤ 2p−1∥ω∥pΩ∗
p(∂I

n) + 2p−1∥dω∥pΩ∗
p(∂I

n)

∥ω̃∥pΩ∗
p(∂I

n×I) + ∥dω̃∥pΩ∗
p(∂I

n×I) ≤ 2p−1∥ω∥pΩ∗
p(∂I

n) + 2p−1∥dω∥pΩ∗
p(∂I

n) + ∥ω∥pΩ∗
p(∂I

n)

≤ (2p−1 + 1)∥ω∥pΩ∗
p, p(∂I

n).

Assume that ∆ is an n-dimensional simplex and ω ∈
∧k

ΩL (∂∆) is a Lipschitz form.

∂∆

ϕ ξ
(∆

)

ϕt

There exist Lipschitz map γ : ∂In → ∂∆ and a couple of Lipschitz maps g, h as illustrated below

∂In

I
g

hg
∂In

h

∂∆

We can extend γ∗ω as is shown above. Then we put ω̃ = (g−1h−1)∗ ˜γ∗ω. Hence we have ω̃
∣∣
ϕξ(∂∆)

= 0

and consider ω̃ to be zero over ϕξ(∆). □

Lemma 4. Let K be an n-dimensional simplicial complex and K[m] be its m-dimensional skeleton.
Then any ω ∈ Ω∗

p, p(K[m]) can be extended to the whole K in such a way that ω̃ ∈ Ω∗
p, p(K) and

∥ω̃∥Ω∗
p, p(K) ≤ ∥ω∥Ω∗

p, p(K[m]).

Proof. Suppose that ω ∈ Ω∗
p, p(K[m]) and there is {ωi} ⊂

∧k
ΩL (K[m]) such that ∥ωi −ω∥Ω∗

p, p(K[m])

→ 0 as i → ∞.
In the light of previous lemma, there exists ω̃i ∈ Ω∗

p, p(K[m + 1]) which satisfies the following
estimation: ∥ω̃i∥Ω∗

p, p(K[m+1]) ≤ ∥ωi∥Ω∗
p, p(K[m]) for each i. It is not hard to see that {ω̃i} is a Cauchy

sequence since the procedure of extension is linear: ∥ω̃i − ω̃j∥Ω∗
p, p(K[m+1]) → 0, i, j → ∞. So,

lim ∥ω̃i∥Ω∗
p, p(K[m+1]) ≤ lim ∥ωi∥Ω∗

p, p(K[m]) = ∥ω∥Ω∗
p, p(K[m]). Denote a limit of the sequence as the

following lim ω̃i = ω̃. Repeating this construction for every dimension as a result we obtain an extension
to the whole complex. □

Remark 3. It is not hard to see that the same argument holds for SLp(K).

Lemma 5. Let Sk be a k-sphere and B ⊂ Sk be a k-ball. Any Lipschitz k-form ω ∈ Ωk(B) can be
extended by zero to the Lipschitz k-form on Sk.

Proof. There is a homotopy φ : Sk × [0, 1] → Sk such that φ(x, 0) = Id and φ(B, 1) = B′, where
B ∩B′ = ∅.
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β : Sk → R

Sk

B

B′

So, we can extend any k-form ω ∈ Ωk(B) by a zero k-form to the whole Sk. Define first ω over
B′ as follows: ω̃ = (φ−1

t=1)
∗ω. Let ω = f0df1 ∧ · · · ∧ dfk. Then for every a ∈ ∂B, we can put

f i(φ(a, t)) = f i(a). Thus as a result, we have the following. Let v1 be a tangent vector to the curve
φ(a, t) : [0, 1] → Sk. Consider a basis v1, . . . , vk. Then ∇f i has the zero component corresponding to
the direction v1. So, we obtain df i = f i

v2v
∗
2 + · · ·+ f i

vk
v∗k and as a result, df1 ∧ · · · ∧ dfk = 0. Now, let

β : Sk → R be a ‘bump’ function such that β(B) = {1} and supp(β) ⊂ Sk \B′. Hence supp(βω̃) ⊆ B
and d(βω̃) = 0. □

