# ON CERTAIN APPLICATIONS OF QUASI-POWER INCREASING SEQUENCES 

HÜSEYİN BOR ${ }^{1 *}$ AND RAVI PRAKASH AGARWAL ${ }^{2}$


#### Abstract

Recently, in [7], we proved a main theorem dealing with the $\varphi-|C, \alpha|_{k}$ summability factors of infinite series. In the present paper, we have generalized this theorem for the $\varphi-|C, \alpha * \beta|_{k}$ summability methods by using a quasi-f-power increasing sequence instead of an almost increasing sequence. Some new results are also obtained.


## 1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants $M$ and $N$ such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [2]). A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left\{f_{n}(\sigma, \delta)\right\}=\left\{n^{\sigma}(\log n)^{\delta}\right.$, $\delta \geq 0,0<\sigma<1\}$ (see [14]). If we take $\delta=0$, then we get a quasi- $\sigma$-power increasing sequence and every almost increasing sequence is a quasi- $\sigma$-power increasing sequence for any non-negative $\sigma$, but the converse need not be true as can be seen by taking $X_{n}=n^{-\sigma}$ (see [12]). For any sequence $\left(\lambda_{n}\right)$, we write that $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. Let $\sum a_{n}$ be an infinite series. We denote by $t_{n}^{\alpha * \beta}$ the $n$th convolution Cesàro mean of order $(\alpha * \beta)$, with $\alpha+\beta>-1$, of the sequence ( $n a_{n}$ ), i.e., (see [8])

$$
\begin{equation*}
t_{n}^{\alpha * \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
A_{n}^{\alpha+\beta} \simeq \frac{n^{\alpha+\beta}}{\Gamma(\alpha+\beta+1)}, \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } \quad n>0
$$

Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers. The series $\sum a_{n}$ is said to be summable $\varphi-|C, \alpha * \beta|_{k}$, $k \geq 1$, if (see [4])

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} t_{n}^{\alpha * \beta}\right|^{k}<\infty
$$

If we set $\beta=0$, then the $\varphi-|C, \alpha * \beta|_{k}$ summability reduces to the $\varphi-|C, \alpha|_{k}$ summability (see [1]). If we take $\varphi_{n}=n^{1-\frac{1}{k}}$, then the $\varphi-|C, \alpha * \beta|_{k}$ summability is the same as the $|C, \alpha * \beta|_{k}$ summability (see [9]). Also if we take $\varphi_{n}=n^{1-\frac{1}{k}}$ and $\beta=0$, then we have the $|C, \alpha|_{k}$ summability (see [10]). Furthermore, if we take $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$ and $\beta=0$, then the $\varphi-|C, \alpha * \beta|_{k}$ summability reduces to $|C, \alpha ; \delta|_{k}$ summability (see [11]). Finally, if we take $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$, then the $\varphi-|C, \alpha * \beta|_{k}$ summability reduces to the $|C, \alpha * \beta ; \delta|_{k}$ summability (see [5]).

## 2. Known Result

The following main theorem dealing with absolute Cesàro summability factors of infinite series is known.

[^0]Theorem A ([7]). Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers and $\left(w_{n}^{\alpha}\right)$ be a sequence defined by (see [13])

$$
w_{n}^{\alpha}= \begin{cases}\left|t_{n}^{\alpha}\right|, & \alpha=1 \\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, & 0<\alpha<1\end{cases}
$$

Let $\left(\kappa_{n}\right)$ be a positive sequence and $\left(X_{n}\right)$ be an almost increasing sequence. Suppose also that there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing. If the conditions

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty  \tag{2}\\
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty  \tag{3}\\
\kappa_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty  \tag{4}\\
n \Delta \kappa_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty  \tag{5}\\
\sum_{v=1}^{n} \frac{\left(\left|\varphi_{v}\right| w_{v}^{\alpha}\right)^{k}}{v^{k} X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty
\end{gather*}
$$

hold, then the series $\sum a_{n} \lambda_{n} \kappa_{n}$ is summable $\varphi-|C, \alpha|_{k}$, where $0<\alpha \leq 1, \epsilon+(\alpha-1) \mathrm{k}>0$ and $\mathrm{k} \geq 1$.

## 3. Main Result

The aim of this paper is to generalize Theorem A for the $\varphi-|C, \alpha * \beta|_{k}$ summability method by taking a wider class of increasing sequences. Now, we prove the following main theorem.

