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AN Lp INEQUALITY AND GENERALISED TRIGONOMETRIC FUNCTIONS
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Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. The paper explores the consequences of a new Lp inequality for generalised trigonometric
functions.

1. Introduction

Let (S,Σ, µ) be a measure space; given any real-valued, µ−measurable function f on S and any
p ∈ R\ {0} , we write

∥f∥p =

(∫
S

|f |p dµ
)1/p

.

In a striking paper [2], it is shown that for all µ−measurable functions f, g on S,∫
S

|f + g|p dµ ≤
(
1 +

22/p ∥fg∥p/2(
∥f∥pp + ∥g∥pp

)2/p)p−1 ∫
S

(|f |p + |g|p) dµ, (1.1)

when p ∈ (0, 1]∪[2,∞). The inequality is reversed if p ∈ (−∞, 0)∪(1, 2), assuming that when p ∈ (1, 2),
the functions f and g are positive µ− almost everywhere. As remarked in [2], (1.1) (and its analogue
for other values of p) may be regarded as a refinement of Minkowski’s inequality; the connection with
Hanner’s inequality (see [1, 5] and [6]) is also discussed.

The method of proof adopted in [2] is to show that (1.1) is equivalent to the inequality

1 ≤
(
1 +

(
2αp/2 (1− α)

p/2

αp + (1− α)
p

)2/p)p−1

(αp + (1− α)p) for all α ∈ [0, 1] (1.2)

when p ∈ (0, 1]∪ [2,∞), with the reverse inequality when p ∈ (−∞, 0)∪ (1, 2). This inequality is then
established by an ingenious and intricate real-variable argument.

In the present paper we make an elementary observation that an equivalent form of (1.2) when
p ∈ [2,∞) (and its reverse when p ∈ (1, 2)) is a deceptively simple real-variable inequality, the
sharpness of which is illustrated by various pictures. This inequality can be viewed in terms of
generalised trigonometric functions, the growing importance of which is now well documented. After
a brief summary of some of the basic facts and background information concerning such functions we
again illustrate the sharpness of the corresponding inequality by means of various pictures.

It is a pleasure to express indebtedness to Peter Bushell for drawing attention to [2].

2. The Basic Inequality

Suppose that p ∈ (0,∞) and let (X,Y ) lie in the positive quadrant of the p−circle, so that

Xp + Y p = 1, X ≥ 0, Y ≥ 0.

Then X = x1/p, Y = (1− x)1/p for some x ∈ [0, 1], and

α :=
x1/p

x1/p + (1− x)1/p
∈ [0, 1];
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note that

1− α =
(1− x)1/p

x1/p + (1− x)1/p
.

Conversely, any α ∈ [0, 1] can be written in this form for some x ∈ [0, 1]. It follows from [2] that when
p ∈ (0, 1) ∪ [2,∞), (1.2) holds if and only if

x1/p + (1− x)1/p ≤
(
1 + 22/px1/p(1− x)1/p

)1/p′

for all x ∈ [0, 1/2]. (2.1)

The reverse inequality holds if and only if p ∈ (1, 2). Obviously, the inequality is an equation for p = 1
and p = 2.

We therefore have

Theorem 2.1. Inequality (2.1) holds for all p ∈ (0, 1)∪[2,∞); the reverse inequality holds if p ∈ (1, 2).

Let us denote

L(x) := x1/p + (1− x)1/p and

R(x) :=
(
1 + 22/px1/p(1− x)1/p

)1/p′

, for all x ∈ [0, 1].

Figures 1, 2, 3 below may help to understand why a direct proof of Theorem 2.1 seems challenging.

The first couple of pictures corresponds to the graphs of L(x) and R(x) for p = 4 and p = 1.5
(the graphs L(x) and R(x) are indistinguishable in these cases)

(a) p=4 (b) p=1.5

Figure 1

From the graphs in Figures 1, 2, 3 it is possible to see that on 0 ≤ x ≤ 1/2, the functions L(x) and
R(x) are really close to each other, especially in the case when 1 < p < ∞. It is worth noting, that
from the graphs, we can see that for p = 4, we have

L(x) ≤ R(x) ≤ 1.06L(x), for all x ∈ [0, 1/2]

and for p = 1.5, we have

L(x) ≥ R(x) ≥ 0.997L(x), for all x ∈ [0, 1/2].

Then we can observe from the numerical computations a surprising closeness of the right and left sides
of (2.1) which is quite interesting.
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The next couple of graphs shows L(x) (in red) and R(x) (in green) for p = 0.5 and p = 0.2

(a) p=0.5 (b) p=0.2

Figure 2

The next two graphs shows the difference between L(x) and R(x) by graphing
y = 100(R(x)− L(x)) for p = 4 and p = 1.5.

(a) p=4 (b) p=1.5

Figure 3

3. Generalised Trigonometric Functions

Inequality (1.2) gives rise to inequalities involving generalised trigonometric functions that appear
to be new, despite the very large literature concerning such functions. To remind the reader of some
relevant basic facts, let p, q ∈ (1,∞) and put

πp,q = 2

1∫
0

(1− tq)
−1/p

dt = 2q−1B (1/p′, 1/q) ,
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where B is the Beta function. By sinp,q we mean the function defined on [0, πp,q/2] to be the inverse
of the strictly increasing function Fp,q : [0, 1] → [0, πp,q/2] given by

Fp,q(x) =

x∫
0

(1− tq)
−1/p

dt.

