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ON CERTAIN APPLICATIONS OF QUASI-POWER INCREASING SEQUENCES

HÜSEYİN BOR1∗ AND RAVI PRAKASH AGARWAL2

Abstract. Recently, in [7], we proved a main theorem dealing with the φ − | C,α |k summability

factors of infinite series. In the present paper, we have generalized this theorem for the φ−| C,α ∗ β |k
summability methods by using a quasi-f-power increasing sequence instead of an almost increasing
sequence. Some new results are also obtained.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exist a positive in-
creasing sequence (cn) and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [2]). A
positive sequence X = (Xn) is said to be a quasi-f-power increasing sequence if there exists a constant
K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm for all n ≥ m ≥ 1, where f = {fn(σ, δ)} = {nσ(log n)δ,
δ ≥ 0, 0 < σ < 1} (see [14]). If we take δ = 0, then we get a quasi-σ-power increasing sequence
and every almost increasing sequence is a quasi-σ-power increasing sequence for any non-negative σ,
but the converse need not be true as can be seen by taking Xn = n−σ (see [12]). For any sequence
(λn), we write that ∆λn = λn − λn+1. Let

∑
an be an infinite series. We denote by tα∗βn the nth

convolution Cesàro mean of order (α ∗ β), with α+ β > −1, of the sequence (nan), i.e., (see [8])

tα∗βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav, (1)

where

Aα+β
n ≃ nα+β

Γ (α+ β + 1)
, Aα+β

−n = 0 for n > 0.

Let (φn) be a sequence of complex numbers. The series
∑

an is said to be summable φ−| C,α ∗ β |k,
k ≥ 1, if (see [4])

∞∑
n=1

1

nk
| φnt

α∗β
n |k< ∞.

If we set β = 0, then the φ − | C,α ∗ β |k summability reduces to the φ − | C,α |k summability

(see [1]). If we take φn = n1− 1
k , then the φ− | C,α ∗ β |k summability is the same as the | C,α ∗ β |k

summability (see [9]). Also if we take φn = n1− 1
k and β = 0, then we have the | C,α |k summability

(see [10]). Furthermore, if we take φn = nδ+1− 1
k and β = 0, then the φ − | C,α ∗ β |k summability

reduces to | C,α; δ |k summability (see [11]). Finally, if we take φn = nδ+1− 1
k , then the φ−| C,α ∗ β |k

summability reduces to the | C,α ∗ β; δ |k summability (see [5]).

2. Known Result

The following main theorem dealing with absolute Cesàro summability factors of infinite series is
known.
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Theorem A ([7]). Let (φn) be a sequence of complex numbers and (wα
n) be a sequence defined by

(see [13])

wα
n =

{
|tαn| , α = 1

max1≤v≤n |tαv | , 0 < α < 1.

Let (κn) be a positive sequence and (Xn) be an almost increasing sequence. Suppose also that
there exists an ϵ > 0 such that the sequence (nϵ−k | φn |k) is non-increasing. If the conditions

∞∑
n=1

n
∣∣∆2λn

∣∣Xn < ∞, (2)

|λn|Xn = O(1) as n → ∞, (3)

κn = O(1) as n → ∞, (4)

n∆κn = O(1) as n → ∞, (5)
n∑

v=1

(| φv | wα
v )

k

vkXv
k−1

= O(Xn) as n → ∞

hold, then the series
∑

anλnκn is summable φ − | C,α |k, where 0 < α ≤ 1, ϵ + (α − 1)k > 0 and
k ≥ 1.

3. Main Result

The aim of this paper is to generalize Theorem A for the φ− | C,α ∗ β |k summability method by
taking a wider class of increasing sequences. Now, we prove the following main theorem.

Theorem. Let (φn) be a sequence of complex numbers and let (ωα∗β
n ) be a sequence defined by (see [3])

ωα∗β
n =


∣∣tα∗βn

∣∣ , α = 1, β > −1

max
1≤v≤n

∣∣tα∗βv

∣∣ , 0 < α < 1, β > −1.

