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THE REGULARITY OF SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS

IN ORLICZ–MORREY SPACES

TAHIR S. GADJIEV

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. The obtained estimates in the generalized Orlicz–Morrey spaces are used to study the
global regularity of the solution of the Dirichlet problem for nonlinear elliptic equations in divergence

form over a bounded non-smooth domain. Towards this end, we apply the Calderon–Zygmund
theory.

1. Introduction

In order to study the local behavior of solutions to elliptic and parabolic partial differential equa-
tions introduced in [32], we introduce the classical Morrey spaces Lp,λ. There is the inclusion between
the Morrey and Hölder spaces that permits to obtain the regularity of solutions to elliptic and parabolic
boundary problems. In [9], Chiarenza and Frasca show the boundedness of the Hardy–Littlewood max-
imal operator in Lp,λ(R

n) that allows them to prove the continuity of fractional and classical Calderon–
Zygmund operators in Morrey spaces. Calderon–Zygmund operators appear in the representation for-
mulae of the solutions of elliptic and parabolic equations. Thus the continuity of Calderon–Zygmund
integrals implies the regularity of the solutions in the corresponding spaces. In [31], Mizuhara gives a
generalization of Morrey spaces by considering a function ω(x, r) : Rn ×R+ → R+ instead of rλ. He
studied the continuity in those spaces of some integral operators. In [33], Nakai extends the result of
Chiarenza and Frasca to these type spaces by imposing certain integral and doubling conditions on
ω. Taking the weight ω = φprn, the Mizuhara-Nakai conditions become

∞∫
r

φp(x, t)
dt

t
≤ Cφp(x, r), C−1 ≤ φ(x, t)

φ(x, r)
≤ C, ∀r ≤ t ≤ 2r,

where the constants do not depend on t, r and x ∈ Rn.
In [18], Guliev studies the continuity in generalized Morrey spaces of sublinear operators generated

by various integral operators. He extends the result of Nakai to the Morrey type spaces with the
weight ω = φrn. This result is given by the following

Theorem 1.1. Let 1 ≤ p < ∞ and (φ1, φ2) satisfy the condition

∞∫
t

φ1(x, r)
dr

r
≤ Cφ2(x, t), (1.1)

where C does not depend on x and t. Then the maximal operator M and Calderon–Zygmund integral
operators K are bounded from Mp,φ1

to Mp,φ2
for p > 1 and from M1,φ1

to the weak space WMp,φ2
.

Later, this result was extended to the spaces with a weaker condition on the pair (φ1, φ2) (see [21]).
For more recent results on the boundedness and continuity of singular integral operators in generalized
Morrey and fractional spaces and their application in the theory of different order partial differential
equations see [1, 3, 4, 11,15,16,23–26,30,34,36,38,41,42,46].
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In this paper, we consider a nonlinear elliptic equation in divergence form in a bounded non-
smooth domain in Orlicz–Morrey spaces. The problem for nondivergence second order linear elliptic
equations with VMO coefficients was treated in [20], and for higher order linear elliptic equations it
was considered in [16].

We also recall papers [2, 5, 8, 10,11,13,14,19,22].

2. Preliminaries on Orlicz and Orlicz–Morrey Spaces

Definition 2.1. A function Φ : [0,+∞] → [0,∞] is called a Young function if Φ is convex, left-
continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→+∞
Φ(r) = Φ(∞) = ∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If there exists
s ∈ (0,+∞) such that Φ(s) = +∞, then Φ(r) = +∞ for r ≥ s.

We say that Φ ∈ ∆2, if for any a > 1, there exists a constant Ca > 0 such that Φ(at) ≤ CaΦ(t) for
all t > 0. A Young function Φ is said to satisfy the ∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1. The function Φ(r) = r satisfies the ∆2-condition, but does not satisfy the ∇2 -
condition. If 1 < p < ∞, then Φ(r) = rp satisfies both the conditions. The function Φ(r) = er − r− 1
satisfies the ∇2 - condition, but does not satisfy the ∆2-condition.

