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ON GEOMETRIC PROPERTIES OF HENSTOCK–ORLICZ SPACES

HEMANTA KALITA1, SALVADOR SÁNCHEZ PERALES2 AND BIPAN HAZARIKA3,∗

Abstract. In this paper, we extend the theory of Henstock–Orlicz spaces with respect to vector

measure. We study the integral representation of operators. Lastly, we study the uniform convexity,
reflexivity and the Radon–Nikodym property of the Henstock–Orlicz spaces H θ(µ∞).

1. Introduction and Preliminaries

In the early 19th century, Lebesgue’s Theory of integration has taken a center stage in concrete
problem of analysis. It was seen as early as in 1915 with the publications of de-la Vallèe Poussin,
although it is the Banach space researches of 1920’s that formally gave birth to what are later called
the Orlicz spaces, first proposed by Z. W. Birnbaum and W. Orlicz. Later on, this space was further
developed by Orlicz himself. Their monograph [18], Kransoselskii and Rutickii devoted entirely to
Orlicz spaces. We refer to [7, 9, 21, 24, 28, 29] for detailed discussion of Orlicz space. Brooks and
Dinculeanu have developed a theory of vector integration for a bounded family of measures (see [5]).
In [22], Roy and Chakraborty developed a theory of Orlicz spaces for the case of Banach space valued
functions with respect to a σ−bounded family of measures. In [23], Roy and Chakraborty developed
integral representation as an application of their previous work [22]. In [16, 17], Kaminska discussed
the criteria for uniform convexity of Orlicz spaces in the case of a non-atomic measure as well as in
the case of a purely atomic measure. It is known that if f is bounded with a compact support, then
the following conditions are equivalent:

(a) f is Henstock–Kurzweil integrable,
(b) f is Lebesgue integrable,
(c) f is Lebesgue measurable.

In general, every Henstock–Kurzweil integrable function is measurable, and f is Lebesgue integrable if
and only if both f and |f | are Henstock–Kurzweil integrable. This means that the Henstock–Kurzweil
integral can be thought as a “non-absolutely convergent version of Lebesgue integral”. The detailed
on the Henstock–Kurzweil integral can be found in [11, 13, 14, 19, 26, 27, 30]. The Henstock–Orlicz
spaces are developed in [12]. In this paper, we develop a theory of Henstock–Orlicz spaces for the
vector valued functions with respect to a σ−bounded family of measures. Detales on vector measures
can be found in [4–6,15]. Throughout this paper, Σ denotes a σ−algebra of subsets of an abstract set
T ̸= ∅. P(T ) is the class of all subsets of T, Σ ⊂ P(T ) is a σ−algebra, X is a Banach space and X ′

is its topological dual. For each A ∈ Σ, the characteristic function of A

chA(t) =

{
1 if t ∈ A,

0 if t ∈ T \A.

Recall, a vector measure is a σ−additive set function µ∞ : Σ → X, the σ−additivity of µ∞ is
equivalent to the σ−additivity of the scalar-valued set functions x′µ∞ : A → x′(µ∞(A)) on Σ for
every x′ ∈ X ′.

Definition 1.1 ([4]). The variation |µ∞| of µ∞ is defined by

|µ∞|(A) = sup

{ r∑
i=1

||µ∞(Ai)|| : Ai ∈ Σ, i = 1, 2, . . . , r;Ai ∩Aj = ∅ for i ̸= j;

r⋃
i=1

Ai ⊂ A

}
.
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The semi-variation ||µ∞|| of µ∞ is given by

||µ∞||(A) = sup
x′∈X′,||x′||≤1

|x′µ∞|(A).

A function f : T → R is said to be µ∞-measurable if

f−1(B) ∩ {t ∈ T : f(t) ̸= 0} ∈ Σ

for each Borel subset B ⊂ R.