Theorem. Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers and let $\left(\omega_{n}^{\alpha * \beta}\right)$ be a sequence defined by (see [3])

$$
\omega_{n}^{\alpha * \beta}= \begin{cases}\left|t_{n}^{\alpha * \beta}\right|, & \alpha=1, \quad \beta>-1 \\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha * \beta}\right|, & 0<\alpha<1, \quad \beta>-1\end{cases}
$$

Let $\left(\kappa_{n}\right)$ be a positive sequence and let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. Suppose also that there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing. If the conditions (2)-(5) and

$$
\sum_{v=1}^{n} \frac{\left(\left|\varphi_{v}\right| w_{v}^{\alpha * \beta}\right)^{k}}{v^{k} X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty
$$

hold, then the series $\sum a_{n} \lambda_{n} \kappa_{n}$ is summable $\varphi-|C, \alpha * \beta|_{k}$, where $0<\alpha \leq 1, \epsilon+(\alpha+\beta-1) \mathrm{k}>0$, and $\mathrm{k} \geq 1$.

## 4. Lemmas

We need the following lemmas for the proof of theorem.
Lemma 1 ([3]). If $0<\alpha \leq 1, \beta>-1$, and $1 \leq v \leq n$, then

$$
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right|
$$

Lemma $2([6])$. Under the conditions on $\left(X_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of the theorem, the following conditions

$$
\begin{gathered}
n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty
\end{gathered}
$$

hold.

## 5. Proof of the Theorem

Let $\left(T_{n}^{\alpha * \beta}\right)$ be the $n$th $(C, \alpha * \beta)$ mean, with $0<\alpha \leq 1$, of the sequence $\left(n a_{n} \lambda_{n} \kappa_{n}\right)$. Then by (1), we have

$$
T_{n}^{\alpha * \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v} \kappa_{v} .
$$

Now, applying Abel's transformation first and then using Lemma 1, we obtain

$$
\begin{aligned}
T_{n}^{\alpha * \beta}= & \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta\left(\lambda_{v} \kappa_{n}\right) \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n} \kappa_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \\
= & \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \lambda_{v} \Delta \kappa_{v}+\kappa_{v+1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n} \kappa_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} . \\
\left|T_{n}^{\alpha * \beta}\right| \leq & \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\lambda_{v} \Delta \kappa_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\kappa_{v+1} \Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right| \\
& +\frac{\left|\lambda_{n} \kappa_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{v} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
\leq & \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha * \beta}\left|\lambda_{v}\right|\left|\Delta \kappa_{v}\right|+\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha * \beta}\left|\kappa_{v+1}\right|\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right|\left|\kappa_{n}\right| w_{n}^{\alpha * \beta} \\
= & T_{n, 1}^{\alpha * \beta}+T_{n, 2}^{\alpha * \beta}+T_{n, 3}^{\alpha * \beta} .
\end{aligned}
$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, r}^{\alpha * \beta}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3 .
$$

Now, when $\mathrm{k}>1$, applying Hölder's inequality with indices k and $\mathrm{k}^{\prime}$, where $\frac{1}{\mathrm{k}}+\frac{1}{\mathrm{k}^{\prime}}=1$, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 1}^{\alpha * \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha * \beta}\left|\Delta \kappa_{v}\right|\left|\lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k+(\alpha+\beta) k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\Delta \kappa_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\beta) k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+\epsilon+(\alpha+\beta-1) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+\epsilon+(\alpha+\beta-1) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{1+\epsilon+(\alpha+\beta-1) k}} \\
& =O(1) \sum_{v=1}^{m}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\lambda_{v}\right|\left|\lambda_{v}\right|^{k-1} \frac{\left|\varphi_{v}\right|^{k}}{v^{k}}=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \frac{\left(w_{v}^{\alpha * \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \frac{\left(w_{r}^{\alpha * \beta}\left|\varphi_{r}\right|\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{\left(w_{v}^{\alpha * \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 2. Again, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 2}^{\alpha * \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha * \beta}\left|\kappa_{v+1}\right|\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k+(\alpha+\beta) k}}\left\{\sum_{v=1}^{n} v^{\alpha+\beta}\left(w_{v}^{\alpha * \beta}\right)\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k+(\alpha+\beta) k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\beta) k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\Delta \lambda_{v}\right|\left|\Delta \lambda_{v}\right|^{k-1} \sum_{n=v+1}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\beta) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\Delta \lambda_{v}\right|\left|\Delta \lambda_{v}\right|^{k-1} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+\epsilon+(\alpha+\beta-1) k}} \\
& =O(1) \sum_{v=1}^{m} \frac{v^{(\alpha+\beta) k}\left(w_{v}^{\alpha * \beta}\right)^{k}\left|\Delta \lambda_{v}\right|}{v^{k-1} X_{v}^{k-1} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{1+\epsilon+(\alpha+\beta-1) k}}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\left(w_{v}^{\alpha * \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{\left(w_{r}^{\alpha * \beta}\left|\varphi_{r}\right|\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{\left(w_{v}^{\alpha * \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 2. Finally, as in $T_{n, 1}^{\alpha * \beta}$, we have that