The following two indices

qΦ = inf
t>0

tφ(t)

Φ(t)
, pΦ = sup

t>0

tφ(t)

Φ(t)

of Φ, where φ(t) is the right-continuous derivative of Φ, are well known in the theory of Orlicz spaces.
As is known,

pΦ < ∞ ⇔ Φ ∈ ∆2,

and the function Φ is strictly convex if and only if qΦ > 1. If 0 < qΦ ≤ pΦ < ∞, then Φ(t)
tqΦ is increasing

and Φ(t)
tpΦ is decreasing on (0,∞).

Next, we define the lower index of Φ denoted by i(Φ) as follows:

i(Φ) = lim
λ→+0

log(hΦ(λ))

log λ
= sup

0<λ<1

log(hΦ(λ))

log λ
,

where

hΦ(λ) = sup
r>0

Φ(λr)

Φ(r)
, λ > 0.

For example, i(Φ) = q if Φ(r) = rq with q > 1. In addition, the ∆2 ∩∇2 - condition ensures that the
Young function increases moderately. That is, there are two constants q0 and q1 with 1 < q0 ≤ q1 < ∞
such that

1

c
min{λq0 , λq1}Φ(r) ≤ Φ(λr) ≤ cmax{λq0 , λq1}Φ(r), λ, r ≥ 0, (2.1)

where the constant c is independent of λ and r. In fact, the index number i(Φ) is equal to the
supremum of q0 satisfying (2.1). Let Φ ∈ ∆2 ∩ ∇2, 1 < i(Φ) < ∞. We note that this condition
necessity for the type of regularity considered here (see [44]).

Lemma 2.1 ([27, Lemma 1.3.2]). Let Φ ∈ ∆2. Then there exist p > 1 and b > 1 such that

Φ(t2)

tp2
≤ b

Φ(t1)

tp1
for 0 < t1 < t2.

Lemma 2.2 ([40, Proposition 62.20]). Let Φ be a Young function with a canonical representation

Φ(t) =

t∫
0

φ(s)ds, t ≥ 0.



THE REGULARITY OF SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS 179

(1) Assume that Φ ∈ ∆2. More precisely. Φ(2t) ≤ AΦ(t) for some A ≥ 2. If p > 1 + log2 A, then

t∫
1

φ(s)

sp
ds ≤ C

Φ(t)

tp
, t > 0.

(2) Assume that Φ ∈ ∇2. Then

t∫
0

φ(s)

s
ds ≤ C

Φ(t)

t
, t > 0.

Recall that a function Φ is said to be quasi-convex if there exist a convex function ω and a constant
c > 0 such that

ω(t) ≤ Φ(t) ≤ cω(ct), t ∈ [0,∞).

Let Y be the set of all Young functions Φ such that

0 < Φ(r) < +∞ for 0 < r < +∞. (2.2)

If Φ ∈ Y , then Φ is absolutely continuous on every closed interval in [0,+∞) and bijective from
[0,+∞) to itself .

Definition 2.2 (Orlicz space). For a Young function Φ, the set

LΦ(R
n) =

{
f ∈ Lloc

1 (Rn) :

∫
Rn

Φ(k|f(x)|)dx < +∞ for some k > 0

}
is called Orlicz space. The space Lloc

Φ (Rn) endowed with the natural topology is defined as the set of
all functions f such that fχB

∈ LΦ(R
n) for all balls B ⊂ Rn.

Note that LΦ(R
n) is a Banach space with respect to the norm

∥f∥LΦ = inf

{
λ > 0 :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
,

(see, for example, [39, Section 3, Theorem 10]) so,∫
Rn

Φ

(
|f(x)|
∥f∥LΦ

)
dx ≤ 1.

For a measurable set Ω ⊂ Rn, a measurable function f and t > 0, let

m(Ω, f, t) = |{x ∈ Ω : |f(x)| > t}|.
In the case Ω = Rn , we shortly denote it by m(f, t).

