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EMBEDDINGS AND REGULARITY OF POTENTIALS IN GRAND VARIABLE

EXPONENT FUNCTION SPACES
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Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. In this note, grand variable exponent Haj lasz–Morrey spaces are introduced and embed-

dings from these spaces to Hölder spaces are established under the log-Hölder continuity condition on

exponents. The boundedness of the fractional integral operator from a grand variable exponent Mor-
rey space to a grand variable parameter Hölder space is also proved. In general, the function spaces

are defined on quasi-metric measure spaces, however, the results are new even for the Euclidean

spaces.

Our aim is to introduce grand variable exponent Haj lasz–Morrey spaces (GV EHMS briefly)

(HM)
p(·)
q(·),φ(·)(X) and to explore embeddings from these spaces to Hölder spaces with a variable pa-

rameter Hλ(·)(X), under the log-Hölder continuity condition on the exponents. The boundedness of
the fractional integral operator defined on an open set Ω in Rd with Ahlfors upper n− regular condi-
tion Borel measure µ on Ω from grand variable exponent Morrey spaces (GV EMS briefly) to grand
variable exponent Hölder spaces (GV EHS briefly) is also established. This work may be considered
as a continuation of the investigation carried out in [7]. In particular, in that paper, the embeddings
from grand variable exponent Haj lasz–Sobolev space (GV EHSS briefly) to GV EHS were established.
It should be emphasised that the study of such problems in the variable exponent setting has been
initiated in [2].

Investigation of function spaces with a variable exponent is a very efficient area of research nowa-
days. A variable exponent Lebesgue space (V ELS briefly) Lp(·) is a special case of that introduced by
W. Orlicz in the 1930s and subsequently generalized by I. Musielak and W. Orlicz. For the mapping
properties of operators of Harmonic Analysis in V ELS we refer to the monographs [4, 5, 16] and for
the classical Sobolev spaces and embeddings in these spaces we refer, e.g, to the monograph [18].

The grand Lebesgue spaces were introduced in the 1990s by T. Iwaniec and C. Sbordone [11].
Later on, quite a number of problems of Harmonic Analysis and the theory of non-linear differential
equations were studied in these spaces (see, e.g., the monograph [17] and references cited therein).
The grand variable exponent Lebesgue spaces were introduced in [14] (see also [6] for more precise
spaces).

Morrey spaces describe local regularity more exactly than Lebesgue spaces. As a result, Morrey
spaces may be widely used not only in Harmonic Analysis, but also in the theory of PDEs. GV EMS

M
p(·)
q(·),θ were introduced in [15], where the authors studied the mapping properties of operators of

Harmonic Analysis in these spaces (for a constant exponent these spaces appeared first in [19]). A
variant of GV EMS defined on quasi-metric measure spaces with a non-doubling measure is introduced
in [20] and Sobolev’s inequality is obtained for appropriate fractional integrals. However, the authors
do not provide the appropriate norm estimates that lead to the desired result.

1. Preliminaries

Let (X, d, µ) be a quasi-metric measure space, i.e., X is a topological space endowed with a locally
finite complete measure µ and quasi-metric d : X ×X 7→ R+ satisfying the following conditions:

2020 Mathematics Subject Classification. 26A33, 42B20, 42B25, 42B35.
Key words and phrases. Grand variable exponent Haj lasz–Morrey spaces; Hölder spaces; Spaces of homogeneous
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(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) there exists a constant κ ≥ 1 such that for all x, y, z ∈ X,

d(x, y) ≤ κ[d(x, z) + d(z, y)];

(iv) for every neighbourhood V of a point x ∈ X there exists r > 0 such that the ball B(x, r) =
{y ∈ X : d(x, y) < r} with center x and radius r is contained in V .

Let

dX := diam(X) := sup{d(x, y) : x, y ∈ X}
be the diameter of X. It is also assumed that all balls B(x, r) := {y ∈ X : d(x, y) < r} in X are
measurable, µ{x} =0 for all x ∈ X, µ is a finite measure (i.e., µ(X) <∞) and the class of continuous
functions with compact supports is dense in the space of integrable functions on X.

We say that the measure µ of the quasi-metric measure space (X, d, µ) is Ahlfors upper α− regular
(α > 0) (or satisfies the growth condition) if there is a positive constant C such that for all x ∈ X
and R > 0,

µ
(
B(x,R)

)
≤ CRα. (1)

A quasi-metric measure space with growth condition is called a space of non-homogeneous type (in
which the doubling condition given below might not be satisfied).