Definition 1.2 ([4]). We say that a Σ-measurable function f : T → R is Kluvánek–Lewis–Henstock–
Kurzweil µ∞-integrable, shortly (HKL) µ∞-integrable, if the following properties hold:

f is |x′µ∞| −Henstock–Kurzweil integrable for each x′ ∈ X ′,

and for every A ∈ Σ, there is x
(HK)
A ∈ X with

x′(x
(HK)
A ) = (HK)

∫
A

f d|x′µ∞| for all x′ ∈ X ′,

where the symbol (HK) denotes the usual Henstock–Kurzweil integral of a real-valued function with
respect to an (extended) real-valued measure.

Definition 1.3 ( [22]). A function f : T → X is M−measurable if there is a sequence of simple
functions from SX(Σ) converging to f M-a.e.

M denotes a σ−bounded family of positive measures defined on Σ. This means that for each E ∈ Σ,

there exist pairwise disjoint collections {Ei}∞i=1, Ei ∈ Σ such that E =
∞⋃
i=1

Ei and SX(E) is a set of

all X valued simple functions. If f is M−measurable, then f is µ∞-measurable for each µ∞ ∈ M,
we define M(f) = sup

µ∞∈M
H

∫
T
||f ||d|x′µ∞|. In this paper, we consider all functions which are M−

measurable. Let MX(M) denote the space of all M− measurable functions f : T → X for which
M(f) < ∞, then MX(M) is complete with respect to the semi-norm M(.). If M(f) < ∞, then f is
integrable in MX(E).

Definition 1.4 ([23]). Let χ : [0,∞] → [0,∞] be a non-decreasing left-continuous function such that
χ(0) = 0. The inverse function ξ of χ is defined by ξ(0) = 0 and ξ(v) = sup{u : χ(u) < v}. If
lim
u→∞

χ(u) = A < ∞, then ξ(v) = ∞ for all v > A. The functions defined below

θ(u) =

u∫
0

χ(t)dt and ϕ(v) =

v∫
0

ξ(t)dt

are called conjugate Young’s functions and they satisfy Young’s inequality

uv ≤ θ(u) + ϕ(v), u, v ≥ 0.

2. Henstock–Orlicz Space and Vector Measure

If f ∈ H θ(|x′µ∞|), then there is a k > 0 such that θ( fk ) ∈ H(|x′µ∞|) = L1(|x′µ∞|), where

H(|x′µ∞|) and L1(|x′µ∞|) are the Henstock integrable space and the Lebesgue integrable space,
respectively. The space H θ(|x′µ∞|) endowed with the Lexemburg norm

||f ||H θ = inf

{
k > 0 : H

∫
T

θ

(
|f |
k

)
d|x′µ∞| ≤ 1

}
(2.1)

is a Banach space.

Definition 2.1. For an M−measurable function f : T → X, let us define

||f ||θ,M = sup
µ∞∈M

sup
g∈S (Σ)

{
H

∫
T

||fg||d|x′µ∞| : Mϕ(g) ≤ 1

}
. (2.2)
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Clearly, (2.1) and (2.2) are equivalent.

Definition 2.2 ([23]). If X and Y are two Banach spaces and µ∞ : Σ → L(X,Y ) is a countable
additive measure, then (θ,M)−variation of µ∞ is defined by

|µ∞|θ,M (E) = sup

n∑
i=1

||µ∞(Ei)xi|| for each E ∈ Σ.

Here, the supremum is taken over all simple functions f =
n∑

i=1

xich(Ei) belonging to SX(Σ) with

pairwise disjoint Ei ⊂ E and Mθ(f) ≤ 1. The (θ,M) semi-variation of µ∞, for E ∈ Σ is written as

||µ∞||θ,M (E) = sup

∥∥∥∥ n∑
i=1

µ∞(Ei)xi

∥∥∥∥,
where the supremum is taken over all simple functions f =

n∑
i=1

xich(Ei) belonging to SX(Σ) with

pairwise disjoint Ei ⊂ E and Mθ(f) ≤ 1.

Definition 2.3 ([23]). We call θ ∈ ∆2 if θ(2t) ≤ kθ(t), k > 0.

Theorem 2.1. H θ(M,X) is complete with respect to ||.||θ,M .