Definition 2.3. The weak Orlicz space

WLΦ(R
n) =

{
f ∈ L1

loc(R
n) : ∥f∥WLΦ < +∞

}
is defined by the norm

∥f∥WLΦ
= inf

{
λ > 0 : sup

t>0
Φ(t)m

(
f

λ
, t

)
≤ 1

}
.

For a Young function Φ and 0 ≤ s ≤ +∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s} (inf ∅ = +∞).

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < +∞.

For a Young function Φ, the complementary function Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞),

+∞, r = +∞.
(2.3)
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The complementary function Φ̃(r) is also a Young function and
˜̃
Φ = Φ. If Φ(r) = r , then Φ̃(r) = 0

for 0 ≤ r ≤ 1, and Φ̃(r) = +∞ for r > 1 . If 1 < p < ∞, 1
p + 1

p′ = 1 and Φ(r) = rp

p , then Φ̃(r) = rp
′

p′ .

If Φ(r) = er − r − 1, then Φ̃(r) = (1 + r) log(1 + r)− r.
It is known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r, for r ≥ 0.

Note that Φ ∈ ∇2 if and only if Φ̃ ∈ ∆2.
The following analogue of the Hölder inequality is known (see [45]).

Lemma 2.3 ([45]). For a Young function Φ and its complementary function Φ̃, the following inequality

∥fg∥L1(Rn) ≤ 2∥f∥LΦ
∥g∥LΦ̃

is valid.

Note that Young functions satisfy the property

Φ(αt) ≤ αΦ(t),

for all 0 < α < 1 and 0 ≤ t < ∞, which is a consequence of the convexity: Φ(αt) = Φ(αt+(1−α)t) ≤
αΦ(t) + (1− α)Φ(t) = αΦ(t).

Definition 2.4. (Generalized Orlicz–Morrey space). Let φ(x, r) be a positive measurable function
on Rn× (0,∞) and Φ be any Young function. We denote by MΦ,φ(R

n) the generalized Orlicz–Morrey
space, the space of all functions f ∈ Lloc

Φ (Rn) with finite quasi-norm

∥f∥MΦ,φ
= sup

x∈Rn,r>0
φ−1(x, r)Φ−1(|B(x, r)|−1)∥f∥LΦ(B(x,r)).

Also, by WMΦ,φ(R
n) we denote the weak generalized Orlicz–Morrey space of all functions

f ∈ WLloc
Φ (Rn) for which

∥f∥WMΦ,φ
= sup

x∈Rn,r>0
φ−1(x, r)Φ−1(|B(x, r)|−1)∥f∥WLΦ(B(x,r)) < ∞,

where WLΦ(B(x, r)) denotes the weak LΦ space of measurable functions f for which

∥f∥WLΦ(B(x,r)) ≡ ∥fχB(x,r)
∥WLΦ(Rn).

According to this definition,we recover the spaces Mp,φ and WMΦ,φ under the choise Φ(r) = rp

Mp,φ = MΦ,φ|Φ(r)=rp ,WMΦ,λ = WMΦ,φ|Φ(r)=rp .

We give an assumption to the domain Ω ⊂ Rn, n ≥ 2. For a measure of deviation of ∂Ω from being
an (n − 1) -dimensional affine space for each scale ρ > 0, we use the following so-called “Reifenberg
flatness”.

Definition 2.5. A bounded domain Ω is said to be (δ,R)-Reifenberg flat if for every x ∈ ∂Ω and
every ρ ∈ (0, R], there exists a coordinate system {y1, . . . , yn}, which may depend on ρ and x such
that x = 0 in this coordinate system and that

Bρ(0) ∩ {yn > δρ} ⊂ Bρ(0) ∩ Ω ⊂ Bρ(0) ∩ {yn > −δρ}, (2.4)

where Bρ(y) = {x ∈ Rn : |x − y| < ρ} denotes the open ball on Rn centered at y ∈ Rn, of radius
ρ > 0. Next, |E| denotes the n-dimensional Lebesgue measure of a set E ⊂ Rn.