5. De Rham Operators on Simplicial Complexes

Theorem 5. Let K be a complex of bounded geometry with L = 1. Then there is the diagram

· · · d // Ωk−1
p, p (K)

d //

R��

Ωk
p, p(K)

d //

A

||

R��

Ωk+1
p, p (K)

A

||

d //

R��

· · ·

· · · SL k−1
p (K)
_�

��

SL k
p (K)
_�

��

SL k+1
p (K)
_�

��

· · ·

· · ·
d
// Ωk−1

p, p (K)
d
// Ωk

p, p(K)
d
// Ωk+1

p, p (K)
d
// · · ·

with commutative squares in the category of Banach spaces Ban∞. Moreover, the equality R−IdΩ∗
p, p

=
dA + A d holds.

In order to prove the above theorem, we state a number of lemmas about the arrows of the diagram.
Let K be a star-bounded complex. Assume that K ′ is the first barycentric subdivision of K. Let Σ′

i

be the star of vertex ei in K ′. Let φi be a bi-Lipschitz homeomorphism φi : IntΣi → U such that
B1 ⊂ U and Σ′

i ⊂ Intφ−1(B1).
Given ε > 0, define operators Ri and Ai,

Riω =

{
(φ−1

i )∗Rεφ
∗
iω on Σi

ω, otherwise
; Aiω =

{
(φ−1

i )∗Aεφ
∗
iω on Σi

0, otherwise

Consider the operators Rω = lim
i→∞

R1R2 . . .Riω and A ω =
∞∑
i=1

R1R2 . . .Ri−1Aiω.

Lemma 6. The arrow Ω∗
p, p(K)

R−→ SL k
p (K) is a morphism in the category Ban∞, namely, R is a

bounded operator.

Proof. Consider a star Σi of K. Assume that there is a set Xi such that Σ′
i ⊂ IntXi ⊂ Intφ−1(B1).

We can represent ω as a sum ω = ω1 + ω2,
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α : K → [0, 1]

Σ′
i Xiφ−1(B1) Σi K

where ω1 = αω and ω2 = (1− α)ω, i.e., supp(ω2) ⊂ K \Xi.
For any Rj and η ∈ Ωk(K) such that supp(η) ⊂ K \Xi, choosing ε > 0 sufficiently small, we

can achieve supp(Rjη) ⊂ K \ Σ′
i that implies Rjη = 0 on Σ′

i. Due to this fact, for each j, we can
choose εj in the definition of the operator Rj in such a way that supp(R1 . . .Rjω2) ⊂ K \ Σ′

i and,
correspondingly, Rω = Rω1 on Σ′

i.
Let Σi be spanned by points {ej1 , . . . , ejn}. For every form θ such that supp(θ) ⊂ φ−1(B1) ⊂ Σi,

we can see that only for k ∈ {j1, . . . , jn} the operator Rk is distinct from the identity. Choosing
sufficiently small ε each time we face such an operator Rk ∈ {Rj1 . . . , Rjn} in the composition
R1R2 . . .Rj we obtain a map preserving the support of a form derived at this step inside IntΣi.
Then we have R1 . . .Rjω1 = Rj1 . . .Rjnω1 for each j. So, Rω1 = Rj1 . . .Rjnω1.

