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Abstract. In this paper, the coupled linear theory of viscoelasticity for materials with a triple poros-
ity is developed and the basic boundary value problems (BVPs) of steady vibrations are investigated.

The governing systems of equations of motion and steady vibrations are presented, the fundamental

solution of the system of steady vibration equations is constructed and the basic properties of the
potentials (surface and volume) are given. Green’s identities for bounded and unbounded domains

are established and the existence and uniqueness theorems for classical solutions of the foregoing

BVPs are proved by using the potential method and the theory of singular integral equations.

1. Introduction

Determining the mechanical properties of materials, subject to the influence of viscosity, is one of
the most important issues of engineering, technology and continuum mechanics (see, e.g., Amendola et
al. [1], Lakes [20], Brinson and Brinson [3]). Viscosity effects are observed in natural and manufactured
materials such as: polymers, metals, alloys, rock, wood, soil, piezoelectric and biological materials.

The foundations of the theory of viscoelasticity are presented in the papers by Coleman and Noll [8],
Gurtin and Sternberg [12]. Moreover, the basic classical models of viscoelastic materials are analyzed
and several mathematical problems are studied in the books by Flügge [11], Christensen [7], Pipkin [23],
Fabrizio and Morro [10].

In [2], M.A. Biot established the basic equations of the deformation of a viscoelastic porous solid
under the most general assumptions of anisotropy. Since this work, many research papers have been
published involving the theory of viscoelasticity of porous materials. Namely, in the last two decades,
Biot’s theory has been generalized by Schanz and Cheng [24] to the poroviscoelasticity by applying
the elastic-viscoelastic correspondence principle in the Laplace domain. A visco-poroelastic theory for
polymeric gels is developed by Wang and Hong [34]. In [27,28], the quasi-static and steady vibration
problems of the linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity are in-
vestigated by the potential method (boundary integral equation method). The theories of viscoelastic
and thermoviscoelastic porous mixtures are presented by Ieşan [13], Ieşan and Quintanilla [17]. The
steady vibration problems in these theories of porous mixtures are studied by Svanadze [29,30].

Moreover, by virtue of the volume fraction concept, the theory of thermoviscoelasticity for Kelvin–
Voigt materials with voids is developed by Ieşan [14]. Then, this theory was extended and the basic
problems for materials with single and double voids were investigated in a series of papers (see,
e.g., [4–6,9, 15,16,18,25,26,33] and references therein).

Recently, in [31], a mathematical model of viscoelastic single-porosity materials is presented in which
the coupled phenomenon of the concepts of Darcy’s law and the volume fraction of pore network
is considered, and steady vibration problems of this model are also investigated. More recently,
in [32], based on this coupled phenomenon of the two above concepts, a mathematical model of
viscoelastic double-porosity materials was developed and the basic BVPs of steady vibrations of the
model were studied. Note that the basic BVPs of quasi-static linear coupled theory of elasticity and
thermoelasticity for single-porosity materials are considered by Mikelashvili [21, 22].
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In this paper, the coupled linear theory of viscoelasticity for Kelvin–Voigt materials with triple
porosity is considered and the basic BVPs of steady vibrations are investigated. This work is articu-
lated as follows. In Section 2, the governing equations of motion and steady vibrations in the theory
under consideration are presented. The system of governing equations is expressed in terms of the
displacement vector field, the changes of volume fractions for three (macro, meso and micro) levels
of porosity, and the changes of the fluid pressures in these three pore networks. In Section 3, the
fundamental solution of the system of steady vibration equations is constructed explicitly by means of
elementary functions and its basic properties are established. In Section 4, the basic BVPs of steady
vibrations are formulated and Green’s identities are established. Then, in Section 5, the uniqueness
theorems for the regular (classical) solutions of the above-mentioned BVPs are proved. In Section
6, the surface (single-layer and double-layer) and volume potentials are constructed and their basic
properties are given. In addition, the basic properties of some singular integral operators are estab-
lished. Finally, in Section 7, using the potential method and the theory of singular integral equations,
the existence theorems for classical solutions of the BVPs of steady vibrations are proved.

2. Governing Equations

We consider a material with three levels of porosity in which the skeleton is a homogeneous and
isotropic viscoelastic Kelvin–Voigt solid with pores on a macro-scale, on a much smaller meso-scale
and on a micro-scale. Let x = (x1, x2, x3) be a point in the Euclidean three-dimensional space R3 and
t be the time variable, t ≥ 0, and let the dot denote differentiation with respect to t. Repeated Latin
indices are summed over the ranges (1,2,3). In the sequel, the point- and time-dependent functions
will be denoted by hats.

We denote the three-component displacement vector field for the skeleton of a porous material by
û, û = (û1, û2, û3). Let φ̂1, φ̂2 and φ̂3 be the changes of the volume fractions from the reference con-
figuration for the macro-, meso- and micro-pore (the first, second and third levels of pores) networks,
respectively. In addition, p̂ 1, p̂ 2 and p̂ 3 are the changes of the fluid pressures in the macro-, meso-
and micro-pores, respectively.

