ON CERTAIN APPLICATIONS OF QUASI-POWER INCREASING SEQUENCES

HÜSEYİN BOR¹* AND RAVI PRAKASH AGARWAL²

Abstract. Recently, in [7], we proved a main theorem dealing with the $\varphi - |C, \alpha|_k$ summability factors of infinite series. In the present paper, we have generalized this theorem for the $\varphi - |C, \alpha|_k \leq |c|$ summability methods by using a quasi-f-power increasing sequence instead of an almost increasing sequence. Some new results are also obtained.

1. INTRODUCTION

A positive sequence (b_n) is said to be an almost increasing sequence if there exist a positive increasing sequence (c_n) and two positive constants M and N such that $Mc_n \leq b_n \leq Nc_n$ (see [2]). A positive sequence $X = (X_n)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K = K(X, f) \geq 1$ such that $Kf_nX_n \geq f_mX_m$ for all $n \geq m \geq 1$, where $f = \{f_n(\sigma, \delta)\} = \{n^{\sigma}(\log n)^{\delta}, \delta \geq 0, 0 < \sigma < 1\}$ (see [14]). If we take $\delta = 0$, then we get a quasi- σ -power increasing sequence and every almost increasing sequence is a quasi- σ -power increasing sequence for any non-negative σ , but the converse need not be true as can be seen by taking $X_n = n^{-\sigma}$ (see [12]). For any sequence (λ_n) , we write that $\Delta\lambda_n = \lambda_n - \lambda_{n+1}$. Let $\sum a_n$ be an infinite series. We denote by $t_n^{\alpha*\beta}$ the *n*th convolution Cesàro mean of order $(\alpha*\beta)$, with $\alpha + \beta > -1$, of the sequence (na_n) , i.e., (see [8])

$$t_n^{\alpha*\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v, \tag{1}$$

where

$$A_n^{\alpha+\beta} \simeq \frac{n^{\alpha+\beta}}{\Gamma(\alpha+\beta+1)}, \quad A_{-n}^{\alpha+\beta} = 0 \quad \text{for} \quad n > 0.$$

Let (φ_n) be a sequence of complex numbers. The series $\sum a_n$ is said to be summable $\varphi - |C, \alpha * \beta|_k$, $k \ge 1$, if (see [4])

$$\sum_{n=1}^{\infty} \frac{1}{n^k} \mid \varphi_n t_n^{\alpha * \beta} \mid^k < \infty.$$

If we set $\beta = 0$, then the $\varphi - |C, \alpha * \beta|_k$ summability reduces to the $\varphi - |C, \alpha|_k$ summability (see [1]). If we take $\varphi_n = n^{1-\frac{1}{k}}$, then the $\varphi - |C, \alpha * \beta|_k$ summability is the same as the $|C, \alpha * \beta|_k$ summability (see [9]). Also if we take $\varphi_n = n^{1-\frac{1}{k}}$ and $\beta = 0$, then we have the $|C, \alpha * \beta|_k$ summability (see [10]). Furthermore, if we take $\varphi_n = n^{\delta+1-\frac{1}{k}}$ and $\beta = 0$, then the $\varphi - |C, \alpha * \beta|_k$ summability reduces to $|C, \alpha; \delta|_k$ summability (see [11]). Finally, if we take $\varphi_n = n^{\delta+1-\frac{1}{k}}$, then the $\varphi - |C, \alpha * \beta|_k$ summability reduces to the $|C, \alpha * \beta; \delta|_k$ summability (see [5]).

2. KNOWN RESULT

The following main theorem dealing with absolute Cesàro summability factors of infinite series is known.

²⁰²⁰ Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05.

Key words and phrases. Cesàro mean; Absolute summability; Power increasing sequence; Hölder's inequality; Minkowski's inequality.

 $^{^{*}}$ Corresponding author.

Theorem A ([7]). Let (φ_n) be a sequence of complex numbers and (w_n^{α}) be a sequence defined by (see [13])

$$w_n^{\alpha} = \begin{cases} |t_n^{\alpha}|, & \alpha = 1\\ \max_{1 \le v \le n} |t_v^{\alpha}|, & 0 < \alpha < 1. \end{cases}$$

Let (κ_n) be a positive sequence and (X_n) be an almost increasing sequence. Suppose also that there exists an $\epsilon > 0$ such that the sequence $(n^{\epsilon-k} | \varphi_n |^k)$ is non-increasing. If the conditions

$$\sum_{n=1}^{\infty} n \left| \Delta^2 \lambda_n \right| X_n < \infty, \tag{2}$$

$$|\lambda_n| X_n = O(1) \quad \text{as} \quad n \to \infty, \tag{3}$$

$$\kappa_n = O(1) \quad \text{as} \quad n \to \infty,$$
(4)

$$n\Delta\kappa_n = O(1) \quad \text{as} \quad n \to \infty,$$
 (5)

$$\sum_{v=1}^{n} \frac{(\mid \varphi_v \mid w_v^{\alpha})^k}{v^k X_v^{k-1}} = O(X_n) \quad \text{as} \quad n \to \infty$$

hold, then the series $\sum a_n \lambda_n \kappa_n$ is summable $\varphi - |C, \alpha|_k$, where $0 < \alpha \le 1$, $\epsilon + (\alpha - 1)k > 0$ and $k \ge 1$.