Proof. Suppose (fn)
∞
n=1 is a Cauchy sequence in (H θ(M,X), ||.||θ,M ), then ||fn − fm||θ,M ≤ 1

2 for

m > n. In general, nk, k ∈ N such that ||fn − fm||θ,M < 1
2k

for m > n. Since M is a σ−bounded,

we can write T =
∞⋃
i=1

Ei, Ei ∩ Ej = ∅ for i ̸= j and M(Ei) < ∞ for each i = 1, 2, . . . . Let t > 0 be

such that M(Ei)ϕ(t) ≤ 1. If g(x) = t on Ei and g(x) = 0 otherwise, then we have Mϕ(g) ≤ 1 and,
consequently, M(fn − fm) < ϵ for n,m ≥ M0 so, M(fn − fm) < ϵ

t for n,m ≥ M0. This implies that
{fn} is a Cauchy sequence in SX(M). As (fn) is Cauchy sequence in SX(M), there exist a positive
integer M1 and a function fM1 ∈ SX(M) such that M(fn − fM1) < 1

2 for n ≥ M1. Similarly, on

E2, M(fn−fM2
) < 1

22 for n ≥ M2 and so on. The series M(fM1
)+M(fM2

−fM1
)+ · · · is convergent.

The fact that SX(M) is complete implies that (fM1)+(fM2 −fM1)+ · · · converges a.e. to a function,
say f in SX(M), so, M(fn − f)(g) < ϵ whenever n ≥ M0 and Mϕ(g) ≤ 1. Thus fn − f ∈ H θ(M,X)
and we have f ∈ H θ(M,X). So, (H θ(M,X), ||.||θ,M ) is complete. □

Theorem 2.2. Let fn ∈ H θ(M,X). For n = 1, 2, . . . , then followings conditions are equivalent:

(1) f ∈ H θ(M,X) and ||fn − f ||θ,M → 0 as n → ∞.
(2) ||fn − fm||θ,M → 0 as m,n → ∞ and hence there exists a subsequence (fnk

) of (fn) such that
fnk

→ f M−a.e.

Proof. Proofs are similar to [22, Theorem 3.3]. □

Definition 2.4. We denote H(M,X) is the collection of all functions f : T → X which are
M−measurable and for which θ(||f ||) ∈ H(M,R), where H(M,R) are the Henstock–Kurzweil in-
tegrable function spaces.

Theorem 2.3. If f ∈ H θ(M,X), there exists a constant N > 0 such that Nf ∈ H(M,X). Moreover,
if f ∈ H θ(M,X) and f(x) ̸= 0, then

sup
µ∞∈M

H

∫
T

θ
( ||f ||
||f ||θ,M

)
d|x′µ∞| ≤ 1.

Proof. Let f ∈ H θ(M,X) and g ∈ S (Σ), we need to prove

H

∫
T

||fg||
||f ||θ,M

d|x′µ∞| ≤ max{1, µ∞ϕ
(g)}
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for each µ∞ ∈ M . If α > 1 and t > 0, then θ(αt) ≥ αϕ(t). So, let f ∈ H θ(M,X) and g ∈ S (Σ),
then

H

∫
T

||fg||d|x′µ∞| ≤ ||f ||θ,M ,provided µ∞ϕ
≤ 1. (2.3)

If 1 < µ∞ϕ
(g) < ∞, then

ϕ(|g|) = ϕ
(
µ∞ϕ

|g|
µ∞ϕ

(g)

)
≥ µ∞ϕ

(g)ϕ
( |g|
µ∞ϕ

(g)

)
.

That is, ϕ(|g|)
µ∞ϕ

(g) ≥ ϕ
(

|g|
µ∞ϕ

(g)

)
. So,

H

∫
T

ϕ
( |g|
µ∞ϕ

(g)

)
d|x′µ∞| ≤ H

∫
T

ϕ(|g|)
µ∞ϕ

(g)
d|x′µ∞|

≤ 1.