Let (κn) be a positive sequence and let (Xn) be a quasi-f-power increasing sequence. Suppose also
that there exists an ϵ > 0 such that the sequence (nϵ−k | φn |k) is non-increasing. If the conditions
(2)–(5) and

n∑
v=1

(| φv | wα∗β
v )k

vkXv
k−1

= O(Xn) as n → ∞

hold, then the series
∑

anλnκn is summable φ− | C,α ∗ β |k, where 0 < α ≤ 1, ϵ+ (α+ β − 1)k > 0,
and k ≥ 1.

4. Lemmas

We need the following lemmas for the proof of theorem.

Lemma 1 ([3]). If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then∣∣∣∣ v∑
p=0

Aα−1
n−pA

β
pap

∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣ m∑
p=0

Aα−1
m−pA

β
pap

∣∣∣∣.
Lemma 2 ([6]). Under the conditions on (Xn) and (λn) as taken in the statement of the theorem,
the following conditions

nXn |∆λn| = O(1) as n → ∞,
∞∑

n=1

Xn |∆λn| < ∞

hold.
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5. Proof of the Theorem

Let (Tα∗β
n ) be the nth (C,α ∗ β) mean, with 0 < α ≤ 1, of the sequence (nanλnκn). Then by (1),

we have

Tα∗β
n =

1

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvavλvκv.

Now, applying Abel’s transformation first and then using Lemma 1, we obtain

Tα∗β
n =

1

Aα+β
n

n−1∑
v=1

∆(λvκn)

v∑
p=1

Aα−1
n−pA

β
ppap +

λnκn

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav

=
1

Aα+β
n

n−1∑
v=1

λv∆κv + κv+1∆λv

v∑
p=1

Aα−1
n−pA

β
ppap +

λnκn

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav.

|Tα∗β
n | ≤ 1

Aα+β
n

n−1∑
v=1

|λv∆κv|
∣∣∣∣ v∑
p=1

Aα−1
n−pA

β
ppap

∣∣∣∣+ 1

Aα+β
n

n−1∑
v=1

|κv+1∆λv|
∣∣∣∣ v∑
p=1

Aα−1
n−pA

β
ppap

∣∣∣∣
+

|λnκn|
Aα+β

n

∣∣∣∣ v∑
v=1

Aα−1
n−vA

β
vvav

∣∣∣∣
≤ 1

Aα+β
n

n−1∑
v=1

Aα+β
v wα∗β

v |λv||∆κv|+
1

Aα+β
n

n−1∑
v=1

Aα+β
v wα∗β

v |κv+1||∆λv|+ |λn||κn|wα∗β
n

=Tα∗β
n,1 + Tα∗β

n,2 + Tα∗β
n,3 .

To complete the proof, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

1

nk
| φnT

α∗β
n,r |k < ∞, for r = 1, 2, 3.

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k
+ 1

k′
= 1, we get

m+1∑
n=2

1

nk
| φnT

α∗β
n,1 |

k
≤

m+1∑
n=2

n−k(Aα+β
n )−k| φn |k

{ n−1∑
v=1

Aα+β
v wα∗β

v |∆κv||λv|
}k

=O(1)

m+1∑
n=2

| φn |k

nk+(α+β)k

n−1∑
v=1

v(α+β)k(wα∗β
v )k|∆κv|k|λv|k

{ n−1∑
v=1

1

}k−1

=O(1)

m+1∑
n=2

| φn |k

n1+(α+β)k

n−1∑
v=1

v(α+β)k(wα∗β
v )k|λv|k

1

vk

=O(1)

m∑
v=1

v(α+β)k(wα∗β
v )kv−k|λv|k

m+1∑
n=v+1

nϵ−k | φn |k

n1+ϵ+(α+β−1)k

=O(1)

