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EXTRAPOLATION THEOREMS IN LEBESGUE AND GRAND LEBESGUE

SPACES FOR QUASI-MONOTONE FUNCTIONS

ARUN PAL SINGH1, RAHUL PANCHAL2, PANKAJ JAIN3 AND MONIKA SINGH4

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. We prove Rubio de Francia extrapolation results in Lebesgue and grand Lebesgue spaces
for quasi-monotone functions with QBβ,p weights. The extrapolation in Lebesgue spaces with the

weight class QBβ,∞ has also been investigated. As an application, we characterize the boundedness

of the Hardy averaging operator for quasi- monotone functions in the grand Lebesgue spaces.

1. Introduction

By a weight function, we shall mean a function which is measurable, non-negative, finite almost
everywhere (a.e.) and locally integrable on the specified domain. A weight w is said to belong to the
class Bp (p > 0) if there exists a constant C > 0 such that the inequality

∞∫
r

( r
x

)p
w(x)dx ≤ C

r∫
0

w(x)dx

holds for every r > 0. The weight class Bp is an important class of weights. It characterizes the
boundedness of the Hardy averaging operator

Hf(x) :=
1

x

x∫
0

f(t)dt

for non-increasing functions in Lebesgue Lpw spaces [2,30], as well as in grand Lebesgue spaces (defined
in Section 3), see [16, 25]. These characterizations are, in fact, equivalent to the boundedness of
the maximal operator, respectively, in the Lorentz space Λp(w) [2] and in the grand Lorentz space
Λp)(w) [16].

Let us write

[w]Bp = inf

{
C > 0 :

r∫
0

w(x)dx+

∞∫
r

(
r

x

)p
w(x)dx ≤ C

r∫
0

w(x)dx, r > 0

}
.

One of the important properties of Bp class of weights (see [7]) is that: if w ∈ Bp (p > 0), there exists
ε > 0 such that w ∈ Bp−ε. Moreover,

[w]Bp−ε ≤
C[w]Bp

1− εαp[w]Bp
, (1.1)

where C and 0 < α < 1 are universal constants and ε is such that 1− εαp[w]Bp > 0.
In 2010, Carro and Lorente [6] made a remarkable use of the Bp-class of weights to prove the

following extrapolation result.
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Theorem A ([6]). Let φ be an increasing (↑) function defined on (0,∞), (f, g) be a pair of positive
decreasing (↓) functions defined on (0,∞) and 0 < p0 < ∞. Suppose that for every w ∈ Bp0 , the
inequality

∞∫
0

fp0(x)w(x)dx ≤ φ([w]Bp0 )

∞∫
0

gp0(x)w(x)dx

holds. Then for all 0 < p <∞ and all w ∈ Bp, the inequality

∞∫
0

fp(x)w(x)dx ≤ φ̃([w]Bp)

∞∫
0

gp(x)w(x)dx,

holds, where

φ̃([w]Bp) = inf
0<ε<

p0
pαp[w]Bp

ψ(p0/ε)
p/p0

C[w]Bp
1− ε(p/p0)αp[w]Bp

with C as in (1.1).

The genesis of the above result lies in the excellent extrapolation result of J.L. Rubio de Francia [29]
(also, see [9] and the references therein) who proved it for another important class of weights, the so-
called Muckenhoupt class, or Ap-class of weights. A weight w is said to be in the Muckenhoupt class
Ap, 1 < p <∞, if

[w]Ap := sup
J

W (J)

|J |

(
1

|J |

∫
J

w−p′/p
)p−1

<∞,

and in class A1, if

[w]A1
:= ess sup

x∈J

W (J)

w(x)|J |
<∞,

where the supremum is taken over all non-degenerate intervals J ⊂ R+, 1
p + 1

p′ = 1 and W (J) :=∫
J

w(x)dx.

The weight class Ap is found to be useful in many ways. It characterizes the boundedness of
the maximal operator [27] and Riesz potential [12] in Lebesgue spaces. Moreover, this class also
characterizes the boundedness of these operators in grand Lebesgue spaces [10,25]. The extrapolation
theory has been generalized to A∞-weights as well (see [8]).