Suppose that the volume fractions of the three levels of pores and the fluid pressures in these pores
change along with the deformation of the body skeleton. Then, following [32], the governing equations
in the coupled linear dynamical theory of viscoelastic Kelvin–Voigt materials with a triple porosity
can be written as:

1. Equations of motion:

t̂lj,j = ρ(¨̂ul − F̂ ′
l ), σ̂

(l)
j,j + ξ̂(l) = ρl ¨̂φl − ρŝl (no sum by l), l = 1, 2, 3, (1)

where t̂lj is the component of total stress tensor, F̂′ = (F̂ ′
1, F̂

′
2, F̂

′
3) is the body force per unit mass;

σ̂
(l)
j , ξ̂(l), ŝl and ρl are the components of the equilibrated stress, the intrinsic equilibrated body force,

the extrinsic equilibrated body force and the coefficients of the equilibrated inertia, associated to the
l-th pore networks, respectively; ρ is the reference mass density, ρ > 0, ρl > 0,

ξ̂(l) = −γ̃l êrr − ζ̃ ljφ̂j +mlj p̂j , (2)

êlj is the component of strain tensor,

êlj =
1

2
(ûl,j + ûj,l), l, j = 1, 2, 3. (3)

2. Constitutive equations:

t̂lj = 2µ̃êlj + λ̃ êrrδlj + (b̃rφ̂r − βrp̂r)δlj , σ̂
(l)
l = α̃lrφ̂r,j , l, j = 1, 2, 3, (4)

where δlj is Kronecker’s delta.
3. Equations of fluid mass conservation:

v̂
(l)
j,j + alj ˙̂pj + βl

˙̂err +mlj
˙̂φj + q̂l = 0, (5)
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where

q̂l =

3∑
j=1;j ̸=l

γl+j−2(p̂l − p̂j) = dlj p̂j , d11 = γ1 + γ2, d22 = γ1 + γ3, d33 = γ2 + γ3,

d12 = d21 = −γ1, d13 = d31 = −γ2, d23 = d32 = −γ3, l = 1, 2, 3.

(6)

4. Darcy’s extended law

v̂
(l)
j = −κlr

µ′′ p̂r,j − ρl+3ŝ
(l)
j (no sum by l), l, j = 1, 2, 3. (7)

In these equations, v̂(l) = (v̂
(l)
1 , v̂

(l)
2 , v̂

(l)
3 ) is the fluid flux vector associated to the l-th pore network;

γl is the internal transport coefficient, γl ≥ 0, µ′′ is the fluid viscosity, ρl+3 and ŝ(l) = (ŝ
(l)
1 , ŝ

(l)
2 , ŝ

(l)
3 )

are the density of fluid and the external force (such as gravity) for the l-th pore network, respectively;
ρl+3 > 0,

λ̃ = λ+ λ∗ ∂

∂t
, µ̃ = µ+ µ∗ ∂

∂t
, b̃l = bl + b∗l

∂

∂t
, γ̃l = bl + γ∗

l

∂

∂t
,

α̃lj = αlj + α∗
lj

∂

∂t
, ζ̃lj = ζlj + ζ∗lj

∂

∂t
, l, j = 1, 2, 3,

where the values λ, µ, bl, βl, alj , αlj , ζlj , mlj , κlj are the constitutive coefficients associated to the
elasticity and porosity of materials, but the values λ∗, µ∗, b∗l , γ

∗
l , α

∗
lj , ζ

∗
lj (l = 1, 2, j = 1, 2, 3) are the

viscosity constitutive coefficients and alj = ajl, mlj = mjl, κlj = κjl, α
∗
lj = α∗

jl, ζ
∗
lj = ζ∗jl.

On the basis of relations (2)–(4), (6) and (7), from equations (1) and (5), we obtain the following
system of dynamical equations in the coupled linear theory of viscoelasticity for Kelvin–Voigth mate-
rials with a triple porosity expressed in terms of the displacement vector û, the changes of the volume
fractions φ̂1, φ̂2, φ̂3 and the changes of fluid pressures p̂1, p̂2, p̂2:

µ̃∆ûl + (λ̃+ µ̃)ûj,lj + b̃jφ̂j,l − βj p̂j,l = ρ(¨̂ul − F̂ ′
l ),

α̃lj∆φ̂j − ζ̃ljφ̂j − γ̃lûj,j +mlj p̂j = ρl ¨̂φl − ρŝl, (8)

klj∆p̂j − alj ˙̂pj − βl
˙̂uj,j −mlj

˙̂φj − dlj p̂j = −ρl+3ŝ
(l)
j,j (no sum by l),

where ∆ is the Laplacian operator and klj =
κlj

µ′′ .

In the steady vibrations case, the functions ûl, F̂
′
l , φ̂l, p̂l, ŝl and ŝ

(l)
j (l, j = 1, 2, 3) have a harmonic

time variation, that is,{
ûl, F̂

′
l , φ̂l, p̂l, ŝl, ŝ

(l)
j

}
(x, t) = Re

[{
ul, F

′
l , φl, pl, sl, s

(l)
j

}
(x) e−iωt

]
.