3. Main Result

The aim of this paper is to generalize Theorem A for the $\varphi - |C, \alpha * \beta|_k$ summability method by taking a wider class of increasing sequences. Now, we prove the following main theorem.

Theorem. Let (φ_n) be a sequence of complex numbers and let $(\omega_n^{\alpha*\beta})$ be a sequence defined by (see [3])

$$\omega_n^{\alpha*\beta} = \begin{cases} \left| t_n^{\alpha*\beta} \right|, & \alpha = 1, \ \beta > -1 \\ \max_{1 \le v \le n} \left| t_v^{\alpha*\beta} \right|, & 0 < \alpha < 1, \ \beta > -1 \end{cases}$$

Let (κ_n) be a positive sequence and let (X_n) be a quasi-f-power increasing sequence. Suppose also that there exists an $\epsilon > 0$ such that the sequence $(n^{\epsilon-k} | \varphi_n |^k)$ is non-increasing. If the conditions (2)–(5) and

$$\sum_{v=1}^{n} \frac{(\mid \varphi_v \mid w_v^{\alpha * \beta})^k}{v^k X_v^{k-1}} = O(X_n) \quad \text{as} \quad n \to \infty$$

hold, then the series $\sum a_n \lambda_n \kappa_n$ is summable $\varphi - |C, \alpha * \beta|_k$, where $0 < \alpha \le 1$, $\epsilon + (\alpha + \beta - 1) k > 0$, and $k \ge 1$.

4. Lemmas

We need the following lemmas for the proof of theorem.

Lemma 1 ([3]). If $0 < \alpha \le 1$, $\beta > -1$, and $1 \le v \le n$, then

$$\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_p^{\beta} a_p\right| \leq \max_{1 \leq m \leq v} \left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_p^{\beta} a_p\right|.$$

Lemma 2 ([6]). Under the conditions on (X_n) and (λ_n) as taken in the statement of the theorem, the following conditions

$$nX_n |\Delta\lambda_n| = O(1) \quad as \quad n \to \infty,$$

$$\sum_{n=1}^{\infty} X_n |\Delta\lambda_n| < \infty$$

hold.

5. Proof of the Theorem

Let $(T_n^{\alpha*\beta})$ be the *n*th $(C, \alpha*\beta)$ mean, with $0 < \alpha \leq 1$, of the sequence $(na_n\lambda_n\kappa_n)$. Then by (1), we have

$$T_n^{\alpha*\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v \lambda_v \kappa_v.$$

Now, applying Abel's transformation first and then using Lemma 1, we obtain

$$\begin{split} T_n^{\alpha*\beta} &= \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta(\lambda_v \kappa_n) \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^\beta p a_p + \frac{\lambda_n \kappa_n}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v \\ &= \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} \lambda_v \Delta \kappa_v + \kappa_{v+1} \Delta \lambda_v \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^\beta p a_p + \frac{\lambda_n \kappa_n}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v. \\ &|T_n^{\alpha*\beta}| \leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} |\lambda_v \Delta \kappa_v| \left| \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^\beta p a_p \right| + \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} |\kappa_{v+1} \Delta \lambda_v| \left| \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^\beta p a_p \right| \\ &+ \frac{|\lambda_n \kappa_n|}{A_n^{\alpha+\beta}} \left| \sum_{v=1}^v A_{n-v}^{\alpha-1} A_v^\beta v a_v \right| \\ &\leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} A_v^{\alpha+\beta} w_v^{\alpha*\beta} |\lambda_v| |\Delta \kappa_v| + \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} A_v^{\alpha+\beta} w_v^{\alpha*\beta} |\kappa_{v+1}| |\Delta \lambda_v| + |\lambda_n| |\kappa_n| w_n^{\alpha*\beta} \\ &= T_{n,1}^{\alpha*\beta} + T_{n,2}^{\alpha*\beta} + T_{n,3}^{\alpha*\beta}. \end{split}$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^k} |\varphi_n T_{n,r}^{\alpha*\beta}|^k < \infty, \quad \text{for} \quad r = 1, 2, 3.$$