We denote by M the set of all measurable functions, definite and finite a.e. on R+. Also, M+ ⊂ M
and M+

↓ ⊂ M+ denote, respectively, the cones of non-negative and non-negative non-increasing (↓)
functions in M. In this paper, we consider quasi-non-increasing functions, the class of such functions
being denoted by Qβ : A function f ∈ M+ is said to belong to Qβ , β ∈ R, if x−βf(x) is non-increasing.
Clearly, M+

↓ = Q0. The quasi-monotone functions are believed to be defined in [4,5]. For a more later

reference, we mention [28]. For the functions f ∈ Qβ , Bergh, Burenkov and Persson [3] investigated
Hardy’s inequality with power type weights, while for general weights, it has been proved in [19] that
the inequality ( ∞∫

0

(
1

x

x∫
0

f(t)dt

)p
w(x)dx

)
≤ C

∞∫
0

fp(x)w(x)dx, 1 ≤ p <∞,

holds for all f ∈ Qβ if and only if w ∈ QBβ,p, β > −1, i.e.,

∞∫
r

( r
x

)p
w(x)dx ≤ C

r∫
0

(x
r

)βp
w(x)dx, r > 0. (1.2)

Note that for β = 0, the weight class QBβ,p reduces to the class Bp.
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In the present paper, we define a variant of the class QBβ,p, to be denoted by Q̂Bβ,p, and prove
the extrapolation results for this class of weights, as well as for the weight class

QBβ,∞ :=
⋃
p>0

QBβ,p .

Further, we prove the extrapolation result for quasi-monotone functions in the frame of grand Lebesgue
spaces. As an application, we prove the boundedness of the Hardy averaging operator for quasi-
monotone functions in the grand Lebesgue spaces. Our results generalize the extrapolation results of
Carro and Lorente [6] and Meskhi [24]. Throughout, all the functions used in this paper are assumed
to be non-negative and measurable.

We close this section by mentioning that for a weight w and 1 ≤ p < ∞, we shall denote by Lpw,
the weighted Lebesgue space consisting of all f ∈ M such that

∥f∥Lpw :=

( ∞∫
0

|f |pw
)1/p

<∞.

2. Extrapolation Results in Lebesgue Spaces

For p > 0, we say that a weight w ∈ QBβ,ψ,p if

∞∫
r

(
Ψ(r)

Ψ(x)

)p
w(x) dx ≤ C

r∫
0

(
Ψ(x)

Ψ(r)

)βp
w(x) dx, r > 0 (2.1)

for some constant C > 0 and Ψ(x) :=
∫ x
0
ψ(t)dt, where ψ is a non-negative, non-increasing locally

integrable function, i.e., ψ ∈ L1
loc. For ψ ≡ 1, the weight class QBβ,ψ,p reduces to the class QBβ,p.

In [19], the class QBβ,ψ,p was used to characterize the boundedness of the operator

Sψf(x) :=
1

Ψ(x)

x∫
0

f(t)ψ(t)dt

on the cone of functions f ∈ Qβ . Precisely, the following was proved.

Theorem B ([19]). Let p ≥ 1 and −1 < β ≤ 0. Then the inequality

∞∫
0

(
Sψf

)p
(x)w(x)dx ≤ C ′

∞∫
0

fp(x)w(x)dx

holds for all f ∈ Qβ if and only if w ∈ QBβ,ψ,p, where C
′ = C+1

(β+1)p and C is as in (2.1).

We define QBβ,ψ,p-constant for a weight w ∈ QBβ,ψ,p as follows:

[w]QBβ,ψ,p := inf

{
D :

∞∫
r

(
Ψ(r)

Ψ(x)

)p
w(x) dx ≤ (D − 1)

r∫
0

(
Ψ(x)

Ψ(r)

)βp
w(x)dx, r > 0

}
. (2.2)

Remark 2.1. Note that

(1) [w]QBβ,ψ,p > 1.
(2) For −1 < β ≤ 0 and p ≤ q, we have QBβ,ψ,p ⊂ QBβ,ψ,q.

We begin with the following
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Lemma 2.2. Let the function φ be non-decreasing (↑) defined on (0,∞), f, g ∈ Qβ (β > −1),
0 < p0 <∞, ψ ∈ L1

loc be ↓ and lim
x→∞

Ψ(x) = ∞. Suppose that for each w ∈ QBβ,ψ,p0 , the inequality

∞∫
0

f(x)w(x)dx ≤ φ
(
[w]QBβ,ψ,p0

) ∞∫
0

g(x)w(x)dx

holds. Then for every 0 < ε < p0(β + 1) and t > 0, the following inequality

t∫
0

f(s)(Ψ(s))p0−1−εψ(s)ds ≤ φ

(
p0(β + 1)

ε

) t∫
0

g(s)(Ψ(s))p0−1−εψ(s)ds

holds.