Consequently, equations (8) reduce to the following system of equations of steady vibrations in the
coupled linear theory of Kelvin–Voight viscoelastic materials with a triple porosity

(µ′∆+ ρω2)u+ (λ′ + µ′)∇divu+ b′∇φ− β∇p = F(1),

(α′∆+ c′)φ− γ′divu+mp = F(2), (9)

(k∆+ a′)p+ β′divu+m′φ = F(3),

where ∇ is the gradient operator, ω is the oscillation frequency, ω > 0, F(1) = (−ρF ′
1,−ρF ′

2,−ρF ′
3),

F(2) = (−ρs1,−ρs2,−ρs3), F
(3) = (−ρ4s

(1)
j,j ,−ρ5s

(2)
j,j ,−ρ6s

(3)
j,j ),

λ′ = λ− ωλ∗, µ′ = µ− iωµ∗, b′ = (b′1, b
′
2, b

′
3), b′l = bl − iωb∗l ,

β = (β1, β2, β3), β′ = iωβ, k = (klj)3×3, m = (mlj)3×3,

m′ = iωm, γ′ = (γ′
1, γ

′
2, γ

′
3), γ′

l = bl − iωγ∗
l , a′ = (a′lj)3×3, (10)

a′lj = iωalj − dlj , c′ = (c′lj)3×3, c′lj = ρlω
2δlj − ζlj + iωζ∗lj (no sum by l),

α′ = (α′
lj)3×3, α′

lj = αlj − iωα∗
lj , l = 1, 2, j = 1, 2, 3.
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Now we introduce the following second order matrix differential operator

A(Dx) = (Alj(Dx))9×9 , Alj = (µ′∆+ ρω2)δlj + (λ′ + µ′)
∂2

∂xl∂xj
,

Al;j+3 = b′j
∂

∂xl
, Al;j+6 = −βj

∂

∂xl
, Al+3;j = −γ′

l

∂

∂xj
, Al+3;j+3 = α′

lj∆+ c′lj ,

Al+3;j+6 = mlj , Al+6;j = iωβl
∂

∂xj
, Al+6;j+3 = iωmlj , Al+6;j+6 = klj∆+ a′lj ,

Dx =
( ∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
, l, j = 1, 2, 3.

Obviously, we can rewrite system (9) into the following form

A(Dx)U(x) = F(x), (11)

where U = (u,φ,p) and F = (F(1),F(2),F(3)) are the nine-component vector functions, x ∈ R3.
In what follows, we assume that the constitutive coefficients satisfy the condition

µ∗ > 0, a, k, α∗, ζ∗, ϑ∗ are positive definite matrices, (12)

where

ϑ∗ = (ϑ∗
lj)4×4, ϑ∗

11 =
1

3
(3λ∗ + 2µ∗), ϑ∗

1;j+1 = ϑ∗
j+1;1 =

1

2
(b∗j + γ∗),

ϑ∗
l+1;l+1 = ζ∗ll (no sum), ϑ∗

l+1;j+1 =
1

2
ζ∗lj , l, j = 1, 2, 3.

The purpose of this work is as follows: to investigate the internal and external BVPs for system
(9) by using the potential method and the theory of singular integral equations. In particular, let us
prove the existence and uniqueness theorems of classical solutions of these problems. To achieve this
goal, it is necessary to construct the fundamental solution of system (9) and obtain Green’s formulas,
then it will be possible to prove the above-mentioned theorems.

3. Fundamental Solution

Let τ21 , τ
2
2 , . . . , τ

2
7 be the roots of the algebraic equation Λ1(−ξ) = 0 (with respect to ξ), where

Λ1(∆) =
1

µ′
0α

′
0k0

detB(∆) =

7∏
j=1

(∆ + λ2
j ),

µ′
0 = λ′ + 2µ′, α′

0 = detα′, k0 = detk, B(∆) = (Blj(∆))7×7 is a matrix differential operator with the
following elements:

B11(∆) = µ′
0∆+ ρω2, B1;j+1(∆) = −γ′

j∆, B1;j+4(∆) = iωβj∆,

Bl+1;1(∆) = b′l, Bl+1;j+1(∆) = α′
lj∆+ c′lj , Bl+1;j+4(∆) = iωmlj ,

Bl+4;1(∆) = −βl, Bl+4;j+1(∆) = mlj , Bl+4;j+4(∆) = klj∆+ a′lj .

We assume that the values τ21 , τ22 , . . . , τ
2
8 are distinct and Imτj > 0 (j = 1, 2, . . . , 8), where

τ28 =
ρω2

µ′ .

Furthermore, we introduce the following notation:
(i)

M(Dx) = (Mlj(Dx))9×9 , Mlj(Dx) =
1

µ′Λ1(∆) δlj + n11(∆)
∂2

∂xl∂xj
,

Mlr(Dx) = n1;r−2(∆)
∂

∂xl
, Mrl(Dx) = nr−2;1(∆)

∂

∂xl
, (13)

Mrs(Dx) = nr−2;s−2(∆), l, j = 1, 2, 3, r, s = 4, 5, . . . , 9,
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where

nj1(∆) = − 1

µ′µ′
0α

′
0k0

[
(λ′ + µ′)B∗

j1(∆)− γ′
lB

∗
j;l+1(∆) + β′

lB
∗
j;l+4(∆)

]
,

njr(∆) =
1

µ′
0α

′
0k0

B∗
jr(∆), j = 1, 2, . . . , 7, r = 2, 3, . . . , 7

and B∗
lj is the cofactor of the element Blj of matrix B.

(ii)

Ψ(x) = (Ψlr(x))9×9 , Ψ11(x) = Ψ22(x) = Ψ33(x) =

8∑
j=1

η2jγ
(j)(x),

Ψ44(x) = Ψ55(x) = · · · = Ψ99(x) =

7∑
j=1

η1jγ
(j)(x), (14)

Ψlr(x) = 0, l ̸= r, l, r = 1, 2, . . . , 9,

where

γ(j)(x) = −eiτj |x|

4π |x|
(15)

and

η1r =

7∏
l=1, l ̸=r

(τ2l − τ2r )
−1, η2j =

8∏
l=1, l ̸=j

(τ2l − τ2j )
−1, r = 1, 2, . . . , 7, j = 1, 2, . . . , 8.

