A RADEMACHER SERIES CONVERGENT TO EACH REAL-VALUED FUNCTION CONTINUOUS OVER (0,1) ON CERTAIN DENSE SUBSETS OF (0,1)

SHAKRO TETUNASHVILI 1,2 AND TENGIZ TETUNASHVILI 1,3

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. In the paper, the theorems implying the existence of a Rademacher series, convergent to each real-valued function, piecewise continuous over (0, 1) on certain dense subsets of (0, 1), are announced.

The set of all Rademacher series with the above-mentioned property is fully described. Among the elements of this set are both almost everywhere convergent and almost everywhere divergent Rademacher series.

Let k be a non-negative integer and $r_k(t)$ be a Rademacher function defined over [0, 1]. Namely, for every non-negative integer k, the following equalities hold:

$$r_k(t) = (-1)^i$$
, where $t \in \left(\frac{i}{2^{k+1}}, \frac{i+1}{2^{k+1}}\right)$ and $i = 0, 1, 2, \dots, 2^{k+1} - 1$,
 $r_k\left(\frac{i}{2^{k+1}}\right) = 0$, where $i = 0, 1, 2, \dots, 2^{k+1} - 1$.

Let $\{a_k\}_{k=0}^{\infty}$ be a sequence of real numbers.

The following theorems, due to Rademacher and Kolmogorov, are well-known:

Theorem A (Rademacher [5]). If
$$\sum_{k=0}^{\infty} a_k^2 < \infty$$
, then a Rademacher series

$$\sum_{k=0}^{\infty} a_k r_k(t)$$
(1)

converges almost everywhere over [0, 1].

Theorem B (Kolmogorov [3]). If $\sum_{k=0}^{\infty} a_k^2 = \infty$, then the series (1) diverges almost everywhere over [0, 1].

Everywhere below, $S_n(t)$ stands for the *n*-th partial sum of the series (1) at a point t, that is,

$$S_n(t) = \sum_{k=0}^n a_k r_k(t).$$

The following result is also known (see [2]).

Theorem C (Kaczmarz and Steinhaus). If the series (1) is such that

$$a_k \to 0$$
, when $k \to \infty$ and $\sum_{k=0}^{\infty} |a_k| = \infty$, (2)

then for any constants A and B such that $-\infty \leq A \leq B \leq +\infty$, there exists a subset of [0,1] of cardinality continuum such that for every $t \in E$, the following equalities hold:

$$\lim_{n \to \infty} S_n(t) = A \quad and \quad \overline{\lim_{n \to \infty}} S_n(t) = B.$$

²⁰²⁰ Mathematics Subject Classification. 40A05.

Key words and phrases. Rademacher series; Universal series; Dense set.

It directly follows from this theorem that if the series (1) is such that the conditions (2) are satisfied, then for an arbitrary constant γ , there exists a subset E of [0, 1] of cardinality continuum such that the series (1) converges to γ at every point of E.

Similar results are established by Beyer [1] and Muromskii [4]. Also, Muromskii [4] proved that there exists a function f(t), continuous over [0, 1] such that no Rademacher series converges to f(t) over the set with the positive Lebesgue linear measure.

Below, we formulate two theorems: Theorem 1 and Theorem 2. Theorem 1 is a generalization, in a certain sense, of Theorem C, while Theorem 2 is a corollary of Theorem 1, which shows that any series (1) such that the coefficients of this series satisfy the conditions (2) is a universal series in the sense of the representation of an arbitrary function, continuous over [0, 1] on the corresponding dense subset of [0, 1] with the cardinality continuum.

Let us formulate some notation and definitions we need below. C(a, b) denotes the set of all continuous functions over the interval (a, b), and μE denotes the Lebesgue linear measure of a subset E of [0, 1].

Definition 1. We say that a function f(t) is piecewise continuous over the interval (0,1) if there exists an open set $G = \bigcup_{n} (a_n, b_n)$ such that $G \subset (0,1)$, $\mu G = 1$ and $(a_i, b_i) \bigcap (a_j, b_j) = \emptyset$ if $i \neq j$ and $f(t) = f_n(t)$, when $t \in (a_n, b_n)$ and $f_n(t) \in C(a_n, b_n)$ for every natural n.

Definition 2. We say that a series (1) is a universal one in the sense of the representation of any function, piecewise continuous over the interval (0, 1) on a dense subset of (0, 1) with the cardinality continuum and we call such a series of CD type universal series, if for any function f(t), piecewise continuous over the interval (0, 1), there exists a dense subset E of (0, 1) with the cardinality continuum such that

$$\sum_{k=0}^{\infty} a_k r_k(t) = f(t), \text{ for every } t \in E.$$

The following statements hold.

Theorem 1. a) Let a Rademacher series

$$\sum_{k=0}^{\infty} a_k r_k(t)$$

be such that

$$a_k \to 0$$
, when $k \to \infty$ and $\sum_{k=0}^{\infty} |a_k| = \infty$,

then for any function f(t), continuous over the interval $(a,b) \subset [0,1]$, there exists a dense subset E of (a,b) with the cardinality continuum such that

$$\sum_{k=0}^{\infty} a_k r_k(t) = f(t), \quad for \ every \quad t \in E;$$

b) If $\lim_{k\to\infty} a_k \neq 0$ or $\sum_{k=0}^{\infty} |a_k| < \infty$, then there exists a real number γ such that the series (1) converges to γ at no point of [0, 1].

The following statement is a corollary of Theorem 1:

Theorem 2. It is necessary and sufficient for a series (1) to be of CD type universal series that

$$a_k \to 0$$
, when $k \to \infty$ and $\sum_{k=0}^{\infty} |a_k| = \infty$.

Note that Theorem A, Theorem B and Theorem 2 directly imply the existence of both almost everywhere convergent and almost everywhere divergent CD type universal Rademacher series.

Remark. There also exists the following definition of Rademacher functions:

$$r_k(t) = (-1)^i$$
, if k is a non-negative integer number, $t \in \left[\frac{i}{2^{k+1}}, \frac{i+1}{2^{k+1}}\right]$

and $i = 0, 1, 2, \dots, 2^{k+1} - 1$.

Note that in the case of the latter definition of Rademacher functions, all of the above-presented theorems remain valid.

References

- 1. W. A. Beyer, Hausdorff dimension of level sets of some Rademacher series. Pacific J. Math. 12 (1962), 35-46.
- 2. S. Kaczmarz, H. Steinhaus, Le système orthogonal de M. Rademacher. Studia Math. 2 (1930), no. 1, 231-247.
- A. Khintchine, A. Kolmogoroff, Uber Konvergent von Reihen, deren Glieder durch den Zufall bestimmt werden. Math. Sbor. 32 (1925), no. 4, 668–677.
- A. A. Muromskii, Functions representable by series in the Rademacher system. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1967 1967, no. 11 (66) 54–66.
- H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Ann. 87 (1922), no. 1-2, 112–138.

(Received 30.12.2022)

¹Department of Mathematics, Georgian Technical University, 77 Kostava Str., Tbilisi 0171, Georgia

 $^2\mathrm{A.}$ Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 Merab Aleksidze II Lane, Tbilisi 0193, Georgia

³I. VEKUA INSTITUTE OF APPLIED MATHEMATICS, 2 UNIVERSITY STR., TBILISI 0186, GEORGIA Email address: stetun@hotmail.com; s.tetunashvili@gtu.ge Email address: tengiztetunashvili@gmail.com; t.tetunashvili@gtu.ge