Thus H
∫
T

||fg||
µ∞ϕ

(g)d|x
′µ∞| ≤ ||f ||θ,M . This means

H

∫
T

||fg||d|x′µ∞| ≤ ||f ||θ,Mµ∞ϕ
(g). (2.4)

From (2.3) and (2.4), we get

H

∫
T

||fg||d|x′µ∞| ≤ ||f ||θ,M max{1, µ∞ϕ(g), }

i.e., H

∫
T

||fg||
||f ||θ,M

d|x′µ∞| ≤ max{1, µ∞ϕ
(g)}.

Next, suppose that f ∈ H θ(M,X) and ||f ||θ,M > 0, from here we get two cases.

Case 1. If f is positive bounded and has a support, say E, of finite M−measurable. Let g = f
||f ||θ,M .

Since g is bounded on E, ϕ(χ(||g||)) is bounded so, sup
µ∞∈M

H
∫
T
ϕ(χ(||g||))d|x′µ∞| exists. Now, allowing

the Young’s inequality to an equality, we obtain

sup
µ∞∈M

H

∫
T

θ(||g||)d|x′µ∞|

= sup
µ∞∈M

{
H

∫
T

θ(||g||)d|x′µ∞|+H

∫
T

ϕ(χ(||g||))d|x′µ∞| −H

∫
T

ϕ(χ(||g||))d|x′µ∞|
}

= sup
µ∞∈M

{
H

∫
T

||gχ(||g||)||d|x′µ∞| −H

∫
T

ϕ(χ(||g||))d|x′µ∞|
}
.

As χ(||g||) is a positive bounded M -measurable function, there exists a non-decreasing sequence of
positive simple functions {gn} such that gn → χ(||g||) M−a.e. and gn ≤ χ(||g||) and ||ggn|| ≤
||gχ(||g||)||. So, [5, Equation 7 of page 353],

sup
µ∞∈M

H

∫
T

||gχ(||g||)||d|x′µ∞| ≤ sup
µ∞∈M

lim
n

H

∫
T

||ggn||d|x′µ∞|.
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Hence

sup
µ∞∈M

H

∫
T

θ(||g||)d|x′µ∞| ≤ sup
µ∞∈M

max{1− µ∞ϕ
(χ||g||, 0)

≤ 1.

Case 2: Suppose f ∈ H θ(M,X) and ||f ||θ,M > 0. Since M is σ−bounded, we can choose increasing

sequences of sets {En} of finite M−measurable such that T =
∞⋃

n=1
En. Using (2.2) for M(||fn|| →

M ||f ||) for each n = 1, 2, . . . , we have

sup
µ∞∈M

H

∫
T

θ
( ||fn||
||fn||θ,M

)
d|x′µ∞| ≤ 1. □

Proposition 2.1. Suppose θ ∈ ∆2, then H θ(M,X) = H(M,X), also if fn ∈ H θ(M,X) with
sup

µ∞∈M
H

∫
T
θ(||fn||)d|x′µ∞| → 0, then ||fn||θ,M → 0.

Proof. Let f : T → X be an M−measurable function and g ∈ S (Σ). Then by Young’s inequality,

H

∫
T

||fg||d|x′µ∞| ≤ H

∫
T

θ(||f ||d|x′µ∞|.

So, if f ∈ H(M,X), then f ∈ H θ(M,X). Let f ∈ H θ(M,X) and ||f ||θ,M ̸= 0. Now, from The-

orem 2.3, f
||f ||θ,M ∈ H(M,X). Now, as f ∈ H θ(M,X) implies ||f ||θ,M < ∞, that is, ||f ||θ,M ≤

2m; m > 0. Therefore

θ(||f ||) = θ
( ||f ||
||f ||θ,M

)
||f ||θ,M

≤ 2mθ
( ||f ||
||f ||θ,M

)
.

Thus θ(||f ||) ∈ H(M,X), so, f ∈ H(M,X)). Hence H θ(M,X) = H(M,X). □

Theorem 2.4. SX(Σ) is dense in H θ(M,X).