It is not difficult to prove the following relation:

A(Dx)M(Dx) = Λ(∆), (16)

where

Λ(∆) = (Λlj(∆))9×9 , Λ11(∆) = Λ22(∆) = Λ33(∆) = Λ2(∆),

Λ44(∆) = Λ55(∆) = · · · = Λ99(∆) = Λ1(∆), Λlj(∆) = 0,

l ̸= j, l, j = 1, 2, . . . , 9.

Obviously, Ψ(x) is the fundamental matrix of the operator Λ(∆), i.e.,

Λ(∆)Ψ(x) = δ(x)J, (17)

where δ(x) is the Dirac delta, J = (δlj)9×9 is the unit matrix and x ∈ R3.

Let us introduce the matrix Γ(x) by

Γ(x) = M(Dx)Ψ(x), (18)

where M(Dx) and Ψ(x) are defined by (13) and (14), respectively. In view of relations (16) and (17),
we can write A(Dx)Γ(x) = δ(x)J. Hence the following theorem is valid.

Theorem 1. The matrix Γ(x) = (Γlj(x))7×7 defined by (18) is the fundamental solution of system (9).

Now we introduce the matrix Γ(0) (x) =
(
Γ
(0)
lj (x)

)
9×9

with the following elements

Γ
(0)
lj (x) = −λ′ + 3µ′

8πµ′
0µ

′
δlj
|x|

− λ′ + µ′

8πµ′
0µ

′
xlxj

|x|3
, Γ

(0)
l+3;j+3 (x) =

α′∗
lj

α′
0

γ(0)(x),

Γ
(0)
l+6;j+6 (x) =

k∗lj
k0

γ(0)(x), Γ
(0)
lr (x) = Γ

(0)
rl (x) = Γ

(0)
l+3;j+6(x) = Γ

(0)
l+6;j+3(x) = 0,

γ(0)(x) = − 1

4π |x|
, l, j = 1, 2, 3, r = 4, 5, . . . , 9,

where α′∗
lj and k∗lj are the cofactors of the elements α′

lj and klj of matrices α′ and k, respectively.

Theorem 1 leads to the following basic properties of the fundamental solution Γ (x).
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Theorem 2.
(i) Each column of the matrix Γ(x) is a solution of the homogeneous equation A(Dx)Γ(x)= 0

at every point x ∈ R3 except the origin of R3.
(ii) The relations

Γlj(x) = O(|x|−1
), Γl+3;j+3 (x) = O(|x|−1

), Γl+6;j+6 (x) = O(|x|−1
),

Γlr (x) = O(1), Γrl (x) = O(1), Γl+3;j+6 (x) = O(1),

Γl+6;j+3 (x) = O(1), l, j = 1, 2, 3, r = 4, 5, . . . , 9

hold in the neighborhood of the origin of R3.
(iii) The relations

Γlj (x)− Γ
(0)
lj (x) = const +O (|x|) , l, j = 1, 2, . . . , 9 (19)

hold in the neighborhood of the origin of R3.

Thus the matrix Γ(x) is constructed explicitly by means of eight elementary functions γ(j)(j =
1, 2, . . . , 8) (see (15)). Moreover, on the basis of Theorem 2, the matrix Γ(0) (x) is the singular part
of the fundamental solution Γ (x) in the neighborhood of the origin of R3.

4. Boundary value problems and Green’s identities

In this section, the basic internal and external BVPs of the theory under consideration are formu-
lated and Green’s identities are obtained.

Let Ω+ be a finite domain in R3 and is surrounded with a smooth closed surface S, Ω+ = Ω+ ∪ S,
Ω− = R3 \ Ω+, Ω− = Ω− ∪ S. In what follows, the external (with respect to Ω+) unit normal vector
to S at z is denoted by n(z). We denote the scalar product of two vectors U = (U1, U2, . . . , U9) and

V = (V1, V2, . . . , V9) by U ·V =
9∑

j=1

Uj V̄j , where V̄j is the complex conjugate of Vj .

A vector function U = (U1, U2, . . . , U9) is called regular in Ω− (or in Ω+) if
(i)

Uj ∈ C2(Ω−) ∩ C1(Ω−) (or Uj ∈ C2(Ω+) ∩ C1(Ω+)),

and (ii)

Uj(x) = O(|x|−1), Uj,l(x) = o(|x|−1) for |x| ≫ 1, (20)

where j = 1, 2, . . . , 9, l = 1, 2, 3.
Therewith, we use the matrix differential operator R(Dx,n) = (Rlj(Dx,n))9×9, where

Rlj(Dx,n) = µ′δlj
∂

∂n
+ µ′nj

∂

∂xl
+ λ′nl

∂

∂xj
, Rl;j+3(Dx,n) = b′jnl,

Rl;j+6(Dx,n) = −βjnl, Rl+3;j+3(Dx,n) = α′
lj

∂

∂n
, Rl+6;j+6(Dx,n) = klj

∂

∂n
,

Rrl(Dx,n) = Rl+3;j+6(Dx,n) = Rl+6;j+3(Dx,n) = 0, l, j = 1, 2, 3, r = 4, 5, . . . , 9

and ∂
∂n is the derivative along the vector n.

