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ON π-WEIGHTS AND EXTENSIONS OF INVARIANT MEASURES

ALEXANDER KHARAZISHVILI

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. We consider some extensions of invariant (quasi-invariant) measures on a ground set E,
which have a π-base of cardinality not exceeding card(E).

It is well known that there are many analogies between purely topological concepts and measure-
theoretical concepts. The analogies of this kind are thoroughly considered and discussed, e.g., in the
excellent text-book by J. C. Oxtoby [5].

For instance, the notion of a π-base (or pseudo-base) of a topological space (E, T ) is one of the
main topological invariants of (E, T ) and plays an important role in set-theoretic topology (cf., for
instance, [1]).

A quite similar concept of a π-base was introduced for any measure space (E,µ).
Let (E,µ) be a measure space and let U be a family of µ-measurable subsets of E.
In this note we say that U is a π-base (or pseudo-base) of µ if for every µ-measurable set X with

µ(X) > 0, there exists a set Y ∈ U such that Y ⊂ X and µ(Y ) > 0.
Similarly to the definition of the π-weight of (E, T ), the π-weight of µ is defined as the minimum

of all cardinalities of π-bases of µ, and denoted by π(µ).
In the sequel, dom(µ) will stand for the family of all µ-measurable subsets of E and the symbol

I(µ) will stand for the σ-ideal in E generated by the family of all µ-measure zero subsets of E.
Recall that, by the definition, a base of I(µ) is any family B ⊂ I(µ) such that, for each setX ∈ I(µ),

there exists a set Y ∈ B containing X.

Lemma 1. If E is an infinite ground set and µ is a nonzero σ-finite measure on E, then the σ-ideal
I(µ) has a base whose cardinality does not exceed (π(µ))ω.

In particular, if (card(E))ω = card(E) and π(µ) ≤ card(E), then the σ-ideal I(µ) has a base whose
cardinality does not exceed card(E).

Remark 1. In connection with Lemma 1, it makes sense to recall that under the Generalized Con-
tinuum Hypothesis (GCH), the following two assertions are equivalent:

(a) (card(E))ω = card(E);
(b) card(E) is not cofinal with ω.
At the same time, the implication (a) ⇒ (b) is valid in ZFC set theory.

Theorem 1. Let (G, ·) be an infinite solvable group such that

(card(G))ω = card(G)

and let µ be a nonzero σ-finite left G-invariant (left G-quasi-invariant) measure on G with π(µ) ≤
card(G).

Then there exists a left G-invariant (left G-quasi-invariant) measure µ′ on G, properly extending
µ and also satisfying the inequality π(µ′) ≤ card(G).

The proof of this theorem is based on the fact that there exists a countable cover of G with
G-absolutely negligible subsets of E (see [3] and [4]).
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Lemma 2. Let E be an infinite ground set and let {Xi : i ∈ I} be a family of subsets of E such that
card(I) ≤ card(E) and card(Xi) = card(E) for each index i ∈ I.

Then there exists a family {Yj : j ∈ J} of subsets of E satisfying these three relations:
(1) card(J) > card(E);
(2) {Yj : j ∈ J} is almost disjoint, i.e., for any two distinct indices j ∈ J and k ∈ J , the inequality

card(Yj ∩ Yk) < card(E) holds true;
(3) card(Xi ∩ Yj) = card(E) for every i ∈ I and for every j ∈ J .

The proof of Lemma 2 is given in [2]. Using Lemmas 1 and 2, one can establish the following
statement.

Theorem 2. Let (G, ·) be an infinite group satisfying these two conditions:
(1) (card(G))ω = card(G);
(2) card(G) is a regular cardinal number.
Let µ be a nonzero σ-finite left G-invariant (left G-quasi-invariant) measure on G such that π(µ) ≤

card(G) and every subset C of G with card(C) < card(G) is measurable with respect to µ.
Then there exists a left G-invariant (left G-quasi-invariant) measure µ′ on G which properly extends

µ and for which the inequality π(µ′) ≤ card(G) is also valid.

Remark 2. Furthermore, taking into account Lemma 2, it can be shown that the cardinality of the
family of all measures µ′ indicated in Theorem 2 is strictly greater than card(G).