The above definition warrants a few comments. Since our main problem has a scaling invariance
property, the constant R can be taken as 1, or as any other constant, greater than 1. However, the
constant δ is small positive and still invariant under such a scaling. In fact, the Reifenberg flatness
(2.4) is meaningful when 0 < δ < 1

8 (see [43]) and with such small δ, these flatness conditions imply
that the deviation of ∂Ω from being an (n− 1)-dimensional affine space is small enough for each scale
ρ > 0. By (2.4), for all y ∈ Ω and ρ ∈ (0, R), we obtain the following measure density condition:

|Ω ∩Bρ(y)| ≥
(1− δ

2

)n

|Bρ(y)| ≥
( 3

10

)n

|Bρ(y)|.
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We give the definitions of functional spaces to which the coefficients and the data of the problem
belong.

Definition 2.6. Let φ : Ω × R+ → R+ be a measurable function and 1 ≤ p < ∞. The generalized
Orlicz–Morrey space MΦ,φ(Ω) consists of all f ∈ Lloc

Φ (Ω),

∥f∥MΦ,φ(Ω) = sup
x∈Ω,r>0

φ−1(x, r)Φ−1(|B(x, r)|−1)∥f∥LΦ(Ω∩B(x,r)).

For any bounded domain Ω, we define MΦ,φ(Ω) taking f ∈ LΦ(Ω) and Ωr instead of B(x, r) in the
norm above.

The generalized Sobolev–Orlicz–Morrey space W2,Φ,φ(Ω) consists of all Sobolev functions
u ∈ W2,Φ(Ω) with distributional derivatives Dsu ∈ MΦ,φ(Ω), endowed with the norm

∥u∥W2,Φ,φ(Ω) =
∑

0≤s≤2

∥Dsu∥MΦ,φ(Ω).

The space W2,Φ,φ(Ω)∩W 0
1,φ consists of all functions u ∈ W2,Φ(Ω)∩

◦
W 1,Φ(Ω) with Dsu ∈ MΦ,φ(Ω),

and is endowed with the same norm. Recall that
◦
W 1,φ is the closure of C∞

0 (Ω) with respect to the
norm in W1,φ.

Also, we can give a definition of the generalized weak Morrey space WMΦ,φ(Ω).
Let the nonlinearity a = a(x, ξ) : Rn → Rn ×Rn be measurable in x for all ξ ∈ Rn and continuous

in ξ for almost all x ∈ Rn. We give the regularity assumption on the nonlinearity a(x, ξ). First, we
set

θ(a;Bρ(y))(x) = sup
ξ∈Rn {0}

|a(x, ξ)− āBρ(y)(ξ)|
|ξ|

,

where

āBρ(y)(ξ) =

∫
Bρ(y)

a(x, ξ)dx =
1

|Bρ(y)|

∫
Bρ(y)

a(x, ξ)dx

is the integral average of a(x, ξ) in the variable x over Bρ(y) for fixed ξ ∈ Rn. The function θ(a;Bρ(y))

provides the measurement of the oscillation of a(x,ξ)
|ξ| in the variable x over Bρ(y), uniformly in ξ.

Definition 2.7. A vector field a is said to be (δ,R)-vahishing if

sup
0<ρ≤R

sup
y∈Rn

∫
Bρ(y)

θ(a;Bρ(y))(x)dx ≤ δ.

3. Statement of the Problem

Let Ω be a bounded domain in Rn, n ≥ 2, with its non-smooth boundary ∂Ω. We suppose the
domain Ω to be (δ,R)-Reifenberg flat. Let f = f(x) : Ω → Rn be a given vector-valued function at
least in L2(Ω, Rn) and consider the following nonlinear elliptic equation{

div a(x,Du) = div f in Ω,

u = 0 on ∂Ω,
(3.1)

where the nonlinearity a(x, ξ) is as in Section 2. Here, assume the monotonicity and growth conditions
on a = a(x, ξ) as follows: {

c0|ξ − η|2 ≤ [a(x, ξ)− a(x, η)] ≤ (ξ − η)

|a(x, ξ)|+ |Dξa(x, ξ)| |ξ| ≤ c1|ξ|,
(3.2)

for all ξ, η ∈ Rn and for almost every x ∈ Rn and c0, c1 some positive constants.