Proof. Choose arbitrarily ϵ > 0 and f ∈ H θ(M,X), that is, g ∈ H(M,X) with

||g − f ||H θ(M,X) ≤
ϵ

N + 1
.

Moreover, in correspondence with ϵ and g, we find a Σ−simple function s, with

||s− g||H(M,X) ≤
ϵ

N + 1
.

As ||.||H θ(M,X) ≤ M ||.||H(M,X) hence we obtain

||s− f ||H θ(M,X) ≤ ||s− f ||H θ(M,X) + ||g − f ||H θ(M,X)

≤ N(||s− g||H(M,X)) + ||g − f ||H θ(M,X)

≤ Nϵ

N + 1
+

ϵ

N + 1
= ϵ.

So, SX(Σ) is dense in H θ(M,X). □

Proposition 2.2. Suppose µ∞ : Σ → L(X,Y ) is countable additive with ||µ∞X,Y
||(T ) < ∞, then

H θ(M,X) ⊂ H(µ∞X,Y
, X) and µ∞X,Y

(f) ≤ ||µ∞θ,M
||(T )||f ||θ,M for f ∈ H θ(M,X).
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Proof. Let f ∈ H θ(M,X). Then by Theorem 2.4, there is a sequence {fn} of simple functions

converging to f in H θ(M,X). Let y1 ∈ Y ′ be such that |y1| ≤ 1. If f =
n∑

i=1

xich(Ei) ∈ SX(E), then

H

∫
T

||f ||d|µ∞i
=

n∑
i=1

||xi|||µ∞y1
|(Ei).

Suppose ϵ > 0 is arbitrary and for each i, let {Fij} be a finite family of disjoint sets in Σ contained
in Ei such that

|µ∞yi
|(Ei) <

∑
ij

||µ∞y1
(Fij)||+

ϵ

n||xi||
.

Then

H

∫
T

||f ||d|µ∞y1
| <

∑
ij

||µ∞y1
(Fij)||||xi||+ ϵ.

For each Fij , we can choose an xij with ||xij || = 1 such that

||µ∞y1
(Fij)|| < |µ∞y1

(Fijxij)|+
ϵ

k
,

where k is a constant, and by Theorem 2.3,

H

∫
T

||f ||d|µ∞y1
| ≤

∑
ij

|µ∞y1
(Fij)xij ||xij |||+ ϵ

=
∑
i,j

∣∣∣µ∞y1
(Fij)xij

||xi||
||f ||θ,M

∣∣∣||f ||θ,M + ϵ

≤ |µ∞y1
|θ,M (T )||f ||θ,M + ϵ.

So,

H

∫
T

||f ||d|µ∞y1
| ≤ |µ∞y1

|θ,M (T )||f ||θ,M .

Therefore
µ∞X,Y

(f) ≤ ||µ∞||θ,M (T )||f ||θ,M .

From the above, we have

µ∞X,Y
(fn − fm) ≤ ||µ∞||θ,M (T )||fn − fm||θ,M .

This means that {fn} is the Cauchy sequence in H(µ∞X,Y
, X). Thus f ∈ H(µ∞X,Y

, X) as fn → f is

µ∞X,Y
-a.e. and µ∞X,Y

(fn−f) → 0 as n → ∞. So, µ∞X,Y
(f) ≤ ||µ∞θ,M

||(T )||f ||θ,M for f ∈ H θ(M,X)
as this is true for each n. □

We now prove that (H θ, ||.||H θ ) is a solid Banach lattice with a weak order unit. Recall, a partially
ordered Banach space Z, which is also a vector lattice, is a Banach lattice if ||x|| ≤ ||y|| for every
x, y ∈ Z with |x| ≤ |y|. A weak order unit of Z is a positive element e ∈ Z such that if x ∈ Z and
xΛe = 0, then x = 0. Let Z be a Banach lattice and A ̸= ∅ ⊂ B ⊂ Z. We say that A is solid in B if
for each x, y with x ∈ B, y ∈ A and |x| ≤ |y|, it is x ∈ A.