We know that Rjk : Ω
∗
p(Σi) → Ω∗

p(Σi) and, moreover, the operator ∥Rjk, (ε)∥p ≤ 1 + ε, ε → 0.
Then there exists ε > 0 such that ∥R∥p = ∥Rj1 . . .Rjn∥p ≤ 1 + O(ε), ε → 0. It should be noted
that dR = Rd and the above argument holds for dω. As a result, for each i, we have ∥resΣ′

i, K
◦

Rω∥Ωk
p, p(Σ

′
i)

≤ (1 + O(εi))∥resΣi, Kω∥Ωk
p, p(Σi), εi → 0. Due to the star-boundedness of the complex,

we can choose ε = mini εi. Assume that ω ∈ Ωk
p, p(K),

∥Rω∥Ωk
p, p(K) =

∑
i

∥resΣ′
i, K

◦ Rω∥Ωk
p, p(K) ≤

∑
i

(1 +O(ε))∥resΣi, Kω∥Ωk
p, p(Σi)

≤ (1 +O(ε))

n
∥ω∥Ωk

p, p(K)

In the light of what we have just said, R is a bounded map R : Ω∗
p, p(K) → Ω∗

p, p(K). Moreover, it is

not hard to see that R : Ω∗
p, p(K) → SL ∗

p (K). Indeed, we know that every Ri = (φ−1
i )∗Rεφ

∗
i , then

Rεφ
∗
i : Ω

∗
p, p(Σi) → Ω∗

smooth(U), and (φ−1
i )∗ is a Lipschitz piecewise smooth map. □

Lemma 7. For every m-dimensional skeleton K[m] of K, the operator resK[m], K ◦ R is a morphism

Ω∗
p, p(K) → SL k

p (K[m]) in Ban∞ (a bounded operator).

Proof. From now on, we will follow the notation stated in the proof of Lemma 2. In particular, let a
star Σi be spanned by points {ej1 , . . . , ejn}. Every n-dimensional simplex σ can be covered by stars

of K ′: σ ⊂
⋃n−1

k=0 Σ
′
jk

applying Lemma 3 and the argument from the proof of Lemma 2, we arrive at

∥resσ,K ◦ Rω∥Ω∗
∞(σ) ≤

n∑
k=0

∥resΣ′
jk

, K ◦ Rω∥Ω∗
∞(Σ′

jk
) ≤ C

n∑
k=0

∥resΣjk
, Kω∥Ω∗

p(Σjk
)

and ∑
i

∥resσi, K ◦ Rω∥Ω∗
∞(σi) ≤C

∑
i

n∑
k=0

∥resΣi
jk

, Kω∥Ω∗
p(Σ

i
jk

)

≤ CN
∑
j

∥resΣj , Kω∥Ω∗
p(Σj) ≤CNn

∑
i

∥resσi, Kω∥Ω∗
p(σi) = C ′∥ω∥Ω∗

p(K).

Hence

∥resK[m], K ◦ Rω∥Ωk
p(K[m]) =

∑
i

∥resτi, K ◦ Rω∥Ωk
p(τi)

≤
∑
i

(mes τi)
1
p ∥resτi, K ◦ Rω∥Ωk

∞(τi).
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It is not hard to see that ∥resτi, K ◦ Rω∥Ωk
∞(τi) ≤

∑
σ∈K[n], τi↪→σ ∥resσ,K ◦ Rω∥Ωk

∞(σ). As a result, we

have

∥resK[m], K ◦ Rω∥Ωk
p(K[m]) ≤

(√
m+ 1

m!
√
2m

) 1
p ∑

i

∑
σ∈K[n], τi↪→σ

∥resσ,K ◦ Rω∥Ωk
∞(σ)

≤
(√

m+ 1

m!
√
2m

) 1
p
(
n+ 1

m+ 1

)
C ′∥ω∥pΩ∗

p(K).

Here, we again make a note that dR = Rd and the above argument holds for dω. □

Lemma 8. The arrow Ωk
p, p(K)

A−→ Ωk−1
p, p (K) is a morphism in the category Ban∞.