We consider a weak solution
◦
W

1

2(Ω), which means that for any φ ∈
◦
W

1

2(Ω), the integral formula∫
Ω

a(x,Du)Dφdx =

∫
Ω

fDφdx
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holds. The existence and uniqueness of a weak solution to problem (3.1) can be obtained by the Minty-
Browder method for monotone operators (see [17,28], also [29]) under the assumption f ∈ L2(Ω, Rn),
with the estimate

∥|Du|2∥L1(Ω,Rn) ≤ C∥|f |2∥L1(Ω,Rn),

the constant C is independent of u and f .
We are now ready to state the main result.

Theorem 3.1. Let u ∈
◦
W

1

2(Ω) be a weak solution of (3.1) and |f |2 ∈ MΦ,φ(Ω) with Φ ∈ ∆2 ∩ ∇2

and φ : Ω×R+ → R+ be a measurable function such that for all x ∈ Rn and r > 0 satisfying
∞∫
r

(
sup

t<s<∞

φ(x, s)

Φ−1(s−n)

)
Φ−1(t−n)

dt

t
≤ Cφ(x, r). (3.3)

Let there exist a small positive constant δ = δ(c0, c1, n,Φ, φ) such that if a(x, ξ) is (δ,R)-vanishing
and Ω is (δ,R)-Reifenberg flat, then |Du|2 ∈ MΦ,φ(Ω) with the estimate

∥|Du|2∥MΦ,φ(Ω) ≤ C∥|f |2∥MΦ,φ(Ω), (3.4)

where the constant C depends on c0, c1, n, R, Φ, φ and Ω.

The following lemma ensures that for each f(x) with |f |2 ∈ MΦ,φ(Ω), problem (3.1) has a unique
weak solution.

Lemma 3.2. Let Φ ∈ ∆2 ∩ ∇2 and φ : Ω× R+ → R+ be a measurable function. If |f |2 ∈ MΦ,φ(Ω),
then |f |2 ∈ L1(Ω), and∫

Ω

|f(x)|2dx ≤ C

[(∫
Ω

Φ(|f |2)dx
) 1

q0

+

(∫
Ω

Φ(|f |2)dx
) 1

q1
]
,

where q0 and q1 are defined in (2.1).

Proof. Set F (x) = |f(x)|2. With a direct calculation,∫
{Ω:|F |≥1}

|F (x)|dx ≤
( ∫
{Ω:|F |≥1}

|F (x)|i(Φ)−ε0dx

) 1
i(Φ)−ε0

· |Ω|.

By the property of Young’s function Φ that

|F (x)|i(Φ)−ε0 ≤ C

Φ(1)
Φ(|F (x)|) if |F (x)| ≥ 1,

we have ∫
{Ω:|F |≥1}

|F (x)|dx ≤ C

(∫
Ω

Φ(|F (x)|)dx
) 1

i(Φ)−ε0

.

On the other hand, it follows from i(Φ) ≤ q1 that in view of (2.1),

|F (x)|q1 ≤ C

Φ(1)
Φ(|F (x)|) if |F (x)| ≥ 1,

and so, ∫
{Ω:|F |≤1}

|F (x)|dx ≤ C

(∫
Ω

Φ(|F (x)|)dx
) 1

q1

.

Since ε0 is small enough, we get∫
Ω

|F (x)|dx ≤ C

[(∫
Ω

Φ(|F (x)|)dx
) 1

q0

+

(∫
Ω

Φ(|F (x)|)dx
) 1

q1
]
.

Thus the lemma is complete. □
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4. Auxiliary Results

We present the following invariance property under normalization and scaling, some result needed
from the measure theory in the Orlicz–Morrey space and one version of the Calderon–Zygmund type
covering lemma. These results will be used to prove the main theorem.