This is then extended by the evenness to [0, πp,q] and by the oddness to [0, 2πp,q] via the translations

sinp,q x = sinp,q (πp,q − x) , x ∈ [πp,q/2, πp,q]

and
sinp,q x = − sinp,q (2πp,q − x) , x ∈ [πp,q, 2πp,q] ,

respectively. Further extension to the whole real line is then achieved by the 2πp,q− periodicity.
The function cosp,q is defined to be to be the derivative of sinp,q on R, and it follows easily that

for all x ∈ R,
|sinp,q x|q + |cosp,q x|p = 1,

and that both sinp,q and cosp,q are non-negative on [0, πp,q/2] . We write sinp, cosp and πp instead
of sinp,p, cosp,p and πp,p, respectively. Further details of these functions are given in [3]. Following
Lindqvist [7], the functions Sp and Cp are defined by

Sp = sinp′,p and Cp = cos
p′/p
p′,p

where 1/p+ 1/p′ = 1; note that for all x ∈ [0, πp′,p/2] , these functions are non-negative and

Sp
p(x) + Cp

p (x) = 1.

In Figure 4 we can see the graphs of sinp (in red) and cosp (in blue) for p = 4 and p = 1.5 on the
interval [0, πp].

(a) p=4 (b) p=1.5

Figure 4

The generalised trigonometric functions occur naturally in many settings. For example, the eigen-
value problem for the one-dimensional p−Laplacian ∆p (1 < p < ∞), namely,

−∆pu := −
(
|u′|p−2

u′)′ = λ |u|p−2
u on (0, 1) ,

u(0) = u(1) = 0,

has the eigenvalues
λn = (p− 1) (nπp)

p
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and associated eigenvectors sinp (nπpt) (n ∈ N) . The details of their involvement in more complicated
questions of this type, such as (p, q)−bi-Laplacian problems, are given in [4].

They also arise in connection with the notion of p−compactness, which we briefly recall for the
convenience of the reader. Let p ∈ (1,∞) and suppose that X,Y are Banach spaces. A subset K of
X is said to be relatively p−compact if there is a sequence {xn} in X, with {∥xn∥X} ∈ lp, such that

K ⊂
{ ∞∑

n=1

αnxn :

∞∑
n=1

|αn|p
′
≤ 1

}
.

When p = 1, this definition takes the form

K ⊂
{ ∞∑

n=1

αnxn : sup
n

|αn| ≤ 1

}
,

where {∥xn∥X} ∈ l1. These definitions stem from a classical result of Grothendieck which states that
K is relatively compact if and only if there is a sequence {xn} in X, with {∥xn∥X} ∈ c0, such that

K ⊂
{ ∞∑

n=1

αnxn :

∞∑
n=1

|αn| ≤ 1

}
.

This enables us to say that relatively compact sets are relatively ∞−compact. It may be checked
that if 1 ≤ p ≤ q ≤ ∞, then a relatively p−compact set is relatively q−compact. Given p ∈ [1,∞] , a
map T ∈ B(X,Y ) is said to be p−compact if T (B) is relatively p−compact whenever B is a bounded
subset of X.

The generalised trigonometric functions arise naturally when looking for examples of p−compact
maps. For instance, let p, q ∈ (1,∞) and consider the Hardy operator T : Lp(I) → Lq(I) given by

(Tf) (s) =

s∫
0

f(t)dt, I = (0, 1).

Using the fact that the generalised trigonometric functions cosp,p′ (nπp,p′t) form a basis of Lp(I) if
p ∈ [p1, p2] , where p1 ∈ (1, 2) and p2 ∈ (2,∞) are calculable numbers, it turns out (see [4]) that if
p ∈ [p1, p2] , there exists r ∈ (1,∞) such that T is s−compact for all s ≥ r.

Further illustrations, such as their usefulness in connection with Sobolev embeddings, may be found
in [4].

As a simple consequence of the result of [2] we now give inequalities involving the generalised
trigonometric functions.

Theorem 3.1. Let p ∈ [2,∞). Then

sinp x+ cosp x ≤
(
1 + 22/p sinp x cosp x

)1/p′

for all x ∈ [0, πp/2], (3.1)

and

Sp(x) + Cp(x) ≤
(
1 + 22/pSp(x)Cp(x)

)1/p′

for all x ∈ [0, πp′,p/2]. (3.2)

These inequalities are reversed if p ∈ (1, 2].

Proof. Suppose that p ∈ [2,∞). The choice

α =
sinp x

sinp x+ cosp x
, x ∈ [0, πp/2]

in (1.2) gives (3.1). As for (3.2), we simply take

α =
Sp(x)

Sp(x) + Cp(x)
, x ∈ [0, πp′,p/2]

in (1.2). The inequalities are reversed if p ∈ (1, 2). □
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Note that by the use of the identity

sin2,p(2
2/px) = 22/p sinp′,p(x) cos

p′−1
p′,p (x)

due to Takeuchi [8, Theorem 1.1], (3.2) can be written as

sinp′,p(x) + cos
p′/p
p′,p (x) ≤

(
1 + sin2,p(2

2/px)
)1/p′

for all x ∈ [0, πp′,p/2].

To illustrate the sharpness of these inequalities, we give below some pictures. In the pictures in
Figure 5, we see the graph

y = sinp x+ cosp x−
(
1 + 22/p sinp x cosp x

)1/p′

on interval x ∈ [0, πp/2] when p = 4 and p = 1.5. From these graphs we can see the surprising
sharpness of inequality (3.1) and similar sharpness we can expect for inequality (3.2).

(a) p=4 (b) p=1.5

Figure 5
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