Proof. Let v ∈ M+
↓ . Set w(x) = v(x)(Ψ(x))p0−1−εψ(x) so that w ∈ L1

loc. We claim that w ∈ QBβ,ψ,p0 .
Indeed, we have(

Ψ(r)β+1
)p0 ∞∫

r

w(x)

Ψ(x)p0
dx =

(
Ψ(r)β+1

)p0 ∞∫
r

v(x)(Ψ(x))−1−εψ(x)dx

≤ v(r)

ε
(Ψ(r))p0(β+1)−ε

=
(p0(β + 1)− ε)

ε
v(r)

r∫
0

(Ψ(x))p0(β+1)−1−εψ(x)dx

≤
(
p0(β + 1)

ε
− 1

) r∫
0

v(x)(Ψ(x))p0(β+1)−1−εψ(x)dx

≤ p0(β + 1)

ε

r∫
0

(Ψ(x))βp0v(x)(Ψ(x))p0−1−εψ(x)dx

=
p0(β + 1)

ε

r∫
0

(Ψ(x))βp0w(x)dx.

The assertion now follows on taking v(x) = χ(0,s](x) and using the fact that [w]QBβ,ψ,p0 ≤ p0(β+1)
ε . □

Definition 2.3. For a given β > −1, a weight function w is said to be in the class Q̂Bβ,p if
(i) w ∈ QBβ,p; and
(ii) there exists 0 < ε < p(β + 1) such that w ∈ QBβ,p−ε.

Remark 2.4. The class Q̂Bβ,p in Definition 2.3 is reasonably defined. In view of Lemma 2.3 [19],

it is clear that for β ≥ 0, Q̂Bβ,p = QBβ,p. We prove below that for −1 < β < 0, the power weights

belong to the class Q̂Bβ,p. It is of interest if the same can be proved for general weights as well.

Lemma 2.5. Let 1 ≤ p < ∞, −1 < β < 0 and α ∈ R. If xα ∈ QBβ,p, then there exists 0 < ε <
p(β + 1) such that xα ∈ QBβ,p−ε.

Proof. Since xα ∈ QBβ,p, we have

∞∫
r

( r
x

)p
xαdx ≤ C

r∫
0

(x
r

)βp
xαdx, r > 0 (2.3)

which holds if and only if

−βp− 1 < α < p− 1. (2.4)
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Choose ε > 0 such that 0 < ε < p− α− 1. Clearly, 0 < ε < p(β + 1). Now, using estimates (2.3) and
(2.4) at the appropriate places, we obtain

∞∫
r

( r
x

)p−ε
xαdx =

rα+1

p− ε− α− 1

=
p− α− 1

p− ε− α− 1

∞∫
r

( r
x

)p
xαdx

≤ C

(
p− α− 1

p− ε− α− 1

) r∫
0

(x
r

)βp
xαdx

=
K

(α+ βp+ 1)rβp
rβp+α+1

= K

(
β(p− ε) + α+ 1

α+ βp+ 1

) r∫
0

(x
r

)β(p−ε)
xαdx,

i.e., xα ∈ QBβ,p−ε with the constant

C∗ := K

(
β(p− ε) + α+ 1

α+ βp+ 1

)
,

where K = C
(

p−α−1
p−ε−α−1

)
and C is as in (2.3). □

Remark 2.6. For −βp− 1 < α < p− 1, from Lemma 2.5 and (2.2), it follows that

[xα]QBβ,p−ε ≤ C∗ + 1 = C

(
p− α− 1

p− ε− α− 1

)(
β(p− ε) + α+ 1

α+ βp+ 1

)
+ 1.

We now prove the first main extrapolation theorem.