Proof. Let ω ∈ Ωk
p, p(M), consider Aiω. It is not hard to see that supp(Aiω) ⊂ φ−1(B1). Indeed, s

∗
tv

acts on the complement K \φ−1(B1) leaving its points fixed. It follows that Xv = 0 and, consequently,
ιXv

is a zero map at every point belonging to K \ φ−1(B1).
Let Σi be spanned by points {ej1 , . . . , ejn}. For every form, compactly supported inside φ−1(B1)⊂Σi,

there are only a fixed number of operators, namely, Rj1 , . . . , Rjn , which are distinct from the identity.
Similarly to the above, we can choose sufficiently small ε for each operator Rjk in the composition
R1 . . .Ri−1Ai, that allows us to preserve the support of a form derived by every partial composition
inside IntΣi. Then we have R1 . . .Ri−1Aiω = Rj1 . . .RjnAiω and Rj1 . . . RjnAiω = 0 outside Σi.
Now, we can estimate the norm ∥A ω∥Ωk−1

p (K):

∥Rj1 . . . RjnAiω∥Ωk−1
p (Σi)

≤ Cn
pMp∥ω∥Ωk

p(Σi).

So, we have

∥A ω∥p
Ωk−1

p, p (K)
= ∥A ω∥p

Ωk−1
p, p (K)

+ ∥dA ω∥p
Ωk−1

p, p (K)

=

∫
K

∣∣∣∣∑
i

R1 . . . Ri−1Aiω

∣∣∣∣pdx+

∫
K

∣∣∣∣∑
i

dR1 . . . Ri−1Aiω

∣∣∣∣pdx
=

∑
σ∈K[n]

(∫
σ

∣∣∣∣∑
i

resσ,KR1 . . . Ri−1Aiω

∣∣∣∣pdx
+

∫
σ

∣∣∣∣∑
i

resσ,KdR1 . . . Ri−1Aiω

∣∣∣∣pdx).
Every simplex σ = {e0, . . . , en} is the intersection of stars assigned to its vertices σ =

⋂
ei∈{e0,..., en} Σi

and, moreover, σ lies in no other star. It follows that
∑

i resσ,KR1 . . . Ri−1Aiω =
∑

ej∈{e0,..., en}
resσ,KR1 . . . Rj−1Ajω and

∑
i resσ,KdR1 . . . Ri−1Aiω =

∑
ej∈{e0,..., en} resσ,KdR1 . . . Rj−1Ajω. Hence

∥A ω∥p
Ωk−1

p, p (K)
=

∑
σ∈K[n]

∫
σ

∣∣∣∣ ∑
ej∈{e0,..., en}

resσ,KR1 . . . Rj−1Ajω

∣∣∣∣pdx
+

∑
σ∈K[n]

∫
σ

∣∣∣∣ ∑
ej∈{e0,..., en}

resσ,KdR1 . . . Rj−1Ajω

∣∣∣∣pdx
= (n+ 1)p−1

∑
σ∈K[n]

∫
σ

∑
ej∈{e0,..., en}

|resσ,KR1 . . . Rj−1Ajω|pdx

+(n+ 1)p−1
∑

σ∈K[n]

∫
σ

∑
ej∈{e0,..., en}

|resσ,KdR1 . . . Rj−1Ajω|pdx.

Let us check the following: ∫
σ

∑
ej∈{e0,..., en}

|resσ,KR1 . . . Rj−1Ajω|pdx
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=
∑

ej∈{e0,..., en}

∫
σ

|resσ,KR1 . . . Rj−1Ajω|pdx

≤
∑

ej∈{e0,..., en}

∫
Σj

|R1 . . . Rj−1Ajω|pdx

=
∑

ej∈{e0,..., en}

∫
Σj

|Rj0 . . . RjnAjω|pdx

=
∑

ej∈{e0,..., en}

∥Rj0 . . . RjnAjω∥pΩk−1
p (Σj)

≤
∑

ej∈{e0,..., en}

Cn
pMp∥ω∥Ωk

p(Σj).

That implies ∑
σ∈K[n]

∫
σ

∑
ej∈{e0,..., en}

|resσ,KR1 . . . Rj−1Ajω|pdx

≤
∑

σ∈K[n]

∑
ej∈{e0,..., en}

C ′∥ω∥Ωk
p(Σj) ≤ C ′(n+ 1)∥ω∥Ωk

p(K).