Now, when k > 1, applying Hölder's inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we get

$$\begin{split} \sum_{n=2}^{m+1} \frac{1}{n^k} |\varphi_n T_{n,1}^{\alpha*\beta}|^k &\leq \sum_{n=2}^{m+1} n^{-k} (A_n^{\alpha+\beta})^{-k} |\varphi_n|^k \left\{ \sum_{v=1}^{n-1} A_v^{\alpha+\beta} w_v^{\alpha*\beta} |\Delta\kappa_v| |\lambda_v| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{|\varphi_n|^k}{n^{k+(\alpha+\beta)k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta)k} (w_v^{\alpha*\beta})^k |\Delta\kappa_v|^k |\lambda_v|^k \left\{ \sum_{v=1}^{n-1} 1 \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{|\varphi_n|^k}{n^{1+(\alpha+\beta)k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta)k} (w_v^{\alpha*\beta})^k |\lambda_v|^k \frac{1}{v^k} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (w_v^{\alpha*\beta})^k v^{-k} |\lambda_v|^k \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k} |\varphi_n|^k}{n^{1+\epsilon+(\alpha+\beta-1)k}} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (w_v^{\alpha*\beta})^k v^{-k} |\lambda_v|^k v^{\epsilon-k} |\varphi_v|^k \sum_{n=v+1}^{m+1} \frac{1}{n^{1+\epsilon+(\alpha+\beta-1)k}} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (w_v^{\alpha*\beta})^k v^{-k} |\lambda_v|^k v^{\epsilon-k} |\varphi_v|^k \sum_{v=1}^{m+1} \frac{1}{n^{1+\epsilon+(\alpha+\beta-1)k}} \\ &= O(1) \sum_{v=1}^m (w_v^{\alpha*\beta})^k |\lambda_v| |\lambda_v|^{k-1} \frac{|\varphi_v|^k}{v^k} = O(1) \sum_{v=1}^m |\lambda_v| \frac{(w_v^{\alpha*\beta} |\varphi_v|)^k}{v^k X_v^{k-1}} \end{split}$$

H. BOR AND R. P. AGARWAL

$$=O(1)\sum_{v=1}^{m-1} \Delta |\lambda_v| \sum_{r=1}^{v} \frac{(w_r^{\alpha*\beta} |\varphi_r|)^k}{r^k X_r^{k-1}} + O(1) |\lambda_m| \sum_{v=1}^{m} \frac{(w_v^{\alpha*\beta} |\varphi_v|)^k}{v^k X_v^{k-1}}$$
$$=O(1)\sum_{v=1}^{m} |\Delta \lambda_v| X_v + O(1) |\lambda_m| X_m = O(1) \quad \text{as} \quad m \to \infty,$$

by the hypotheses of the theorem and Lemma 2. Again, we have

$$\begin{split} \sum_{n=2}^{m+1} \frac{1}{n^k} \Big| \varphi_n T_{n,2}^{\alpha+\beta} \Big|^k &\leq \sum_{n=2}^{m+1} n^{-k} (A_n^{\alpha+\beta})^{-k} \Big| \varphi_n \Big|^k \Big\{ \sum_{v=1}^{n-1} A_v^{\alpha+\beta} w_v^{\alpha+\beta} |\kappa_{v+1}| |\Delta\lambda_v| \Big\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{|\varphi_n|^k}{n^{k+(\alpha+\beta)k}} \Big\{ \sum_{v=1}^n v^{\alpha+\beta} (w_v^{\alpha+\beta}) |\Delta\lambda_v| \Big\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{|\varphi_n|^k}{n^{k+(\alpha+\beta)k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta)k} (w_v^{\alpha+\beta})^k |\Delta\lambda_v|^k \Big\{ \sum_{v=1}^{n-1} 1 \Big\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{|\varphi_n|^k}{n^{1+(\alpha+\beta)k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta)k} (w_v^{\alpha+\beta})^k |\Delta\lambda_v|^k \\ &= O(1) \sum_{v=1}^{m} v^{(\alpha+\beta)k} (w_v^{\alpha+\beta})^k |\Delta\lambda_v| |\Delta\lambda_v|^{k-1} \sum_{n=v+1}^{m+1} \frac{|\varphi_n|^k}{n^{1+(\alpha+\beta)k}} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (w_v^{\alpha+\beta})^k |\Delta\lambda_v| |\Delta\lambda_v|^{k-1} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k} |\varphi_n|^k}{n^{1+\epsilon+(\alpha+\beta-1)k}} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (w_v^{\alpha+\beta})^k |\Delta\lambda_v| |\Delta\lambda_v|^{k-1} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k} |\varphi_n|^k}{n^{1+\epsilon+(\alpha+\beta-1)k}} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (w_v^{\alpha+\beta})^k |\Delta\lambda_v| |\Delta\lambda_v|^{k-1} \sum_{v=1}^{m+1} \frac{n^{\epsilon-k} |\varphi_n|^k}{n^{1+\epsilon+(\alpha+\beta-1)k}} \\ &= O(1) \sum_{v=1}^m v |\Delta\lambda_v| \frac{(w_v^{\alpha+\beta}|\varphi_v|)^k}{v^k X_v^{k-1}} \\ &= O(1) \sum_{v=1}^m v |\Delta\lambda_v| \sum_{v=1}^v \frac{(w_v^{\alpha+\beta}|\varphi_v|)^k}{v^k X_v^{k-1}} + O(1)m|\Delta\lambda_m| \sum_{v=1}^m \frac{(w_v^{\alpha+\beta}|\varphi_v|)^k}{v^k X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta^2\lambda_v| X_v + O(1) \sum_{v=1}^{m-1} X_v |\Delta\lambda_v| + O(1)m|\Delta\lambda_m| X_m \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