Theorem 2.7. Let φ ↑ be defined on (0,∞), (f, g) be a pair of functions such that f, g ∈ Qβ,
−1 < β ≤ 0 and 1 ≤ p0 <∞. Suppose that for every w ∈ QBβ,p0 , the inequality

∞∫
0

fp0(x)w(x)dx ≤ φ
(
[w]QBβ,p0

) ∞∫
0

gp0(x)w(x)dx

holds. Then for all p0 ≤ p <∞ and all w ∈ Q̂Bβ,p, the following inequality
∞∫
0

fp(x)w(x)dx ≤ C

∞∫
0

gp(x)w(x)dx

holds, where

C = inf
0<ε<p0(β+1)

[w]QBβ,(p0−ε) p
p0

[
1

β + 1

(
p0(β + 1)− ε

p0 − ε

)
φ

(
p0(β + 1)

ε

)]p/p0
.

Proof. The case β = 0 is just Theorem A. So, we assume that −1 < β < 0.

Let p0 ≤ p < ∞, w ∈ Q̂Bβ,p and 0 < ε < p0(β + 1). Clearly, the function h(x) := x−βf(x) is ↓ .
Note that

∞∫
0

fp(x)w(x)dx =

∞∫
0

hp(x)w(x)xβpdx. (2.5)

Since h is decreasing, we have

hp0(x) ≤ p0(β + 1)− ε

xp0(β+1)−ε

x∫
0

hp0(s)sp0(β+1)−ε−1ds
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which together with (2.5) and Lemma 2.2 (for ψ ≡ 1) gives

∞∫
0

fp(x)w(x)dx

≤
(
p0(β + 1)− ε

p0 − ε

)p/p0 ∞∫
0

(
p0 − ε

xp0−ε

x∫
0

fp0(s)sp0−1−εds

)p/p0
w(x)dx

≤
(
p0(β + 1)− ε

p0 − ε

)p/p0
φ

(
p0(β + 1)

ε

)p/p0 ∞∫
0

(
p0 − ε

xp0−ε

x∫
0

gp0(s)sp0−1−εds

)p/p0
w(x)dx

= γ

∞∫
0

(
p0 − ε

xp0−ε

x∫
0

gp0(s)sp0−1−εds

)p/p0
w(x)dx

= γ

∞∫
0

(
Sψg

p0(x)
)p/p0

w(x)dx, (2.6)

where ψ(s) = sp0−1−ε and

γ =

(
p0(β + 1)− ε

p0 − ε

)p/p0
φ

(
p0(β + 1)

ε

)p/p0
.

Now, since w ∈ Q̂Bβ,p, by the definition, there exists ε̃ > 0 such that w ∈ QBβ,p−ε̃. It suffices to take
ε so that p − ε̃ = (p0 − ε) pp0 , or ε = p0

p ε̃. Then w ∈ QBβ,(p0−ε) pp0
, for all r > 0, i.e., the following

inequality
∞∫
r

( r
x

)(p0−ε) pp0
w(x)dx ≤ (A− 1)

r∫
0

(x
r

)β(p0−ε) pp0
w(x)dx

holds, or
∞∫
r

(
Ψ(r)

Ψ(x)

)p/p0
w(x)dx ≤ (A− 1)

r∫
0

(
Ψ(x)

Ψ(r)

)β(p/p0)
w(x)dx

with ψ(s) = sp0−1−ε, which by Theorem B holds if and only if

∞∫
0

(
Sψg

p0(x)
)p/p0

w(x)dx ≤ A

(β + 1)p/p0

∞∫
0

gp(x)w(x)dx,

where A = [w]QBβ,(p0−ε) p
p0

= [w]QBβ,p−ε̃ .

Consequently, (2.6) results in

∞∫
0

fp(x)w(x)dx ≤ γA

(β + 1)p/p0

∞∫
0

gp(x)w(x)dx

= K

∞∫
0

gp(x)w(x)dx,

where

K = [w]QBβ,(p0−ε) p
p0

[(
p0(β + 1)− ε

(β + 1)(p0 − ε)

)
φ

(
p0(β + 1)

ε

)]p/p0
.

Since ε ∈ (0, p0(β + 1)) is arbitrary, taking infimum over all such ε, the assertion follows. □
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In view of Remark 2.1 (for ψ ≡ 1), following the definition of the class B∞ [6], we define the class
QBβ,∞ as

QBβ,∞ :=
⋃
p>0

QBβ,p

and we also define

[w]QBβ,∞ := inf
{
[w]QBβ,p : w ∈ QBβ,p, p > 0

}
.