m∑
v=1

v(α+β)k(wα∗β
v )kv−k|λv|kvϵ−k | φv |k

m+1∑
n=v+1

1

n1+ϵ+(α+β−1)k

=O(1)

m∑
v=1

v(α+β)k(wα∗β
v )kv−k|λv|kvϵ−k | φv |k

∞∫
v

dx

x1+ϵ+(α+β−1)k

=O(1)

m∑
v=1

(wα∗β
v )k|λv||λv|k−1 | φv |k

vk
= O(1)

m∑
v=1

|λv|
(wα∗β

v | φv |)k

vkXk−1
v
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=O(1)

m−1∑
v=1

∆|λv|
v∑

r=1

(wα∗β
r | φr |)k

rkXk−1
r

+O(1)|λm|
m∑

v=1

(wα∗β
v | φv |)k

vkXk−1
v

=O(1)

m∑
v=1

|∆λv|Xv +O(1)|λm|Xm = O(1) as m → ∞,

by the hypotheses of the theorem and Lemma 2. Again, we have

m+1∑
n=2

1

nk
| φnT

α∗β
n,2 |

k
≤

m+1∑
n=2

n−k(Aα+β
n )−k| φn |k

{ n−1∑
v=1

Aα+β
v wα∗β

v |κv+1||∆λv|
}k

=O(1)

m+1∑
n=2

| φn |k

nk+(α+β)k

{ n∑
v=1

vα+β(wα∗β
v )|∆λv|

}k

=O(1)

m+1∑
n=2

| φn |k

nk+(α+β)k

n−1∑
v=1

v(α+β)k(wα∗β
v )k|∆λv|k

{ n−1∑
v=1

1

}k−1

=O(1)

m+1∑
n=2

| φn |k

n1+(α+β)k

n−1∑
v=1

v(α+β)k(wα∗β
v )k|∆λv|k

=O(1)

m∑
v=1

v(α+β)k(wα∗β
v )k|∆λv||∆λv|k−1

m+1∑
n=v+1

| φn |k

n1+(α+β)k

=O(1)

m∑
v=1

v(α+β)k(wα∗β
v )k|∆λv||∆λv|k−1

m+1∑
n=v+1

nϵ−k | φn |k

n1+ϵ+(α+β−1)k

=O(1)

m∑
v=1

v(α+β)k(wα∗β
v )k|∆λv|

vk−1Xk−1
v

vϵ−k | φv |k
∞∫
v

dx

x1+ϵ+(α+β−1)k

=O(1)

m∑
v=1

v|∆λv|
(wα∗β

v | φv |)k

vkXk−1
v

=O(1)

m−1∑
v=1

∆(v|∆λv|)
v∑

r=1

(wα∗β
r | φr |)k

rkXk−1
r

+O(1)m|∆λm|
m∑

v=1

(wα∗β
v | φv |)k

vkXk−1
v

=O(1)

m−1∑
v=1

v|∆2λv|Xv +O(1)

m−1∑
v=1

Xv|∆λv|+O(1)m|∆λm|Xm

=O(1) as m → ∞,

by the hypotheses of the theorem and Lemma 2. Finally, as in Tα∗β
n,1 , we have that

m∑
n=1

1

nk
|Tα∗β

n,3 φn|k =

m∑
n=1

1

nk
|λn κn wα∗β

n φn|k = O(1)

m∑
n=1

|λn|
(wα∗β

n | φn |)k

nkXk−1
n

= O(1) as m → ∞,

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

6. Particular Cases

1. If we take β = 0 and (Xn) as an almost increasing sequence, then we have Theorem A.

2. Also, if we take φn = nδ+1− 1
k and β = 0, then we obtain a new result dealing with the | C,α; δ |k

summability factors of infinite series.
3. Finally, if we set φn = nδ+1− 1

k , then we have a new result concerning the | C,α ∗ β; δ |k summa-
bility factors of infinite series.
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