Similarly, we can estimate ∥dA ω∥p
Ωk−1

p, p (K)
. As a result, we have ∥A ω∥p

Ωk−1
p, p (K)

≤
C ′′∥ω∥p

Ωk
p, p(K)

. □

Summing up the results of preceding lemmas, we can conclude that Theorem 4 holds.

Theorem 6. There is an isomorphism Hk(SL ∗
p (K)) ∼= Hk(Ω∗

p, p(K)) in the category VecR.

Proof. Let ω be a form lying in Ω∗
p, p(K) such that ω ∈ ker d. Due to the existence of homotopy

between R and IdΩ∗
p, p(K), we can see that Rω ∈ SL ∗

p (K) and ω belongs to the same cohomologycal

class in Hk(Ω∗
p, p(K)) . □

6. De Rham Theorem

Let K be an n-dimension simplicial complex and SL ∗
p (K) be a chain complex of differential forms

of Lipschitz-Sullivan’s type on K. Put the following I : ω 7→ fω(σ) =
∫
σ
ω. In order to prove the

lemma below, we introduce an R-linear map W : Ck
p (K) → SL k

p (K). Due to Hassler Whitney’s works,
where such transformation was introduced (see e.g., [10]), an object imW is usually called the set of
Whitney’s forms.

Lemma 9. Let K be a simplicial complex, there exists a short strictly exact sequence of the following
type in the category of Banach spaces Ban∞:

0 // kerk(I ) // SL k
p (K)

I // Ck
p (K) // 0 .

In other words, the map I is a split epimorphism SL k
p (K) ∼= Ck

p (K)⊕ kerk(I ).

Proof. First of all, we confirm that I is, in fact, a morphism between Lp-spaces. Indeed,

∥I ω∥p
Ck

p (K)
=

∑
τ∈K[k]

∣∣∣∣ ∫
τ

ω

∣∣∣∣p ≤
∑

τ∈K[k]

(∫
τ

|ω|
)p

≤ {mes τ}p−1

( ∑
τ∈K[k]

∫
τ

|ω|p
)

≤
(√

k + 1

k!
√
2k

)p−1

∥ω∥p
SL k

p (K)
.
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Assume c ∈ Ck
p (K), let us represent c as a sum in the Banach space which converges absolutely

c =
∑

σ∈K([k]) c(σ)χσ, where

χσ(σ
′) =

{
1, if σ′ = σ;

0, otherwise,

that is,
∑

σ∈K([k]) |c(σ)|p < ∞. In other words, we can define Ck
p (K) as a closure of the R-vector space

Ck
c (K) generated by elements {χσ}σ∈K([k]), or equivalently a closure of R-vector space of compactly

supported cochains.

Define W as follows. First, let us write it down for elements of basis W (χσ) = k!
∑k

i=0(−1)i

tidt0∧· · ·∧dti−1∧dti+1∧· · ·∧dtk, where {ti} is a set of barycentric coordinates assigned to vertices of the
simplex σ. The supp(W (χσ)) contains only one simplex belonging k-skeleton of K, namely, σ. It im-
plies that any sum W (χσ)+W (χσ′) can be uniquely restricted to every k-simplex. Then we can extend
our map to the space Ck

c (K) by linearity. It is clear that W (Ck
c (K)) is a set of compactly supported

differential forms and, moreover, the support of every form W (χσ) contains at mostN simplexes due to
the star-boundedness of the complex. Let us check that W : Ck

c (K) → SL k
p (K) is a bounded map. As-

sume that c =
∑m

i=1 c(τi)χτi then ∥W (c)∥pΩ∞,∞(σ) ≤
(
n+1
k+1

)p−1 ∑m
i=1 |c(τi)|p∥W (χτi)∥

p
Ω∞,∞(σ). As men-

tioned above, there are only a finite number q of simplexes belonging to the support
⋃m

i=1 supp(W (χτi))
of W (c).