$$
\sum_{n=1}^{m} \frac{1}{n^{k}}\left|T_{n, 3}^{\alpha * \beta} \varphi_{n}\right|^{k}=\sum_{n=1}^{m} \frac{1}{n^{k}}\left|\lambda_{n} \kappa_{n} w_{n}^{\alpha * \beta} \varphi_{n}\right|^{k}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{\left(w_{n}^{\alpha * \beta}\left|\varphi_{n}\right|\right)^{k}}{n^{k} X_{n}^{k-1}}=O(1) \quad \text { as } \quad m \rightarrow \infty
$$

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

## 6. Particular Cases

1. If we take $\beta=0$ and $\left(X_{n}\right)$ as an almost increasing sequence, then we have Theorem A .
2. Also, if we take $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$ and $\beta=0$, then we obtain a new result dealing with the $|C, \alpha ; \delta|_{k}$ summability factors of infinite series.
3. Finally, if we set $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$, then we have a new result concerning the $|C, \alpha * \beta ; \delta|_{k}$ summability factors of infinite series.

## References

1. M. Balci, Absolute $\varphi$-summability factors. Comm. Fac. Sci. Univ. Ankara Sér. A $A_{1}$ Math. 29 (1980), no. 8, 63-68 (1981).
2. N. K. Bari, S. B. Stečkin, Best approximations and differential properties of two conjugate functions. (Russian) Trudy Moskov. Mat. Obsčč. 5 (1956), 483-522.
3. H. Bor, On a new application of power increasing sequences. Proc. Est. Acad. Sci. 57 (2008), no. 4, 205-209.
4. H. Bor, A newer application of almost increasing sequences, Pac. J. Appl. Math. 2 (2010), no. 3, $211-216$.
5. H. Bor, An application of almost increasing sequences. Appl. Math. Lett. 24 (2011), no. 3, 298-301.
6. H. Bor, A new application of generalized power increasing sequences. Filomat 26 (2012), no. 3, 631-635.
7. H. Bor, R. P. Agarwal, A new application of almost increasing sequences to factored infinite series. Anal. Math. Phys. 10 (2020), no. 3, Paper no. 26, 7 pp.
8. D. Borwein, Theorems on some methods of summability. Quart. J. Math. Oxford Ser. (2) 9 (1958), 310-316.
9. G. Das, A Tauberian theorem for absolute summability. Proc. Cambridge Philos. Soc. 67 (1970), 321-326.
10. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3) 7 (1957), 113-141.
11. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. (3) 8 (1958), 357-387.
12. L. Leindler, A new application of quasi power increasing sequences. Publ. Math. Debrecen 58 (2001), no. 4, $791-796$.
13. T. Pati, The summability factors of infinite series. Duke Math. J. 21 (1954), 271-283.
14. W. T. Sulaiman, Extension on absolute summability factors of infinite series. J. Math. Anal. Appl. 322 (2006), no. 2, 1224-1230.
(Received 11.12.2021)
${ }^{1}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey
${ }^{2}$ Dept. Math., Texas A\&M University-Kingsville, Texas 78363, USA
Email address: hbor33@gmail.com
Email address: ravi.agarwal@tamuk.edu

[^0]:    2020 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05.
    Key words and phrases. Cesàro mean; Absolute summability; Power increasing sequence; Hölder's inequality; Minkowski's inequality.

    * Corresponding author.