Theorem 2.5. (H θ, ||.||H θ ) is a solid Banach lattice with a weak order unit.

Proof. It is clear that (H θ, ||.||H θ ) is a solid normed lattice with respect to the usual order.
By the Rybakov theorem (see also [8, Theorem IX.2.2]), there is x′

1 ∈ X ′ with ||x′
1|| ≤ 1 such that

λ = x′
1µ∞ is a control measure of µ∞. If f, g ∈ H θ(|x′µ∞|), |f | ≤ |g| λ-a.e, k ∈ N and x′ ∈ X ′ with

||x′|| ≤ 1, then

inf
{
k > 0 : θ

( |f |
k

)
d|x′µ∞| ≤ 1

}
≤ inf

{
k > 0 : θ

( |g|
k

)
d|x′µ∞| ≤ 1

}
.

That is, ||f ||H θ ≤ ||g||H θ . So, (H θ(|x′µ∞|), ||.||H θ ) is a Banach lattice. Moreover, H θ(|x′µ∞|) is
easily a weak order unit. □
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Theorem 2.6. (H θ, ||.||H θ ) is a Köthe function spaces.

3. Integral Representations

We discuss the integral representations of operators from H θ(M,X) into Y. We assume that M is
relatively weakly compact in Ca(Σ), then we can find a control measure λ : Σ → R+ for M such that
λ ≤ M and M << λ.

Proposition 3.1. Let f : T → C be a λ−measurable function such that fg ∈ H(λ) for each g ∈
H θ(M), then sup{H

∫
T
|fg|dλ : g ∈ H θ(M), ||g||θ,M ≤ 1} < ∞.

Proof. If possible, let sup{H
∫
T
|fg|dλ : g ∈ H θ(M), ||g||θ,M ≤ 1} = ∞, then for each n, there exists

a sequence {gn} ⊂ H θ(M) with ||gn||θ,M ≤ 1 such that H
∫
T
|fgn|dλ ≥ n.2n. If g0(r) =

∞∑
n=1

1
2n |gn(r)|,

then

||g0||θ,M ≤ 1

2n
||gn||θ,M

≤
∞∑

n=1

1

2n

= 1.

So, g0 ∈ H θ(M) and hence fg0 ∈ H(λ), as

H

∫
T

|fg0|dλ ≥ 1

2n
H

∫
T

|fgn|dλ ≥ n for each n.

This implies that fg0 does not belong to H(λ). Hence

sup

{
H

∫
T

|fg|dλ : g ∈ H θ(M), ||g||θ,M ≤ 1

}
< ∞. □

We now discuss the existence of a countable additive measure for a continuous linear operator from
H θ(M,X) into Y.

Theorem 3.1. Suppose ∆ : H θ(M,X) → Y is a continuous linear operator, then there exists a
countable additive measure µ∞ : Σ → L(X,Y ) such that

∆f = H

∫
T

fdµ∞ for f ∈ H θ(M,X).

Proof. Suppose ∆ : H θ(M,X) → Y is a continuous linear operator. Let us define µ∞ : Σ → L(X,Y )
by µ∞(E)x = ∆(xch(E)). The linearity of µ∞(E), for each E ∈ Σ is very obvious. Also,

||µ∞(E)x|| = ||∆(xch(E))||
≤ ||∆||||xch(E)||θ,M
≤ ||∆||||ch(E)||θ,M ||x||.

Therefore ∆ is continuous linear operator. Now, we need to show that µ∞ is a countable additive
measure. Since

Mθ(ch(E)) = sup
µ∞∈M

H

∫
T

θ(ch(E))dµ∞

= θ(1)M(E).

If En → ∅, then Mθ(ch(En)) → 0. Using Proposition 2.1, ||ch(En)||θ,M → 0. Since µ∞ is finitely
additive, the above limit shows that µ∞ is countable additive and ∆f = H

∫
T
fdµ∞ for f ∈ SX(Σ).