∥W (c)∥pSLp(K) =

q∑
j=1

∥W (c)∥pΩ∞,∞(σj)

≤
(
n+ 1

k + 1

)p−1 q∑
j=1

m∑
i=1

|c(τi)|p∥W (χτi)∥
p
Ω∞,∞(σj)

It is not hard to see that there is a constant C such that ∥W (χτi)∥
p
Ω∞,∞(σj)

≤ C, if τi is a k-face of

σj and ∥W (χτi)∥
p
Ω∞,∞(σj)

= 0, otherwise. As a result, we have

q∑
j=1

m∑
i=1

|c(τi)|p∥W (χτi)∥
p
Ω∞,∞(σj)

=

m∑
i=1

|c(τi)|p
q∑

j=1

∥W (χτi)∥
p
Ω∞,∞(σj)

≤NC

m∑
i=1

|c(τi)|p.

Hence the map W : Ck
c (K) → SL k

p (K) possesses the following property: ∥W (c)∥pSLp(K) ≤ NC
(
n+1
k+1

)p−1

∥c∥Ck
p (K). Now, we can extend W to the closure (Ck

c (K))∥∥
Ck
p

= Ck
p (K) by

W (c) =
∑

σ∈K([k])

c(σ)W (χσ) = lim
i→∞

W (ci),

as ci −−−→
i→∞

c, {ci} ⊂ Ck
c (K), and it follows that W : Ck

p (K) → SL k
p (K).

It remains to verify that I is a retraction. First, let σ ∈ K[k]. It is clear that supp(W (χσ))∩K[k]

= {σ} and so, ⟨I ◦W (χσ)⟩(σ′) = 0, if σ′ ̸= σ. Let W (χσ) = k!
∑k

i=0(−1)itidt0 ∧ · · · ∧ dti−1 ∧ dti+1 ∧
· · · ∧ dtk so, we have t0 = 1−

∑k
i=1 ti inside σ. As a result, we can write

1

k!

∫
σ

W (χσ) =

∫
σ

(1−
k∑

i=1

ti)dt1 ∧ · · · ∧ dtk

+

∫
σ

k∑
i=1

(−1)itid(1−
k∑

j=1

tj) ∧ · · · ∧ dti−1 ∧ dti+1 ∧ · · · ∧ dtk
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=

∫
σ

(1−
k∑

i=1

ti)dt1 ∧ · · · ∧ dtk

+

∫
σ

k∑
i=1

(−1)i+1tid(

k∑
j=1

tj) ∧ · · · ∧ dti−1 ∧ dti+1 ∧ · · · ∧ dtk

=

∫
σ

(1−
k∑

i=1

ti)dt1 ∧ · · · ∧ dtk

+

∫
σ

k∑
i=1

(−1)i+1tidti ∧ · · · ∧ dti−1 ∧ dti+1 ∧ · · · ∧ dtk

=

∫
σ

dt1 ∧ · · · ∧ dtk =

√
k + 1

k!
√
2k

,

since

dti ∧ · · · ∧ dti−1 ∧ dti+1 ∧ · · · ∧ dtk = (−1)i−1dt1 ∧ · · · ∧ dti−1 ∧ dti ∧ dti+1 ∧ · · · ∧ dtk.

Hence we have I ◦ W (χσ) =
√
k+1√
2k

χσ and so, I ◦ W (c) =
√
k+1√
2k

c holds for c ∈ Ck
p (K).

Now we can denote W̃ =
√
2k√
k+1

W that implies that the following diagram

Ck
p (K)

Id
Ck
p (K)

))

W̃ // SL k
p (K)

I��
Ck

p (K)

commutes and I is a retraction of the morphism W̃ . □

Lemma 10. In the following diagram in the category VecR

im(dk) //

0

&&
SL k+1

p (K)
dk+1
// SL k+2

p (K)

ker(I )

OOhh

the embedding of ker(I ) into SL k+1
p (K) factors through im(dk).