A measure µ is said to satisfy a doubling condition (µ ∈ DC(X)) if there is a constant Dµ > 0
such that

µB(x, 2r) ≤ DµµB(x, r), (2)

for every x ∈ X and all r > 0. The best possible constant in (2) is called the doubling constant for µ
which will be denoted again by Dµ.

Further, it can be checked (see also [10, Lemma 14.6]) that if µ ∈ DC(X), there is a positive
constant C such that whenever 0 < r ≤ ρ < dX , x ∈ X and y ∈ B(x, r),

µB(x, ρ)

µB(y, r)
≤ C

(ρ
r

)N

,

where

N = log2Dµ (3)

and Dµ is the doubling constant. Consequently, taking ρ = dX in the latter estimate, we find that
there is a positive constant CN such that

µ(B(x, r)) ≥ CNr
N . (4)

whenever x ∈ X and 0 < r < dX , where N is defined by (3).
Throughout this note, by N will be meant the constant given by (3).
A quasi-metric measure space (X, d, µ) with doubling measure µ is called a space of homogeneous

type (SHT ).
Examples of an SHT are: (a) a domain Ω in Rd satisfying the condition: there is a positive constant

C > 0 such that |Ω ∩B(x, r)| ≥ Crn, where |E| is the Lebesgue measure induced on Ω; here, N = n;
(b) regular curves, i.e., rectifiable curves Γ in C satisfying the condition: ν

(
Γ ∩D(x, r)

)
≤ Cr, where

D(x, r) is the disc with center x and radius r > 0 and ν is the arc-length measure on Γ (in this case,
N = 1); (c) a nilpotent Lie group G with an appropriate distance and Haar measure is an SHT . The
Heisenberg group is a special case of such a group.

For the basic properties and other examples of an SHT we refer, e.g., to [3].
We denote by P0(X) (resp., P (X)) the family of all real-valued µ- measurable functions p(·) on X

such that

0 < p− ≤ p+ <∞, (resp., 1 < p− ≤ p+ <∞),

where

p− := p−(X) := inf
X
p(x), p+ := p+(X) := sup

X
p(x).

It is clear that P0(X) ⊂ P (X).
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We say that a pair of exponents
(
p(·), q(·)

)
∈ P̃ (X) if for all x in X,

1 < q− ≤ q(x) ≤ p(x) ≤ p+ <∞.

We say that a function p(·) ∈ P0(X) belongs to the class P log(X) (or p(·) satisfies the log-Hölder
continuity condition) if there is a positive constant ℓ such that for all x, y ∈ X with 0 < d(x, y) < 1/2,

|p(x) − p(y)| ≤ ℓ

− ln(d(x, y))
. (5)

The class of exponents P log(X) plays an important role in the theory of mapping properties of
integral operators in Lp(·) spaces. For example, maximal, fractional and singular integral operators
are bounded in Lp(·) under the condition p(·) ∈ P log (see, e.g., the monographs [4,5,16] and references
cited therein).

Let p(·) ∈ P (X). The variable exponent Lebesgue space (V ELS), denoted by Lp(·)(X) (or by
Lp(x)(X)), is the class of all µ- measurable functions f on X for which

Sp(f) :=

∫
X

|f(x)|p(x)dµ(x) <∞.

The norm in Lp(·)(X) is defined as follows:

∥f∥Lp(·)(X) = inf
{
λ > 0 : Sp

(
f/λ

)
≤ 1

}
.

1.1. Variable Exponent Morrey Spaces (V EMS). A large number of various results regarding
the mapping properties of integral operators in non-standard spaces have been obtained during the
last decade. One of such a non-standard function space is the variable exponent Morrey space which
was introduced in [1] in the Euclidean spaces and in [12] for quasi-metric measure spaces.

Let p(·) and q(·) be variable exponents defined on an SHT such that
(
p(·), q(·)

)
∈ P̃ (X). A mea-

surable locally integrable function f on X belongs to the class M
p(·)
q(·) (X) (see [12]) if

∥f∥
M

p(·)
q(·) (X)

:= sup
x∈X,0<r<dX

(µB(x, r))
1

p(x)
− 1

q(x) ∥f∥Lq(·)(B(x,r)) <∞.

If p(·) = q(·), then M
p(·)
q(·) (X) = Lp(·)(X) is V ELS.

The following relation:

M
p(·)
r(·) (X) ↪→M

p(·)
q(·) (X), 1 < q(·) ≤ r(·) ≤ p(·) ≤ p+ <∞; r(·), q(·) ∈ P log(X)

holds for V EMSs (see [15]).

1.2. Grand Variable Exponent Morrey Spaces. Let q(·) ∈ P (X) be a variable exponent on X.
We say that a function ψ(·) defined on (0, q− − 1) belongs to the class Aq(·) if it is increasing on (0, δ)
for some small positive δ, and lim

x→0+
ψ(x) = 0.