Similarly, we define

QBβ,ψ,∞ :=
⋃
p>0

QBβ,ψ,p

and

1 ≤ [w]QBβ,ψ,∞ := inf
{
[w]QBβ,ψ,p : w ∈ QBβ,ψ,p, p > 0

}
.

We prove the following

Lemma 2.8. Let ψ : R+ → R+ be ↑, v ∈ L1
loc be ↓, −1 < β ≤ 0 and α > −1. Then the function w

defined by

w(x) = Ψα(x)ψ(x)v(x)

belongs to the class QBβ,ψ,∞.

Proof. Let 0 < r <∞ be arbitrary and choose p0 such that α+ 1 < p0 < − 1
β (α+ 1). Then we have

∞∫
r

(
Ψβ+1(r)

Ψ(x)

)p0
w(x)dx = (Ψ(r))(β+1)p0

∞∫
r

(Ψ(x))α−p0ψ(x)v(x)dx

≤ 1

(p0 − α− 1)
(Ψ(r))βp0+α+1v(r)

≤
(
βp0 + α+ 1

p0 − α− 1

) r∫
0

(Ψ(x))βp0+αψ(x)v(x)dx

=

(
βp0 + α+ 1

p0 − α− 1

) r∫
0

(Ψ(x))βp0w(x)dx

and the assertion follows. Moreover, [w]QBβ,ψ,∞ ≤ βp0+α+1
p0−α−1 + 1. □

Below, we prove an extrapolation result for the QBβ,∞-class of weights.

Theorem 2.9. Let φ be ↑ defined on (0,∞), −1 < β ≤ 0, (f, g) be a pair of functions such that
f, g ∈ Qβ and 0 < p0 <∞. Suppose that for every weight w ∈ QBβ,∞, the inequality

∞∫
0

fp0(t)w(t)dt ≤ φ([w]QBβ,∞)

∞∫
0

gp0(t)w(t)dt (2.7)

holds. Then for every p0 ≤ p <∞ and w ∈ QBβ,∞, the inequality

∞∫
0

fp(t)w(t)dt ≤ K

∞∫
0

gp(t)w(t)dt

with

K = inf
α>−1

[w]QB
β,

(α+1)p
p0

(
φ(1)

β + 1

)p/p0
holds.



282 A. P. SINGH, R. PANCHAL, P. JAIN AND M. SINGH

Proof. For s > 0 and α > −1, consider the following:

w̃(t) = χ(0,s)(t)t
α.

Clearly, by Lemma 2.8, w̃ ∈ QBβ,∞. Then, in view of Remark 2.1 and Lemma 2.8, we have

1 ≤ [w̃]QBβ,ψ,∞ ≤ lim
p0→∞

βp0 + α+ 1

p0 − α− 1
+ 1 = β + 1 ≤ 1

and consequently, in view of (2.7), the following inequality

s∫
0

fp0(t)tαdt ≤ φ(1)

s∫
0

gp0(t)tαdt (2.8)

holds. Further, since t−βf(t) is ↓, we find that

fp0(t) =
α+ 1

tα+1

t∫
0

fp0(t)sαds

=
α+ 1

tα+1

t∫
0

(t−βf(t))p0tβp0sαds

≤ α+ 1

tα+1

t∫
0

(s−βf(s))p0tβp0sαds

=
α+ 1

tα+1

t∫
0

fp0(s)

(
t

s

)βp0
sαds

≤ α+ 1

tα+1

t∫
0

fp0(s)sαds

which in view of (2.8) gives

∞∫
0

fp(t)w(t)dt ≤
∞∫
0

(
α+ 1

tα+1

t∫
0

fp0(s)sαds

)p/p0
w(t)dt

≤ φ(1)p/p0
∞∫
0

(
α+ 1

tα+1

t∫
0

gp0(s)sαds

)p/p0
w(t)dt

= φ(1)p/p0
∞∫
0

(
Sψg

p0(t)
)p/p0

w(t)dt, (2.9)

with ψ(s) = sα.
Now, let w ∈ QBβ,∞. Then there exists q > 0 such that w ∈ QBβ,q. We can choose α > −1 such

that q = (α + 1) pp0 . Then w ∈ QBβ,(α+1) pp0
, which in view of (1.2) implies that for all r > 0, the

inequality
∞∫
r

(r
t

)(α+1) pp0
w(t)dt ≤ (C − 1)

r∫
0

( t
r

)β(α+1) pp0
w(t)dt,

or, equivalently,
∞∫
r

(
Ψ(r)