Proof. Assume that ω ∈ ker(I ) is k-form. Let σ be a k-dimensional simplex. Consider a complex

0 // SL 0
p (σ, ∂σ)

d // . . .
d // SL k−1

p (σ, ∂σ)
d // SL k

p (σ, ∂σ) // 0 .

It is known that

Hi(SL ∗
p (σ, ∂σ)) =

{
R for i = k,

0 for i < k.

In particular, we can say that the cohomology group Hk(Ω∗
p(σ, ∂σ)) consists of elements of the type

[cω], where ω is a cocycle such that
∫
σ
ω ̸= 0 and c ∈ R. To put it otherwise, every closed form θ can

be presented as below θ = cω + dη, c =
∫
σ
θ∫

σ
ω
.

Hence we can say that im(dk−1) is precisely a set of forms which have zero integral over σ. Since
those forms constitute a closed set, so do the elements of im(dk−1). Thereby the following map
d : SL k−1

p (σ, ∂σ) → im(dk−1) is an epimorphism in the category Ban∞ and by the Banach inverse
operator theorem, there exists a constant C such that for d : η 7→ resσ,Kω, we have the estimation
∥η∥Ω∞ ≤ C∥resσ,Kω∥Ω∞ .
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To summarize, for every σ ∈ K[k], there exists ησ ∈ SL k−1
p (σ, ∂σ) such that resσ,Kω = dησ.

Moreover, for the set of forms {ησ}σ∈K[k], holds resσ′∩σ, σησ = resσ′∩σ, σ′ησ′ = 0 for any couple of
simplexes σ, σ′ ∈ K[k]. As a result, we have a resK[k], Kω = dη, where resσ,K[k]η = ησ and

∥η∥pSL ∗
p (K[k]) =

∑
σ∈K[k]

∥ησ∥pΩ∗
∞(σ) ≤ C

∑
σ∈K[k]

∥resσ,Kω∥pΩ∗
∞(σ) ≤ C∥ω∥p

SL k
p (K)

.

Then we have a bounded map γ : SL k
p (K) → SL k−1

p (K[k],K[k − 1]). It is known that for ev-

ery simplex δ ∈ K[k + 1] and every form α ∈ SL k
p (∂δ), there is a morphism of normed spaces

s : SL k
p (∂δ) → SL k

p (δ) continuing the forms off the boundary of simplex to its interior.

In the light of previous steps, it was, in fact, established that sγ : SL k
p (K) → SL k−1

p (K[k+1]) is a
bounded map. Let us look at ω′ = resK[k+1], Kω−d(sγω). It is clear that ω′ is a closed form, as well as

ω, and ω′ ∈ SL k
p (K[k + 1], K[k]). The restriction of ω′ to every simplex σ ∈ K[k + 1] is an exact form,

since Hk(SL ∗
p (σ, ∂σ)) = 0. In other words, im(dk) = ker(dk+1) and d : SL k−1

p (σ, ∂σ) → Im(dk−1)
is an epimorphism in the category Ban∞. Using the Banach inverse operator theorem and the above
argument, we can see that there exists a bounded map γ1 : SL k

p (K) −→ SL k−1
p (K[k+1],K[k]). Then

we can take sγ1 : SL k
p (K) −→ SL k−1

p (K[k + 2]) and so on. In essence, repeating this construction
for every dimension, as a result, we obtain a finite composition of bounded operators which can be
presented as follows: ker(I ) → SL k−1

p (K). Moreover, the map ker(I ) factors through im(dk). □

Theorem 7. Assume K is a simplicial complex of bounded geometry, then the following cohomology
groups are isomorphic in the category VecR:

Hk(C∗
p (K)) ∼= Hk(SL ∗

p (K)).

Proof.

Hk(SL ∗
p (K)) ∼= Hk(C∗

p (K)⊕ ker∗ I )

∼= Hk(C∗
p (K))⊕Hk(ker∗ I ) ∼= Hk(C∗

p (K)). □
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