Lemma 4.1. Let u ∈
◦
W

1

2(Ω) be a weak solution to problem (3.1), the nonlinearity a(x, ξ) satisfy
(3.2), and also, let (δ,R) be vanishing. For each λ > 1 and 0 < r < 1, define the rescaled maps

ã(x, ξ) =
a(rx, λξ)

λ
,

Ω̃ =
{1

r
x : x ∈ Ω

}
, ũ(x) =

u(rx)

λr
,

f̃(x) =
f(rx)

λ0
.

Then:

(1) ũ ∈
◦
W

1

2(Ω̃) is the weak solution of

div ã(x,Dũ) = div f̃ in Ω̃;

(2) ã(x.ξ) satisfies the conditions (3.2) with the same constants c0 and c1;

(3) ã is
(
δ, R

r

)
-vanishing and Ω̃ is

(
δ, R

r

)
- Reifenberg flat.

Proof. The proof follows by direct computations (see also, for example, [7]).
Now, we give the Hardy–Littlewood maximal function and its basic properties. Let g be a locally

integrable function on Rn. Then the Hardy–Littlewood maximal function is given by

(My)(x) = sup
ρ>0

∫
Bρ(x)

|g(y)|dy = sup
ρ>0

1

|Bρ(x)|

∫
Bρ(x)

|g(y)|dy.

If g is defined only on a bounded subset of Rn, then we define it as Mg = Mḡ, where ḡ is the zero
extension of g in Rn. This maximal function holds for the so-called weak (1.1) inequality. More
specifically, there exists a positive constant c = c(n) such that for any λ > 0,

|{x ∈ Rn : (Mg)(x) > λ}| ≤ C

λ

∫
Rn

|g(x)|dx. (4.1)

The proof is complete. □

We next state that the Hardy–Littlewood maximal operators are bounded from the Orlicz–Morrey
space MΦ,φ(R

n) to themselves.

Lemma 4.2 (see [20]). Assume that there is a positive constant C such that for any fixed x ∈ Rn,
r > 0, Φ ∈ ∆2 ∩∇2, the inequality

sup
s<σ<∞

φ(Bσ(x))σ
n
p

s
n
p

< Cφ(Br(x)) (4.2)

holds. Then there is a constant Cp > 0 such that

∥f∥MΦ,φ(Rn) ≤ ∥Mf∥MΦ,φ(Rn) ≤ Cp∥f∥MΦ,φ(Rn),

∀f ∈ MΦ,φ(R
n) with compact support in Rn.

We use the following version of the Vitali covering Lemma.

Lemma 4.3 (see [12]). Assume that Ω is a (δ, 1)-Reifenberg flat domain for some small δ > 0 and a
Young function Φ ∈ ∆2 ∩ ∇2. Let E and D be measurable sets with E ⊂ D ⊂ Ω. Suppose that there
exists small ε > 0 such that:

(1) for any y ∈ Ω, |E ∩B1(y)| < ε|B1(y)|;
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(2) for each y ∈ Ω and r ∈ (0, 1), if |E ∩Br(y)| ≥ ε|Br(y)|, then Br(y) ∩ Ω ⊂ D.

Then

|E| ≤ C · ε|D|,

where the constant C depends only on n,Φ, and the constant
1

1− δ
.

Proof. The proof of this lemma can also be found in [6, Lemma 5.4], or [37, Lemma 3.4] with a slight
modification. □

We also use the following standard arguments of the measure theory.

Lemma 4.4 (see [20]). Let a Young function Φ ∈ ∆2 ∩ ∇2, f be a nonnegative and measurable
function defined on a bounded domain Ω ⊂ Rn and φ be a weight satisfying (4.2) and, in addition, a
kind of monotonicity condition

φ(Br(y))r
n ≤ φ(Bs(z))s

n for all Br(y) ⊂ Bs(z, ), (4.3)

and let θ > 0, λ > 1 be the constants. Then f ∈ MΦ,φ(Ω) if and only if

= sup
y∈Ω,r>0

∑
k≥1

Φ(λk)|{x ∈ Ω : f(x) > θλk}|
φ(Br(y))rn

< ∞

and
1

C
S ≤ ∥f∥MΦ,φ(Ω) ≤ C(1 + δ),

where C > 0 is a constant, depending only on θ, λ, φ,Φ.