Ψ(t)

)p/p0
w(t)dt ≤ (C − 1)

r∫
0

(
Ψ(t)

Ψ(r)

)βp/p0
w(t)dt
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with ψ(s) = sα holds. But the last inequality, in view of Theorem B, holds if and only if
∞∫
0

(
Sψg

p0(t)
)p/p0

w(t)dt ≤ C

(β + 1)p/p0

∞∫
0

gp(t)w(t)dt, (2.10)

where C = [w]QBβ,(α+1)
p
p0

. Now, (2.9) and (2.10) give

∞∫
0

fp(t)w(t)dt ≤ [w]QBβ,(α+1)
p
p0

(
φ(1)

β + 1

)p/p0 ∞∫
0

gp(t)w(t)dt,

so that on taking the infimum over all α > −1, the assertion follows. □

3. Extrapolation Results in Grand Lebesgue Spaces

In this section, we shall prove a version of the extrapolation result (Theorem 2.7) in the framework
of grand Lebesgue spaces defined on finite intervals which, without any loss of generality, are taken
as I = (0, 1).

Let 0 < p < ∞ and −1 < β < ∞. We say that a weight function w on I belongs to the class
QBβ,p(I) if there exists a constant C > 0 such that the inequality

1∫
r

(
r

t

)p
w(t)dt ≤ C

r∫
0

(
t

r

)βp
w(t)dt

holds for all 0 < r ≤ 1. Also, for 0 < r ≤ 1, we set

[w]QBβ,p(I) := inf

{
C > 1 :

1∫
r

(
r

t

)p
w(t)dt ≤ (C − 1)

r∫
0

(
t

r

)βp
w(t)dt

}
.

It can be seen that if 0 < p <∞ and w ∈ QBβ,p(I), then the function w̃ = wχI ∈ QBβ,p and

[w]QBβ,p(I) = [w̃]QBβ,p .

Following the arguments used in Lemma 2.5, we can prove the following

Lemma 3.1. Let −1 < β ≤ 0 and 1 ≤ p < ∞. If xα ∈ QBβ,p(I), then there exists 0 < ε < p(β + 1)
such that xα ∈ QBβ,p−ε(I).

Definition 3.2. For a given −1 < β <∞, a weight function w ∈ Q̂Bβ,p(I) if
(i) w ∈ QBβ,p(I); and
(ii) there exists 0 < ε < p(β + 1) such that w ∈ QBβ,p−ε(I).

Remark 3.3. It can be checked that for −1 < β ≤ 0, the power weights xα ∈ QBβ,p(I) if and only

if −βp− 1 < α < p− 1. Then, in view of Lemma 3.1, the class Q̂Bβ,p(I) is reasonably defined.

It is seen that Theorem 2.7 can be modified for the interval I.We state it formally for later purpose.

Theorem 3.4. Let φ ↑ be defined on R+ and (f, g) be a pair of functions such that f, g ∈ Qβ(I),
−1 < β ≤ 0. Let 1 ≤ p0 <∞ and for every weight function w ∈ QBβ,p0(I), the inequality

1∫
0

fp0(x)w(x)dx ≤ φ
(
[w]QBβ,p0 (I)

) 1∫
0

gp0(x)w(x)dx

holds. Then for every p0 ≤ p <∞ and every w ∈ Q̂Bβ,p(I), the inequality

1∫
0

fp(x)w(x)dx ≤ K ′(p)

1∫
0

gp(x)w(x)dx
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holds, where

K ′(p) := inf
0<δ<p0(β+1)

[w]QBβ,(p0−δ) p
p0

(I)

[
1

β + 1

(
p0(β + 1)− δ

p0 − δ

)
φ

(
p0(β + 1)

δ

)]p/p0
.

In this section, we prove Theorem 2.7 in the framework of grand Lebesgue spaces Lp),θ(I) (θ > 0,
p > 1) which consist of all measurable functions f, finite a.e. on I for which

∥f∥Lp),θ(I) := sup
0<ε<p−1

(
εθ

1∫
0

|f(t)|p−εdt
)1/(p−ε)

<∞.