Now, using Theorem 2.4, ∆f = H
∫
T
fdµ∞ for f ∈ H θ(M,X). □
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Theorem 3.2. If ∆ : H θ(M,X) → Y defined by ∆f = H
∫
T
fdµ∞ for f ∈ H θ(M,X) with

||µ∞||θ,M (T ) < ∞, then ||∆|| ≤ µ∞θ,M
(T ) ≤ 2||∆||.

We now show the converse of Theorem 3.2 holds for a countable additive measure.

Theorem 3.3. If µ∞ is a countable additive measure and ∆ : H θ(M,X) → Y defined by ∆f =
H

∫
T
fdµ∞ for f ∈ H θ(M,X) with ||µ∞||θ,M (T ) < ∞, then ∆ is a continuous linear operator.

Proof. Suppose µ∞ : Σ → L(X,Y ) is a countable additive measure such that ||µ∞||θ,M (T ) < ∞, then
the mapping ∆ : H θ(M,X) → Y defined by ∆f = H

∫
T
fdµ∞ for all f ∈ H θ(M,X) is linear. Also,

||∆f || = ||H
∫
T

fdµ∞||

= sup
||y1||≤1

∣∣∣∣H ∫
T

d|y1µ∞|
∣∣∣∣

≤ sup
||y1||≤1

H

∫
T

||f ||d|y1µ∞|

= µ∞X,Y
(f)

≤ ||µ∞||θ,M (T )||f ||θ,M using the Proposition 2.2.

Hence ∆ : H θ(M,X) → Y is continuous. □

4. Geometrical Properties

In this section, we discuss about the uniformly convexity, reflexivity of H θ(M,X) and the Radon–
Nikodym property of the Henstock–Orlicz spaces H θ(µ∞). Before we proceed to discussing the uni-
form convexity and reflexivity of H θ, we state about Modular spaces. The modular spaces can be
defined as Bθ,|x′µ∞|(f) = H

∫
T
θ(f)d|x′µ∞|. For a complementary Young’s functions θ and ϕ, we

define

µ∞ϕ
(g) = H

∫
T

ϕ(|g|)dµ∞, g ∈ S(Σ),

Mϕ(g) = sup
µ∞∈M

µ∞ϕ
(g).

Definition 4.1 ( [20]). A Banach space (X, ||.||) is uniformly convex if for each ϵ > 0, there exists
p(ϵ) ∈ (0, 1) such that ||x|| = ||y|| = 1, ||x− y|| ≥ ϵ implies ||x+y

2 || ≤ 1− p(ϵ).
Similarly, the modular Bθ,|x′µ∞| is uniformly convex if for each ϵ > 0, there exists p(ϵ) ∈ (0, 1) such

that Bθ,|x′µ∞|(x) = Bθ,|x′µ∞|(y) = 1, Bθ,|x′µ∞|(x− y) ≥ ϵ implies Bθ,|x′µ∞|(
x+y
2 ) ≤ 1− p(ϵ).

Proposition 4.1. Let θ satisfy the ∆2 condition with µ∞ is atomless and µ∞(T ) < ∞, then
H θ(M,X) is locally uniformly convex if and only if pseudomodular Bθ,|x′µ∞|(M,X) is locally uni-
formly convex.

Proof. Proof is similar to the technique of [17, Lemma 3]. □

Theorem 4.1. H θ(M,X) is uniformly convex if and only if the modular Bθ,|x′µ∞|(M,X) is uniformly
convex.

Proof. We can prove it by using Proposition 4.1 with similar technique [16, Lemma 1]. □

Theorem 4.2. Assume M is non-atomic, then H θ(M,X) is reflexive.