Lemma 4.5. Assume that u ∈
◦
W

1

2(Ω) is the weak solution of (3.1). Then there exists a constant
N = N(c0, c1, n) > 1 such that for each ε ∈ (0, 1) fixed, one can select small δ = δ(ε, c0, c1, n,Φ, φ) ∈(
0, 1

8

)
such that if a(x, ξ) is (δ, 1)-vanishing, Ω is (δ, 1)-Reifenberg flat, and if for 0 < r < 1 and y ∈ Ω,

Br(y) satisfies

|{x ∈ Ω : M(|Du|2) > N2} ∩Br(y)| ≥ C|Br(y)|.
Then we have

Br(y) ∩ Ω ⊂ {x ∈ Ω : M(|Du|2) > 1} ∪ {x ∈ Ω : M(|f |2) > δ2}.

Proof. The proof of this lemma is based on the same method as in the proof in [29, Theorem 4.10]. □

5. Proof the Main Theorem

Now, we are ready to prove the main theorem.

Proof of Theorem 3.1. By Lemma 4.1, it suffices to prove that

∥|Du|2∥MΦ,φ(Ω) ≤ C, (5.1)

under the assumption ∥|f |2∥MΦ,φ(Ω) ≤ δ2.
We take

u1 =
δu√

∥|f |2∥MΦ,φ(Ω) + σ
, f1 =

δf√
∥|f |2∥MΦ,φ(Ω) + σ

;

in place of u and f , respectively, in problem (3.1), the estimate

1

c
min{∥g∥q0MΦ,φ(Ω), ∥g∥

q1
MΦ,φ(Ω)}

≤
∫
Ω

Φ(|g(x)|)dx ≤ cmax{∥g∥q0MΦ,φ(Ω), ∥g∥
q1
MΦ,φ(Ω)} (5.2)

holds.
Estimate (5.2) follows by the convexity of Φ and owing to estimate (2.1).
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It follows from Lemma 3.2 and estimate (5.2) that

∥|f1|2∥MΦ,φ(Ω) ≤ δ2,

∫
Ω

|f1|2dx ≤ Cδ2τ2 , (5.3)

where τ2 = q0
q1
. Therefore if (5.1) is obtained with Du1 instead of Du, then the proof is completed

after letting σ → 0. However, in view of (5.2) and Lemma 4.2,

∥|Du|2∥αMΦ,φ(Ω)

≤ C

∫
Ω

Φ(|Du|2)dx ≤ C

∫
Ω

Φ(M(|Du|2))dx,

for some α > 0. Consequently, it suffices to show that by Lemma 4.4,

S = sup
y∈Ω,r>0

∑
k≥1

Φ(N2k)|{x ∈ Ω : M(|Du|2) > N2k}|
φ(Br(y))rn

< ∞.

Now, we derive the decay estimates of the measure of the upper-level set {x ∈ Ω : M(|Du|2) > N2k}
for k = 1, 2, . . . . To apply Lemma 4.3, we first fix ε and take δ and N as given in Lemma 4.5. Then
we define the sets

E = {x ∈ Ω : M(|Du|2) > N2},
D = {x ∈ Ω : M(|Du|2) > 1} ∪ {x ∈ Ω : M(|f |2) > δ2}.