Let (X, d, µ) be a quasi-metric measure space. Suppose that
(
p(·), q(·)

)
∈ P̃ (X), φ(·) ∈ Aq(·). We

define the grand variable exponent Morrey space as follows (see [15]): we say that f ∈M
p(·)
q(·),φ(·)(X) if

∥f∥
M

p(·)
q(·),φ(·)(X)

:= sup
{
φ(η)

1
q−−η ∥f∥

M
p(·)
q(·)−η

(X)
: 0 < η < q− − 1

}
<∞.

Here, η is a constant.
Further, the embeddings

M
p(·)
q(·) (X) ↪→M

p(·)
q(·),φ(·)(X) ↪→M

p(·)
q(·)−η(X), 0 < η < p− − 1

hold.
The following statement was proved in [15] for φ(t) = tθ, and the proof for φ(·) ∈ Aq(·) is the same:
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Proposition 1.1. Let (X, d, µ) be an SHT . Suppose that
(
p(·), q(·)

)
∈ P̃ (X) and φ(·) ∈ Aq(·). Then

M
p(·)
q(·),φ(·)(X) is a Banach space. Further, the following equality:

lim
η→0

φ(η)
1

q−−η ∥f∥
M

p(·)
q(·)−η

(X)
= 0

holds for all f ∈
[
M

p(·)
q(·) (X)

]
M

p(·)
q(·),φ(·)(X)

, where
[
M

p(·)
q(·) (X)

]
M

p(·)
q(·),φ(·)(X)

denotes the closure of M
p(·)
q(·) (X)

in M
p(·)
q(·),φ(·)(X).

1.3. Grand Variable Exponent Haj lasz–Morrey and Hölder spaces. Now, we define the Vari-
able Exponent Haj lasz–Sobolev and Hölder spaces. Let pc be a constant such that 1 < pc < ∞. We
use the ideas of P. Haj lasz [9], where the space (HS)pc(X) (Haj lasz–Sobolev space with a constant
exponent) was introduced as a generalization of the classical Sobolev spaces W 1,pc to the general
setting of quasi-metric measure spaces.

Let
(
p(·), q(·)

)
∈ P̃ (X) and let φ(·) ∈ Aq(·). We say that a function f ∈ M

p(·)
q(·),φ(·)(X) (resp.,

f ∈ M
p(·)
q(·) (X)) belongs to the grand Haj lasz–Morrey space (HM)

p(·)
q(·),φ(·)(X) (resp., Haj lasz–Morrey

space (HM)
p(·)
q(·)(X)) if there exists a non-negative function g ∈ M

p(·)
q(·),φ(·)(X) (resp., g ∈ M

p(·)
q(·) (X) )

such that the inequality

|f(x) − f(y)| ≤ d(x, y)[g(x) + g(y)]

holds µ− a.e. in X.

In this case, the function g is called a generalized gradient of f . The space (HM)
p(·)
q(·),φ(·)(X) (resp.,

(HM)
p(·)
q(·)(X)) is a Banach space with respect to the norm

∥f∥
(HM)

p(·)
q(·),φ(·)(X)

= ∥f∥
M

p(·)
q(·),φ(·)(X)

+ inf ∥g∥
M

p(·)
q(·),φ(·)(X)(

resp., ∥f∥
(HM)

p(·)
q(·)(X)

= ∥f∥
M

p(·)
q(·) (X)

+ inf ∥g∥
M

p(·)
q(·) (X)

)
,

where the infimum is taken over all generalized gradients g of f .
The following relation holds between the norms

∥∥ ·
∥∥
(HM)

p(·)
q(·),φ(·)(X)

and
∥∥ ·

∥∥
(HM)

p(·)
q(·)(X)

:∥∥ ·
∥∥
(HM)

p(·)
q(·)(X)

↪→
∥∥ ·

∥∥
(HM)

p(·)
q(·),φ(·)(X)

↪→
∥∥ ·

∥∥
(HM)

p(·)
q(·)−ε

(X)
, 0 < ε < q− − 1.

For φ(x) := xθ, we denote the space M
p(·)
q(·),φ(·)(X) by M

p(·)
q(·),θ(X).

Taking formally θ = 0, (HM)
p(·)
q(·),θ(X) is a variable exponent Haj lasz–Sobolev space denoted by

HSp(·)(X) and introduced in [2].
If p(·) ≡ pc = const, θ = 0, then we have the space HSpc(X) which was introduced and studied

by P. Haj lasz [9] as a generalization of the classical Sobolev spaces W 1,pc to the general setting of
quasi-metric measure spaces.