Lemma 3. Let E be an infinite ground set such that

(card(E))ω = card(E),

let G be a group of transformations of E with card(G) ≤ card(E), and let µ be a nonzero σ-finite
G-invariant (G-quasi-invariant) measure on E satisfying the following conditions:

(1) π(µ) ≤ card(E);
(2) no set Z ∈ dom(µ) with µ(Z) > 0 can be covered by a family F ⊂ I(µ) whose cardinality is

strictly less than card(E);
(3) all singletons in E are of µ-measure zero.
Then there exists a set Y ⊂ E such that:
(a) card(Y ) = card(E);
(b) if T is any µ-measure zero subset of E, then card(T ∩ Y ) < card(E);
(c) both sets Y and E \ Y are µ-thick in E, i.e.,

Y ∩ Z ̸= ∅, (E \ Y ) ∩ Z ̸= ∅
whenever Z ∈ dom(µ) and µ(Z) > 0;

(d) Y is almost G-invariant in E, i.e., for each transformation g ∈ G, the inequality

card(g(Y )△Y ) < card(E)

holds true (where △ denotes, as usual, the operation of symmetric difference of two sets).

Remark 3. In connection with (a) and (b) of Lemma 3, it should be pointed out that the set Y is a
certain analog of a classical Sierpiński set on the real line R (for the definition and pivotal properties
of Sierpiński sets see, e.g., [5]). Moreover, Y possesses some additional properties: assertions (c) and
(d) give, respectively, the µ-thickness and almost G-invariance of Y . As is well known, any Sierpiński
set is nonmeasurable with respect to the standard Lebesgue measure on R. Analogously, in view of
(c), the set Y is nonmeasurable with respect to µ.

Remark 4. Condition (3) in the formulation of Lemma 3 is essential for the validity of the lemma.
To see this circumstance, take as G a countable group of transformations of E and consider the orbit
G(x) of some point x ∈ E. Further, for every subset Z of E, define:

µ(Z) = card(Z ∩G(x)) if card(Z ∩G(x)) is finite;
µ(Z) = +∞ if card(Z ∩G(x)) is infinite.
It is easy to verify that the introduced functional

µ : {Z : Z ⊂ E} → [0,+∞]
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is a σ-finite G-invariant measure on E satisfying conditions (1) and (2) of Lemma 3, but a set Y with
properties (a) and (b) cannot exist for this µ.

Theorem 3. Suppose that for a ground set E, for a group G of transformations of E and for a
measure µ on E, the conditions formulated in Lemma 3 are fulfilled.

Suppose also that every set C ⊂ E with card(C) < card(E) is of µ-measure zero.
Then there exists a G-invariant (G-quasi-invariant) measure µ′ on E such that:
(a) π(µ′) ≤ card(E);
(b) µ′ is a proper extension of µ;
(c) there is a µ′-measure zero set X which almost contains any µ-measure zero subset of E, i.e.,

card(T \X) < card(E) whenever T ⊂ E is of µ-measure zero;
(d) for every µ′-measurable set A, there exists a µ-measurable set B such that µ′(A△B) = 0 (in

particular, the measures µ and µ′ are metrically isomorphic).

The proof of Theorem 3 is as follows. Applying Marczewski’s method of extending invariant (quasi-
invariant) measures (see [6,7]), we can define a G-invariant (G-quasi-invariant) measure µ′ on E which
strictly extends µ and is such that the equality µ′(E \ Y ) = 0 is valid, where Y is the set indicated
in Lemma 3. Further, for this µ′, relations (a) and (d) are easily verified. Finally, we put X = E \ Y
and check that X satisfies relation (c) of the theorem.

Let c denote the cardinality of the continuum and let λn stand for the usual Lebesgue measure on
the Euclidean space Rn, where n ≥ 1.

As a consequence of Theorem 3, we get the next statement.

Theorem 4. Assuming Martin’s Axiom (MA), there exists a measure ν on Rn satisfying these five
conditions:

(1) ν is invariant under the group of all isometries of Rn;
(2) ν is a proper extension of λn;
(3) π(ν) = c;
(4) there is a ν-measure zero set X such that card(T \X) < c whenever T ⊂ Rn is of λn-measure

zero;
(5) for every ν-measurable set A, there exists a λn-measurable set B such that ν(A△B) = 0 (in

particular, the measures ν and λn are metrically isomorphic).

Remark 5. Under the Continuum Hypothesis (CH), condition (4) of Theorem 4 means that the
ν-null set X has the following property:

card(T \X) ≤ ω whenever T ⊂ Rn is of λn-measure zero.
In some sense, one can say that X is universal for the family of all λn-measure zero subsets of Rn.
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