Now, we formulate the basic internal and external BVPs of steady vibrations in the coupled linear
theory of viscoelastic materials with a triple porosity as follows:

Find a regular (classical) solution U = (u,φ,p) to system (11) for x ∈ Ω± satisfying the boundary
condition

lim
Ω±∋x→ z∈S

U(x) ≡ {U(z)}± = f(z)

in Problem (I)±F,f , and

lim
Ω±∋x→ z∈S

R(Dx,n(z))U(x) ≡ {R(Dz,n(z))U(z)}± = f(z)

in Problem (II)±F,f , where F and f are the known nine-component smooth vector functions, suppF is

a finite domain in Ω−.
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Let U′ = (u′,φ′,p′) be a nine-component smooth vector function, u′ = (u′
1, u

′
2, u

′
3), φ

′ = (φ′
1,

φ′
2, φ

′
3), p

′ = (p′1, p
′
2, p

′
3). We introduce the notation

G(0)(u,u′) =
1

3
(3λ′ + 2µ′) divu divu′ +

µ′

2

3∑
l,j=1; l ̸=j

(∂uj

∂xl
+

∂ul

∂xj

)(∂u′
j

∂xl
+

∂u′
l

∂xj

)

+
µ′

3

3∑
l,j=1

(∂ul

∂xl
− ∂uj

∂xj

)(∂u′
l

∂xl
−

∂u′
j

∂xj

)
,

G(1)(U,u′) = G(0)(u,u′)− ρω2u · u′ + (b′lφl − βlpl) divu′,

G(2)(U,φ′) = α′
lj∇φj · ∇φ′

l +
(
γ′
ldivu− c′ljφj −mljpj

)
φ′
l,

(21)

G(3)(U,p′) = klj∇pj · ∇p′l −
(
β′
ldivu+m′

ljφj + aljpj
)
p′l,

G(U,U′) = G(1)(U,u′) +G(2)(U,φ′) +G(3)(U,p′).

It is not very difficult to prove the following result.

Lemma 1. If U = (u,φ,p) and U′ = (u′,φ′,p′) are regular vector in Ω±, then∫
Ω±

[
A(1)(Dx)U(x) · u′(x) +G(1)(U,u′)

]
dx =±

∫
S

R(1)(Dz,n)U(z) · u′(z) dzS,

∫
Ω±

[
A(2)(Dx)U(x) ·φ′(x) +G(2)(U,φ′)

]
dx =±

∫
S

α′ ∂φ(z)

∂n
·φ′(z) dzS, (22)

∫
Ω±

[
A(3)(Dx)U(x) · p′(x) +G(3)(U,p′)

]
dx =±

∫
S

k
∂p(z)

∂n
· p′(z) dzS,

where

A(l)(Dx) =
(
A

(1)
jr (Dx)

)
3×9

, A
(1)
jr (Dx) = Ajr(Dx), A

(2)
jr (Dx) = Aj+3;r(Dx),

A
(3)
jr (Dx) = Aj+6;r(Dx), R(1)(Dx,n) =

(
R

(1)
jr (Dx,n)

)
3×9

, R
(1)
jr (Dx,n) = Rjr(Dx,n),

l, j = 1, 2, 3, r = 1, 2, . . . , 9.

Combining the relations of (22), we can obtain the following

Theorem 3. If U = (u,φ,p) and U′ = (u′,φ′,p′) are the regular vectors in Ω±, then∫
Ω±

[A(Dx)U(x) ·U′(x) +G(U,U′)] dx = ±
∫
S

R(Dz,n)U(z) ·U′(z) dzS, (23)

where G(U,U′) is defined by (4).

Now, we introduce the following matrix differential operators Ã(Dx) and R̃(Dx,n), where Ã(Dx) =
A⊤(−Dx) (the superscript ⊤ denotes transposition) and

R̃(Dx,n) = (R̃lj(Dx,n))9×9, R̃lj(Dx,n) = Rlj(Dx,n),

R̃l;j+3(Dx,n) = γ′
jnl, R̃l;j+6(Dx,n) = −β′

jnl, R̃sr(Dx,n) = Rsr(Dx,n), (24)

l, j = 1, 2, 3, r = 1, 2, . . . , 9, s = 4, 5, . . . , 9.

By a direct calculation, we get the following results.
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Theorem 4. Let Ũj be the j-th column of the matrix Ũ = (Ũlj)9×9. If U = (u,φ,p) and Ũj

(j = 1, 2, . . . , 9) are regular vectors in Ω±, then∫
Ω±

{
[Ã(Dy)Ũ(y)]⊤U(y)− [Ũ(y)]⊤A(Dy)U(y)

}
dy

= ±
∫
S

{
[R̃(Dz,n)Ũ(z)]⊤U(z)− [Ũ(z)]⊤R(Dz,n)U(z)

}
dzS. (25)

Let Γ̃(x) be the fundamental matrix of the operator Ã(Dx). Clearly, the matrix Γ̃(x) satisfies the
following condition:

Γ̃(x) = Γ⊤(−x), (26)

where Γ(x) is the fundamental solution of system (9).

Applying (25) with Ũ(y) = Γ̃(y − x) and using equation (26), we obtain the following results.

Theorem 5. If U is a regular vector in Ω±, then

U(x) = ±
∫
S

{
[R̃(Dz,n)Γ

⊤(x− z)]⊤U(z)− Γ(x− z)R(Dz,n)U(z)
}
dzS

+

∫
Ω±

Γ(x− y)A(Dy)U(y)dy for x ∈ Ω±. (27)

Formulas (23), (25) and (27) are, respectively, Green’s first, second and third identities in the
considered theory for the domain Ω±.

5. Uniqueness Theorems

We are now in a position to prove the uniqueness theorems for classical solutions of the BVPs (I)±F,f

and (II)+F,f . We have the following results.