Proof. Uniform convex implies reflexivity, so, this is obvious. □
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Recalling a Banach space X is said to have Radon–Nikodym property, shortly RNP, if given a
finite measure spaces (T,Σ, µ) and a vector measure µ∞ : Σ → X of finite variation and absolutely
continuous with respect to µ∞, there exists a Bochner integrable function g : Ω → X such that
µ∞(E) =

∫
E
gdµ for any E ∈ Σ. The fact that the Bochner integral is McShane integral (see also [10]),

every McShane integral is a Henstock integral (see [14, page 158]). With this known fact, we can define
the Radon–Nikodym property as follows for our setting:

Definition 4.2. H θ(Ω) is said to have Radon–Nikodym property, shortly RNP, if given a finite
measure spaces (T,Σ, µ) and a vector measure µ∞ : Σ → H θ of finite variation and absolutely
continuous with respect to µ∞, there exists a Henstock integrable function g : T → H θ such that
µ∞(E) = H

∫
E
gdµ for any E ∈ Σ.

Definition 4.3. We say that f ∈ X has absolute norms if for every decreasing sequence {Gn} of a
subset of Ω satisfying µ(Gn) → 0, we have ||fch(Gn)|| → 0.

Theorem 4.3. (H θ, Hθ) has an absolutely continuous norm.

Proof. Let En = {x ∈ Ω : n ≤ θ(x) < n+1}, n ∈ N. Then there exists a sequence of natural numbers

{nk}k∈N such that µ∞(Enk
) > 0. Let ck > 0 be such that H

∫
Enk

c
θ(x)
k d|x′µ∞| = 1, k ∈ N.

We have f(x) =
∞∑
k=1

ckch(Enk
)(x), x ∈ Ω and Ej =

∞⋃
k=j

Enk
. Then En → ∅.

Now,

||f || = inf

{
λ > 0 : H

∫
Enk

θ

(
|f |
λ

)
d|x′µ∞| ≤ 1

}

≤ inf

{
λ > 1 :

∞∑
k=1

(
1

λ

)nk

≤ 1

}
≤ 2.

So, f ∈ H θ(µ∞). Hence

||fch(En)|| = inf

{
λ > 0 : H

∫
Enl

θ
(cl
λ

)
d|x′µ∞| ≤ 1

}
.

If µ∞(En) → 0 implies ||fch(En)|| → 0, so, H θ(µ∞) has an absolutely continuous norm. □

Theorem 4.4. Let T =
∞⋃

n=1
An be a union of measurable sets. If the subspace H θ

n = {f ∈ H θ : f =

0 on T \An} of H θ, then H θ has RNP.

Proof. Let (T,Σ, µ) be a finite measure space and let µ∞ : Σ → H θ be a vector measure of finite
variation which is absolutely continuous with respect to µ. We define projections Pn : H θ → H θ

n

by Pn(f) = fch(An) and µ∞n
= Pn(µ∞), then each µ∞n

is an H θ
n −valued vector measure of finite

variation which is absolutely continuous with respect to µ. With the fact that each space H θ
n has the

RNP, there exists a Henstock integrable function hn : T → H θ
n satisfying µ∞n(E) =

∫
T
hndµ for each

E ∈ Σ. Now, for E ∈ Σ and n ∈ N, we have

H

∫
E

∥∥∥∥ n∑
k=1

hk

∥∥∥∥
Hθ

dµ ≤ |µ∞|(E), (4.1)
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and so, for µ−almost all α ∈ Ω, there exists h(α) ∈ H θ such that h(α) =
∞∑
k=1

hk(α). Using (4.1) and

Fatou’s lemma, h is also Bochner integrable and so Henstock integrable. Finally,

µ∞(E) = lim
n→∞

n∑
k=1

µ∞k
(E)

= lim
n→∞

n∑
k=1

H

∫
E

hndµ

= H

∫
E

gdµ.

Hence the proof is complete. □

5. Conclusion

In this article, we discuss about Henstock–Orlicz space with vector measure. In Geometrical prop-
erty, we discuss about Uniform convexity, Reflexivity and, finally, about Radon Nikodym Property.
Our one purpose of this article was to discuss about RNP without ∆2 property, but we unable to
prove our assumed result “H θ(M,X) has RNP if and only if X has RNP”. In our research, to prove
the above result, we need Henstock differentiation. Interested Researcher can think about Henstock-
differentiation with the technique of Bochner differentiation.
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