These spaces without weight have been defined in [13], which were, in fact, initially defined for
θ = 1 by Iwaniec and Sbordone [15] and later generalized, studied and applied by several researches
in different directions. We refer to [18] and the references therein. For some very recent updates on
grand Lebesgue spaces, we mention [11,14,17,20–22,26].

We now prove the following

Theorem 3.5. Let θ > 0, φ be a non-negative ↑ function defined on (0,∞), −1 < β ≤ 0, 1 < p0 <∞
and (f, g) be a pair of functions such that f, g ∈ Qβ(I). Suppose that for every w ∈ QBβ,p0(I), the
following inequality

1∫
0

fp0(x)w(x)dx ≤ φ
(
[w]QBβ,p0 (I)

) 1∫
0

gp0(x)w(x)dx

holds. Then for every p : p0 ≤ p <∞ and every w ∈ Q̂Bβ,p(I), the inequality

∥f∥
L
p),θ
w (I)

≤ C∗∥g∥
L
p),θ
w (I)

holds with

C∗ = inf
0<σ<p−1

[
max

{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
sup

0<ε≤σ
(K ′(p− ε))

1
p−ε

]
.

Proof. Let w ∈ Q̂Bβ,p(I), then by definition w ∈ QBβ,p(I), and there exists 0 < ξ < p(β+1) such that
w ∈ QBβ,p−ξ(I). Take σ = min{ξ, p−p0}. Clearly, 0 < σ < p−1, so, by Remark 2.1, w ∈ QBβ,p−σ(I).

Let ε ∈ (0, σ). Then, in view of the fact that Q̂Bβ,p ⊂ Q̂Bβ,q for p < q, we have w ∈ Q̂Bβ,p−ε(I).
Therefore, by Theorem 3.4, we have

1∫
0

fp−ε(x)w(x)dx ≤ K ′(p− ε)

1∫
0

gp−ε(x)w(x)dx, (3.1)

where

K ′(p− ε) := inf
0<δ<p0(β+1)

[w]QB
β,(p0−δ) p−ε

p0

(I)

[
1

β + 1

(
p0(β + 1)− δ

p0 − δ

)
φ

(
p0(β + 1)

δ

)]p−ε/p0
.

Now, for σ < ε < p− 1, using Hölder’s inequality with the indices p−σ
p−ε and p−σ

ε−σ , we obtain

∥f∥Lp−εw
=

( 1∫
0

fp−ε(x)w(x)dx

)1/p−ε

≤
( 1∫

0

fp−σ(x)w(x)dx

) 1
p−σ (

W (I)
) ε−σ

(p−σ)(p−ε)

≤
( 1∫

0

fp−σ(x)w(x)dx

) 1
p−σ (

W (I) + 1
) p−1−σ

p−σ
. (3.2)
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Now, in view of (3.1) and (3.2), we get

∥f∥
L
p),θ
w (I)

= max

{
sup

0<ε≤σ
ε

θ
p−ε ∥f∥Lp−εw

, sup
σ<ε<p−1

ε
θ
p−ε ∥f∥Lp−εw

}
≤ max

{
sup

0<ε≤σ
ε

θ
p−ε ∥f∥Lp−εw

, sup
σ<ε<p−1

ε
θ
p−ε ∥f∥Lp−σw

(
W (I) + 1

) p−1−σ
p−σ

}
≤ max

{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
sup

0<ε≤σ
ε

θ
p−ε ∥f∥Lp−εw

≤ max

{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
sup

0<ε≤σ
ε

θ
p−ε (K ′(p− ε))

1
p−ε ∥g∥Lp−εw

≤ max

{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
sup

0<ε≤σ
(K ′(p− ε))

1
p−ε ∥g∥

L
p),θ
w (I)

= C∗∥g∥
L
p),θ
w (I)

,

where C∗ = c(p, θ, σ) sup
0<ε≤σ

(K ′(p− ε))
1
p−ε and

c(p, θ, σ) = max

{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
.