Theorem 6. The internal BVP (K)+F,f has one regular solution, where K = I, II.

Proof. Let’s say the problem (K)+F,f (K = I, II) has two regular solutions. Then their difference U

is a regular solution of the internal homogeneous BVP (K)+0,0. Hence U is a regular solution of the
homogeneous system of equations

A(Dx)U(x) = 0, x ∈ Ω+ (28)

satisfying the homogeneous boundary condition

{U(z)}+ = 0, (29)

for K = I and
{R(Dz,n(z))U(z)}+ = 0, z ∈ S (30)

for K = II.
On the basis of equations (28)–(30), from (22), we can deduce that∫

Ω+

G(1)(U,u)dx = 0,

∫
Ω+

G(2)(U,φ)dx = 0,

∫
Ω+

G(3)(U,p)dx = 0. (31)

With the help of relations (4), we obtain

G(0)(u,u) =
1

3
(3λ′ + 2µ′) |divu|2 + µ′

2

3∑
l,j=1; l ̸=j

∣∣∣∣∂uj

∂xl
+

∂ul

∂xj

∣∣∣∣2 + µ′

3

3∑
l,j=1

∣∣∣∣∂ul

∂xl
− ∂uj

∂xj

∣∣∣∣2 ,
G(1)(U,u) = G(0)(u,u)− ρω2|u|2 + (b′lφl − βlpl)divu,

G(2)(U,φ) = α′
lj∇φj · ∇φl +

(
γ′
ldivu− c′ljφj −mljpj

)
φl,

(32)

G(3)(U,p) = klj∇pj · ∇pl −
(
β′
ldivu+m′

ljφj + aljpj
)
pl.
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By virtue of the relations of (5), we can easily verify that

− 1

ω
ImG(0)(u,u) =

1

3
(3λ∗ + 2µ∗) |divu|2 + µ∗

2

3∑
l,j=1; l ̸=j

∣∣∣∣∂uj

∂xl
+

∂ul

∂xj

∣∣∣∣2 + µ∗

3

3∑
l,j=1

∣∣∣∣∂ul

∂xl
− ∂uj

∂xj

∣∣∣∣2 ,
− 1

ω
ImG(1)(U,u) = − 1

ω
ImG(0)(u,u) +

1

ω
blIm(divuφl) + b∗lRe(divuφl)−

1

ω
βlIm(divupl),

− 1

ω
ImG(2)(U,φ) = α∗

lj∇φj · ∇φl + γ∗
l Re (divuφl)−

1

ω
blIm(divuφl)− ζ∗ljφjφl −

1

ω
mljIm(φjpl),

ReG(3)(U,p) = klj∇pj · ∇pl + ωβlIm (divupl) + ωmljIm(φjpl)

+γ1|p1 − p2|2 + γ2|p1 − p3|2 + γ3|p2 − p3|2.

Now, on the basis of these relations and condition (12), it follows that

− 1

ω

[
ImG(1)(U,u) + ImG(2)(U,φ)

]
+

1

ω2
ReG(3)(U,p)

=
1

3
(3λ∗ + 2µ∗) |divu|2 + (b∗l + γ∗

l )Re(divuφl) + ζ∗ljφjφl

+
1

ω2

[
γ1|p1 − p2|2 + γ2|p1 − p3|2 + γ3|p2 − p3|2

]
+ α∗

lj∇φj · ∇φl

+
1

ω2
klj∇pj · ∇pl +

µ∗

2

3∑
l,j=1; l ̸=j

∣∣∣∣∂uj

∂xl
+

∂ul

∂xj

∣∣∣∣2 + µ∗

3

3∑
l,j=1

∣∣∣∣∂ul

∂xl
− ∂uj

∂xj

∣∣∣∣2 ≥ 0

and from (31), we obtain

1

3
(3λ∗ + 2µ∗) |divu|2 + (b∗l + γ∗

l )Re(divuφl) + ζ∗ljφjφl = 0, α∗
lj∇φj · ∇φl = 0,

klj∇pj · ∇pl = 0,

3∑
l,j=1; l ̸=j

∣∣∣∣∂uj

∂xl
+

∂ul

∂xj

∣∣∣∣2 = 0,

3∑
l,j=1

∣∣∣∣∂ul

∂xl
− ∂uj

∂xj

∣∣∣∣2 = 0.
(33)

Then, using again inequalities (12), from (33), we get

divu(x) = 0,
∂uj(x)

∂xl
+

∂ul(x)

∂xj
= 0,

∂ul(x)

∂xl
− ∂uj(x)

∂xj
= 0,

∇p1(x) = ∇p2(x) = 0, l, j = 1, 2, 3

(34)

and

φ(x) = 0 (35)

for x ∈ Ω+.
On the other hand, based on equations (4) and (31), we have the following relation G(1)(U,u) =

ρω2|u(x)|2 = 0 and obtain

u(x) = 0 for x ∈ Ω+. (36)

Quite similarly, from (4) and (31), it follows that

G(3)(U,p) = iωaljpjpl + γ1|p1 − p2|2 + γ2|p1 − p3|2 + γ3|p2 − p3|2 = 0

thus we get

p(x) = 0 for x ∈ Ω+. (37)

Finally, by relations (35)–(37), we obtain the desired result U(x) = 0 for x ∈ Ω+. □

Using condition (20), the next theorem can be proved similarly.

Theorem 7. The external BVP (K)−F,f has one regular solution, where K = I, II.