Check its hypotheses. It is clear that E ⊂ D ⊂ Ω, and for each y ∈ Ω,

|E ∩B1(y)|
|B1(y)|

≤ C

(
|E ∩B1(y)|
|B1(y)|

)τ1
def
= A1

for some constants C > 1 and τ1 ∈ (0, 1) in case E ⊂ B1. Here, the constants C and τ1 depend only
on n, p, but not on E and B1. Then

A1 ≤ C|E|τ1 ≤ (by estimate (4.1))

≤ C

(∫
Ω

|Du|2dx
)τ1

≤ C

(∫
Ω

|f |2dx
)τ1

≤ (by estimate(5.3)) ≤ Cδ2τ1τ2 < ε,

for δ small enough. Because the second condition of Lemma 4.3 is already checked in Lemma 4.5, we
have

|{x ∈ Ω : M(|Du|2) > N2k}|

≤ Cε|{x ∈ Ω : M(|Du|2) > 1}|+ Cε|{x ∈ Ω : M(|f |2) > δ2N2(k−i)}|. (5.4)

On the other hand, the main problem (3.1) has the invariance property from the normalization Lemma

4.1 and therefore the same result (5.4) can be obtained for
(

u
N , f

N

)
,
(

u
N2 ,

f
N2

)
, . . . , inductively.

After this iteration, for k = 1, 2, . . . , we obtain the following power decay estimates:

|{x ∈ Ω : M(|Du|2) > N2k}|

≤ εk1 |{x ∈ Ω : M(|Du|2) > 1}|+
k∑

i=1

εi1|{x ∈ Ω : M(|f |2) > δ2N2(k−i)}|,
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where ε1 = Cε. Then a direct computation yields

S = sup
y∈Ω,r>0

∑
k≥1

Φ(N2k)|{x ∈ Ω : M(|Du|2) > N2k}|
φ(Br(y))rn

≤ sup
y∈Ω,r>0

∑
k≥1

Φ(N2k)εk1 |{x ∈ Ω : M(|Du|2) > 1}|
φ(Br(y))rn

+ sup
y∈Ω,r>0

∑
k≥1

Φ(N2k)
k∑

i=1

εi1|{x ∈ Ω : M(|f |2) > δ2N2(k−i)}|

φ(Br(y))rn

= S1 + S2.

Recall the property of Φ ∈ ∆2. There exists a constant ν1, depending only on Φ, φ and N such that
Φ(N2) ≤ ν1Φ(1), and therefore

Φ(N2k) ≤ νk1Φ(1),

for k = 1, 2, . . . . We estimate S1 and S2 as follows:

S1 ≤ sup
y∈Ω,r>0

∑
k≥1

(Φ(1)νk1 ε
k
1 |Ω|)

φ(Br(y))rn
≤ C

∑
k≥1

(ν1ε1)
k.

S2 = sup
y∈Ω,r>0

∑
k≥1

Φ(N2(k−i)N2i)
k∑

i=1

εi1|{x ∈ Ω : M(|f |2) > δ2N2(k−i)}|

φ(Br(y))rn

≤ sup
y∈Ω,r>0

∑
i≥1

∑
k≥i

Φ(N2(k−i))νi1ε
i
1|{x ∈ Ω : M(|f |2) > δ2N2(k−i)}|

φ(Br(y))rn

≤ C
∑
i≥1

(ν1ε1)
i
∑
k≥i

Φ(N2(k−i))|{x ∈ Ω : M(|f |2) > δ2N2(k−i)}|
φ(Br(y))rn

≤ C
∑
i≥1

(ν1ε1)
i
∑
j≥0

Φ(N2j)|{x ∈ Ω : M(
∣∣∣ fδ ∣∣∣2) > N2j}|

φ(Br(y))rn

≤ by Lemma4.4 ≤ C
∑
i≥1

(ν1ε1)
i

∫
Ω

Φ
(∣∣∣f

δ

∣∣∣2)dx
≤ by Lemma4.2 and inequality (5.2) ≤ C

∑
i≥1

(ν1ε1)
i

∥∥∥∥ |f |2δ2

∥∥∥∥q0
MΦ,φ(Ω)

≤ by inequality (5.1) ≤ C
∑
i≥1

(ν1ε1)
i.

Therefore

S ≤ C
∑
k≥1

(ν1ε1)
k

where ε1 = Cε as in Lemma 4.3. First, taking sufficiently small ε > 0, we get

ν1ε1 < 1.

Then one can select correspondingly small δ = δ(c0, c1, n,Φ, φ) > 0 from Lemma 4.5. This completes
the proof. □
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