The proof is completed. □

4. Application

We provide an application of the extrapolation result proved in the previous section to characterize
the boundedness of the Hardy averaging operator H between the weighted grand Lebesgue spaces

L
p),θ
w (I) for quasi-monotone functions. We prove the following

Theorem 4.1. Let 1 < p <∞,−1 < β ≤ 0 and θ > 0. The inequality

∥Hf∥
L
p),θ
w (I)

≤ C∥f∥
L
p),θ
w (I)

(4.1)

holds for all f ∈ Qβ(I) if and only if w ∈ Q̂Bβ,p(I).

Proof. Let us first assume that w ∈ Q̂Bβ,p(I). Note that if f ∈ Qβ(I), then for 0 < t ≤ s and α ∈ I,
we have

t−βf
(αt
s

)
≥ s−βf(α)

by using which we get

s−βHf(s) ≤ 1

s

s∫
0

t−βf
(αt
s

)
dα

= t−β−1

t∫
0

f(z)dz

= t−βHf(t),

i.e., Hf ∈ Qβ(I).
Further, on taking ψ ≡ 1 in a modified form of Theorem B and considering the functions f defined

on I instead of (0,∞), we see that the inequality

1∫
0

(
Hf(x)

)p
w(x)dx ≤ C

1∫
0

fp(x)w(x)dx

holds. Now, in view of Theorem 3.5, inequality (4.1) holds.
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Conversely, assume that inequality (4.1) holds. Consider the test function fr(x) = xβχ(0,r)(x) for
0 < r < 1. Then

∥fr∥Lp),θw (I)
= sup

0<ε<p−1

(
εθ

r∫
0

xβ(p−ε)w(x)dx

) 1
p−ε

= max

{
sup

0<ε≤σ
ε

θ
p−ε ∥fr∥Lp−εw

, sup
σ<ε<p−1

ε
θ
p−ε ∥fr∥Lp−εw

}
,

where σ is chosen such that 0 < σ < min{(β + 1)p, p − 1}. Now, for σ < ε < p − 1, taking the
conjugate indices p−σ

p−ε and p−σ
ε−σ , on using Hölder’s inequality, we obtain

∥fr∥Lp−εw
≤

( r∫
0

xβ(p−σ)w(x)dx

) 1
p−σ (

W (I)
) ε−σ

(p−σ)(p−ε)

≤
( r∫

0

xβ(p−σ)w(x)dx

) 1
p−σ (

W (I) + 1
) p−1−σ

p−σ
. (4.2)

Thus, using (4.2) and an argument from [24, Theorem 3.1], we have

∥fr∥Lp),θw (I)
≤ max

{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
sup

0<ε≤σ
ε

θ
p−ε ∥fr∥Lp−εw

= max

{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
ε

θ
p−εr
r ∥fr∥Lp−εrw

= C1

(
εθr

r∫
0

xβ(p−εr)w(x)dx

) 1
p−εr

(4.3)

for some 0 < εr ≤ σ, where C1 := inf
0<σ<(β+1)p

max
{
1, pθσ− θ

p−σ

(
W (I) + 1

) p−1−σ
p−σ

}
. Further, note that

1∫
0

(
Hfr(x)

)p−ε
w(x)dx ≥

1∫
r

(
Hfr(x)

)p−ε
w(x)dx

=

(
rβ+1

β + 1

)p−ε 1∫
r

w(x)

xp−ε
dx,

so that

∥Hfr∥Lp),θw (I)
≥ rβ+1

β + 1
sup

0<ε<p−1

(
εθ

1∫
r

w(x)

xp−ε
dx

) 1
p−ε

≥ rβ+1

β + 1

(
εr
θ

1∫
r

w(x)

xp−εr
dx

) 1
p−εr

.

The above estimate together with (4.3), and the assumption that (4.1) holds, yield

rβ+1

β + 1

(
εr
θ

1∫
r

w(x)

xp−εr
dx

) 1
p−εr

≤ CC1

(
εr
θ

r∫
0

xβ(p−εr)w(x)dx

) 1
p−εr

.
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Therefore
1∫
r

( r
x

)p−εr
w(x)dx ≤

(
CC1(β + 1)

)p−εr r∫
0

(x
r

)β(p−εr)
w(x)dx

≤
(
CC1(β + 1) + 1

)p r∫
0

(x
r

)β(p−εr)
w(x)dx.

Thus w ∈ QBβ,p−εr (I), where 0 < εr < (β + 1)p. Consequently, w ∈ QBβ,p(I) and hence

w ∈ Q̂Bβ,p(I). □
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