by the hypotheses of the theorem and Lemma 2. Finally, as in $T_{n,1}^{\alpha*\beta}$, we have that

$$\sum_{n=1}^{m} \frac{1}{n^{k}} |T_{n,3}^{\alpha*\beta}\varphi_{n}|^{k} = \sum_{n=1}^{m} \frac{1}{n^{k}} |\lambda_{n} \kappa_{n} w_{n}^{\alpha*\beta}\varphi_{n}|^{k} = O(1) \sum_{n=1}^{m} |\lambda_{n}| \frac{(w_{n}^{\alpha*\beta}|\varphi_{n}|)^{k}}{n^{k} X_{n}^{k-1}} = O(1) \quad \text{as} \quad m \to \infty,$$

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

6. Particular Cases

1. If we take $\beta = 0$ and (X_n) as an almost increasing sequence, then we have Theorem A. 2. Also, if we take $\varphi_n = n^{\delta + 1 - \frac{1}{k}}$ and $\beta = 0$, then we obtain a new result dealing with the $|C, \alpha; \delta|_k$

2. Also, if we take $\varphi_n = n$ summability factors of infinite series. 3. Finally, if we set $\varphi_n = n^{\delta + 1 - \frac{1}{k}}$, then we have a new result concerning the $|C, \alpha * \beta; \delta|_k$ summability factors of infinite series.

References

- 1. M. Balci, Absolute φ -summability factors. Comm. Fac. Sci. Univ. Ankara Sér. A₁ Math. **29** (1980), no. 8, 63–68 (1981).
- N. K. Bari, S. B. Stečkin, Best approximations and differential properties of two conjugate functions. (Russian) Trudy Moskov. Mat. Obšč. 5 (1956), 483–522.
- 3. H. Bor, On a new application of power increasing sequences. Proc. Est. Acad. Sci. 57 (2008), no. 4, 205-209.
- 4. H. Bor, A newer application of almost increasing sequences, Pac. J. Appl. Math. 2 (2010), no. 3, 211–216.
- 5. H. Bor, An application of almost increasing sequences. Appl. Math. Lett. 24 (2011), no. 3, 298–301.
- 6. H. Bor, A new application of generalized power increasing sequences. *Filomat* **26** (2012), no. 3, 631–635.
- H. Bor, R. P. Agarwal, A new application of almost increasing sequences to factored infinite series. Anal. Math. Phys. 10 (2020), no. 3, Paper no. 26, 7 pp.
- 8. D. Borwein, Theorems on some methods of summability. Quart. J. Math. Oxford Ser. (2) 9 (1958), 310-316.
- 9. G. Das, A Tauberian theorem for absolute summability. Proc. Cambridge Philos. Soc. 67 (1970), 321–326.
- T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3) 7 (1957), 113–141.
- T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. (3) 8 (1958), 357–387.
- 12. L. Leindler, A new application of quasi power increasing sequences. Publ. Math. Debrecen 58 (2001), no. 4, 791–796.
- 13. T. Pati, The summability factors of infinite series. Duke Math. J. 21 (1954), 271-283.
- W. T. Sulaiman, Extension on absolute summability factors of infinite series. J. Math. Anal. Appl. 322 (2006), no. 2, 1224–1230.

(Received 11.12.2021)

¹P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

²DEPT. MATH., TEXAS A&M UNIVERSITY-KINGSVILLE, TEXAS 78363, USA Email address: hbor33@gmail.com Email address: ravi.agarwal@tamuk.edu