Hence each of the basic BVPs (I)±F,f and (II)+F,f in the class of regular vectors has the unique
classical solution.
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6. Potentials and singular integral operators

We introduce the following notation:

(i) P(1)(x,g) =

∫
S

Γ(x− y)g(y)dyS is the single-layer potential,

(ii) P(2)(x,g) =

∫
S

[R̃(Dy,n(y))Γ
⊤(x− y)]⊤g(y)dyS is the double-layer potential,

(iii) P(3)(x,h,Ω±) =

∫
Ω±

Γ(x− y)h(y)dy is the volume potential,

where g and h are the nine-component vector functions, Γ(x) is the fundamental matrix of the operator

A(Dx) defined by (18) and R̃(Dy,n(y)) is given by (24).
In the next four theorems, using the results of Theorems 4 and 5, we establish the basic properties

of these potentials.

Theorem 8. If S ∈ C2,ν , g ∈ C1,ν′
(S), 0 < ν′ < ν ≤ 1, then:

(a) P(1)(·,g) ∈ C0,ν′
(R3) ∩ C2,ν′

(
Ω±

)
∩ C∞(Ω±);

(b) A(Dx)P
(1)

(x,g) = 0;

(c) R(Dz,n(z))P
(1)

(z,g) is a singular integral;

(d)

{R(Dz,n(z))P
(1)

(z,g)}± = ∓ 1

2
g(z) +R(Dz,n(z))P

(1)
(z,g), (38)

where x ∈ Ω± and z ∈ S.

Theorem 9. If S ∈ C2,ν , g ∈ C1,ν′
(S), 0 < ν′ < ν ≤ 1, then:

(a) P(2)(·,g) ∈ C1,ν′
(
Ω±

)
∩ C∞(Ω±);

(b) A(Dx)P
(2)

(x,g) = 0,

(c) P(2)(z,g) is a singular integral,

(d)

{P(2)(z,g)}± = ± 1

2
g(z) +P(2)(z,g), (39)

(e) {R(Dz,n(z))P
(2)

(z,g)}+ = {R(Dz,n(z))P
(2)

(z,g)}−, where x ∈ Ω± and z ∈ S.

Theorem 10. If S ∈ C1,ν , h ∈ C0,ν′
(Ω+), 0 < ν′ < ν ≤ 1, then:

(a) P(3)(·,h,Ω+) ∈ C1,ν′
(R3) ∩ C2(Ω+) ∩ C2,ν′

(Ω+
0 ),

(b) A(Dx)P
(3)

(x,h,Ω+) = h(x), where x ∈ Ω+, Ω+
0 is a finite domain in R3 and Ω+

0 ⊂ Ω+.

Theorem 11. If S ∈ C1,ν , supph = Ω ⊂ Ω−, h ∈ C0,ν′
(Ω−), 0 < ν′ < ν ≤ 1, then:

(a) P(3)(·,h,Ω−) ∈ C1,ν′
(R3) ∩ C2(Ω−) ∩ C2,p′

(
Ω−

0

)
,

(b) A(Dx)P
(3)

(x,h,Ω−) = h(x), where x ∈ Ω−, Ω is a finite domain in R3 and Ω−
0 ⊂ Ω−.

Let us consider the following integral operators

N (1)g(z) ≡ 1

2
g(z) +P(2)(z,g), N (2)g(z) ≡ −1

2
g(z) +R(Dz,n(z))P

(1)
(z,g),

N (3)g(z) ≡ −1

2
g(z) +P(2)(z,g), N (4)g(z) ≡ 1

2
g(z) +R(Dz,n(z))P

(1)
(z,g), (40)

Nςg(z) ≡ −1

2
g(z) + ς P(2)(z,g)
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for z ∈ S, where ς is a complex parameter. On the basis of Theorems 8 and 9, N (j) (j = 1, 2, 3, 4)
and Nς are singular integral operators.

Let θ(j) = (θ
(j)
lm)9×9 be the symbol (symbolic matrix) of the singular integral operator N (j) (j =

1, 2, 3, 4) (for the basic definitions in the theory of singular integral equations see, e.g., [19]). By virtue

of Theorem 5 and relations (12), (33) and (40), for detθ(j), we obtain

detθ(1) = −detθ(2) = −detθ(3) = detθ(4) = − (λ′ + µ′)(λ′ + 3µ′)

512(λ′ + 2µ′)2
. (41)

In view of inequalities of (12), from (41), we get detθ(j) ̸= 0 which proves that the singular integral
operator N (j) is of the normal type, where j = 1, 2, 3, 4.

Furthermore, let θς and indNς be, respectively, the symbol and the index of the operator Nς . It
can be easily shown that

detθς = − (λ′ + ςµ′)(λ′ + 3ςµ′)

512(λ′ + 2µ′)2

and detθς vanishes only at two points ς1 = −λ′

µ′ , ς2 = − λ′

3µ′ of the complex plane. By virtue of (41)

and owing to detσ1 = detσ(1), we get ςl ̸= 1 (l = 1, 2) and indN (1) = indN1 = 0.
The relation indN (2) = 0 is proved in a quite similar manner. Clearly, the operators N (3) and

N (4) are the adjoint operators for N (2) and N (1), respectively. Hence

indN (3) = −indN (2) = 0, indN (4) = −indN (1) = 0.

Thus the singular integral operator N (j) (j = 1, 2, 3, 4) is of the normal type with an index equal
to zero and, consequently, Fredholm’s theorems are valid for N (j).