Suppose that p− > N . We say that a bounded function f belongs to the variable exponent Hölder
space (V EHS briefly) Hp(·)(X) if there exists C > 0 such that

|f(x) − f(y)| ≤ Cd(x, y)max{1−N/p(x),1−N/p(y)},

for every x, y ∈ X (see [2] for this definition).
The norms in these spaces are defined as follows:

∥f∥Hp(·)(X) = ∥f∥L∞(X) +
[
f
]
Hp(·)(X)

where [
f
]
Hp(·)(X)

:= sup
x,y∈X

0<d(x,y)≤1

|f(x) − f(y)|
d(x, y)max{1−N/p(x),1−N/p(y)} .
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Let Ω be an open set in Rd. Suppose that γ and η are the constants such that 1 < γ < η <∞. We

say that f ∈ H̃
p(·)
γ,η (Ω) if

[f ]
H̃

p(·)
γ,η (Ω)

:= sup
x,x+h∈Ω, 0<|h|≤1

|f(x+ h) − f(x)|
hγ−η/p(x)

<∞.

2. Main Results

Now, we formulate the main results of this note.

Theorem 2.1. Let (X, d, µ) be an SHT . Let 1 ≤ N < q− ≤ q(x) ≤ p(x) ≤ p+ < ∞ and let
φ(·) ∈ Aq(·). Suppose that p(·), q(·) ∈ P log(X). Then

(HM)
p(·)
q(·),φ(·)(X) ↪→ Hp(·)(X).

To formulate the next statement, we need the following class of variable exponents. We say that
p(·) ∈ P(X) if there is a positive constant C such that

µ(B(x,R))p−(B(x,R))−p+(B(x,R)) ≤ C,

for all x ∈ X and small positive R.
It is known (see, e.g., [16]) that if (X, d, µ) is an SHT , then P log(X) = P(X).
Let Ω be an open set in Rd and let µ be a Borel measure on Ω. The next statement shows the

regularity of fractional integrals

Jγ
Ωf(x) =

∫
Ω

f(y)

|x− y|n−γ
dµ(y), 0 < γ < n, x ∈ Ω,

for f ∈ M
p(·)
q(·),φ(·)(Ω), where the measure µ on Ω satisfies the following condition: there are positive

constants c0 and n such that for all x ∈ Ω and R > 0,

µ
(
D(x,R)

)
≤ c0R

n, D(x,R) := B(x,R) ∩ Ω. (6)

Sometimes, in this case, they say that µ is upper Ahlfors n− regular.

Theorem 2.2. Let µ be a finite Borel measure on Ω satisfying condition (6). Suppose that p(·) and
q(·) are variable exponents on Ω such that 1 < q− ≤ q(x) ≤ p(x) ≤ p+ < ∞, x ∈ Ω. Assume that
φ(·) ∈ Aq(·). Suppose that γ and ε are thepositive constants such that n

γ < p− ≤ p+ < n
γ−ε . Let

q(·) ∈ P(Ω) and let p(·) ∈ P log(Ω). Then the operator Jγ
Ω is bounded from M

p(·)
q(·),φ(·)(Ω) to H̃

p(·)
γ,n (Ω),

i.e., there is a positive constant c0 such that for all f ∈M
p(·)
q(·),φ(·)(Ω),

[Jγ
Ωf ]

H̃
p(·)
γ,n (Ω)

≤ c0∥f∥Mp(·)
q(·),φ(·)(Ω)

. (7)

For Theorem 2.2 in different settings see [13,22].
We recall that the doubling condition for a Borel measure µ on an open set Ω ⊂ Rd reads as follows:

there is a constant Cdc > 0 such that for all x ∈ Ω and R > 0,

µ
(
D(x, 2R)

)
≤ Cdcµ

(
D(x,R)

)
.

Corollary 2.1. Let µ be a finite doubling Borel measure on Ω satisfying condition (6). Suppose that
p(·) and q(·) are the variable exponents on Ω such that 1 < q− ≤ q(x) ≤ p(x) ≤ p+ < ∞, x ∈ Ω, and
q(·), p(·) ∈ P log(Ω). Suppose that φ(·) ∈ Aq(·). Assume that γ and ε are the positive constants such

that γ > ε and n
γ < p− ≤ p+ < n

γ−ε . Then the operator Jγ
Ω is bounded from M

p(·)
q(·),φ(·)(Ω) to H̃

p(·)
γ,n (Ω),

i.e., there is a positive constant c0 such that for all f ∈M
p(·)
q(·),φ(·)(Ω), (7) holds.
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