7. Existence Theorems

In this section, the existence theorems for regular (classical) solutions of the BVPs of steady vibra-
tions (I)±F,f and (II)±F,f are proved by using the potential method. Obviously, on the basis of Theorems

10 and 11, the volume potential P(3)(x,F,Ω±) is a partial regular solution of the nonhomogeneous
equation (11). Consequently, we further consider problem (K)±0,f for K = I, II.

Problem (I)+0,f . We seek a regular solution to problem (I)+0,f in the form of a double-layer potential

U(x) = P(2)(x,g) for x ∈ Ω+, (42)

where g is the required nine-component vector function. By Theorem 9, the vector function U is a
solution of the homogeneous equation

A(Dx)U(x,g) = 0 (43)

for x ∈ Ω+. Keeping in mind the boundary condition and identity (39), from (42), to determine the
unknown vector g, we have a singular integral equation

N (1)g(z) = f(z), z ∈ S (44)

for which Fredholm’s theorems are valid. We prove that (44) is always solvable for an arbitrary
vector f . Let us consider the adjoint homogeneous equation

N (4)h0(z) = 0 for z ∈ S, (45)

where h0 is the required nine-component vector function. Towards this end, it suffices to show that
the integral equation (45) has only the trivial solution.

Indeed, let h0 be a solution of the homogeneous equation (45). On the basis of Theorem 8 and
equation (45), the vector function V(x) = P(1)(x,h0) is a regular solution of problem (II)−0,0. In view

of Theorem 7, problem (II)−0,0 has only the trivial solution, i.e.,

V(x) ≡ 0 for x ∈ Ω−. (46)
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Furthermore, using Theorem 8 and (46), we can write {V(z)}+ = {V(z)}− = 0 for z ∈ S, i.e., the
vector V(x) is a regular solution of problem (I)+0,0. Now, in view of Theorem 6, problem (I)+0,0 has
only the trivial solution, that is,

V(x) ≡ 0 for x ∈ Ω+. (47)

By virtue of (47), (48) and identity (39), we obtain

h0(z) = {R(Dz,n)V(z)}− − {R(Dz,n)V(z)}+ ≡ 0 for z ∈ S.

Thus the homogeneous equation (45) has only the trivial solution and therefore (44) is always solvable
for an arbitrary vector f . We have thereby proved the following theorem.

Theorem 12. If S ∈ C2,p, f ∈ C1,p ′
(S), 0 < p ′ < p ≤ 1, then a regular solution of problem (I)+0,f

exists, is unique and represented by the double-layer potential (43), where g is a solution of the singular
integral equation (44) which is always solvable for an arbitrary vector f .

Problem (II)−0,f . Now, we are looking for a regular solution to problem (II)−0,f in the form of a
single-layer potential

U(x) = P(1)(x,h) for x ∈ Ω−, (48)

where h is the required nine-component vector function. Clearly, by Theorem 8, the vector function
U is a solution of (43) for x ∈ Ω−. Keeping in mind the boundary condition and using (38), from
(48), to determine the unknown vector h, we obtain a singular integral equation

N (4)h(z) = f(z) for z ∈ S. (49)

It has been proved above that the corresponding homogeneous equation (45) has only the trivial
solution. Hence on the basis of Fredholm’s theorems, it follows that (49) is always solvable. We have
thereby proved the following consequence.

Theorem 13. If S ∈ C2,p, f ∈ C0,p ′
(S), 0 < p ′ < p ≤ 1, then a regular solution of problem (II)−0,f

exists, is unique and represented by the single-layer potential (48), where h is a solution of the singular
integral equation (49) which is always solvable for an arbitrary vector f .

Quite similarly, we can prove the following results.

Theorem 14. If S ∈ C2,p, f ∈ C0,p ′
(S), 0 < p ′ < p ≤ 1, then a regular solution of problem (II)+0,f

exists, is unique and represented by the single-layer potential U(x) = P(1)(x,g) for x ∈ Ω+, where g
is a solution of the singular integral equation N (2)g(z) = f(z) for z ∈ S which is always solvable for
an arbitrary vector f .

Theorem 15. If S ∈ C2,p, f ∈ C1,p ′
(S), 0 < p ′ < p ≤ 1, then a regular solution of problem (I)−0,f

exists, is unique and represented by the double-layer potential U(x) = P(2)(x,h) for x ∈ Ω−, where h
is a solution of the singular integral equation N (3)h(z) = f(z) for z ∈ S which is always solvable for
an arbitrary vector f .

8. Concluding Remarks

1. In this paper the coupled linear model of viscoelasticity for Kelvin–Voigt materials with a
triple porosity is presented. The governing systems of equations of motion and steady vibrations are
established. Further, the basic internal and external BVPs of steady vibrations of this theory are
investigated by using the potential method and the theory of singular integral equations. Indeed,
(i) The fundamental solution of the system of steady vibration equations is constructed and its

basic properties are established;
(ii) Green’s identities are obtained for the bounded and unbounded domains in the above-considered

theory;
(iii) The surface and volume potentials are introduced and their properties are given;
(iv) Some useful properties of the required singular integral operators are studied;
(v) Finally, the existence and uniqueness theorems for classical solutions of the mentioned above

BVPs of steady vibrations are proved;
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2. On the basis of the results obtained in this paper, it becomes possible to present the basic
equations of the coupled linear theory of thermoviscoelasticity for materials with a triple porosity and
to investigate the BVPs of steady vibrations of this theory.
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