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A NOTE ON THE CONVERGENCE OF WAVELET FOURIER SERIES

VARSHA KARANJGAOKAR1, NAMRATA SHRIVASTAV2 AND VISHNU NARAYAN MISHRA3∗

Abstract. In this paper, we discuss the rate of convergence of Wavelet Fourier series of periodic

functions. Our result generalizes the results of M. Skopina [13] [Localisation Principle for wavelet
expansion, self seminar system, Proceedings of the International Workshop, Dubna, (1999), 125-133]

and V. Karanjgaokar [5] et al. [On the rate of Convergence of Wavelet Fourier Series, Jñãnãbha,

51(1) (2021), 12-18], by introducing a general monotonically decreasing function Pn(x), satisfying
certain conditions.

1. Introduction

The concept of wavelet has been viewed as a synthesis of various ideas originated from different
disciplines including mathematics (see Loknath and Debnath [9]). It was observed that the computa-
tional efficiency of wavelet expansions is related to their multiresolution form and other well-studied
properties. Wavelets are local in time and frequency, and a wavelet basis for L2(R) consist of trans-
lations and dilations of one or more functions (see M. A. Kon [7]) and then wavelet becomes a very
important tool for signal analysis. Wavelet Fourier Series is a special type of wavelet expansion which
is a Fourier Series with wavelet bases. In this paper, we discuss the convergence of wavelet Fourier
Series.

The main aim of discovery of wavelets is to study the time-frequency signal analysis. Wavelets have
been introduced by A. Grossmann and J. Morlet [2], as functions whose translations and dilations could
be used for expansions in L2(R). The prototype of wavelets can be found in the works of A. Haar [3].
S. Mallat [10] and Y. Meyer, both independently developed the framework of multiresolution analysis
to generate orthonormal bases for L2(R). P. G. Lamarie and Y. Meyer [8] constructed wavelets in
S(Rn), the space of rapidly decreasing smooth functions.

In this paper, we are going to study the rate of convergence of Wavelet Fourier Series of periodic
functions, i.e., we analyse the convergence rate of Periodic Multiresolution Analysis (PMRA) of func-
tions f ∈ Lp(R), (1 ≤ p ≤ ∞). We generalize the results of M. Skopina [12] and V. Karanjgaokar
et al. [5] by introducing a general monotonically decreasing function of x and n, satisfying certain
specific conditions. For this purpose, first let us have a look on the following definitions.

1.1. Periodic multiresolution analysis (PMRA). The concept of PMRA has been defined and
used in Deng Feng and Si Long [1], Prestin and Selig [11] and Skopina [12]. Let ϕ ∈ L2(R) and
ψ ∈ L2(R) be respectively a scaling function of MRA and a wavelet function given by

ϕ̂(x) = m0

(x
2

)
ϕ̂
(x
2

)
and

ψ̂(x) = m0

(x+ 1

2

)
ϕ̂
(x
2

)
eiπx,

where m0 ∈ L2(T) is a low pass filter. The normalized integer shifts and scales of ψ given by

ψj,n(x) = 2
j
2ψ(2jx+ n), j, n ∈ Z
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constitute an orthonormal basis in L2(R). If both the functions ϕ and ψ have sufficient decay, then
the functions

Φj,n(x) = 2
j
2

∑
l∈Z

ϕ(2jx+ 2j l + n)

and

Ψj,n(x) = 2
j
2

∑
l∈Z

ψ(2jx+ 2j l + n)

are in L2(T) and the systems {Φj,n}2
j−1

n=0 and {Ψj,n}2
j−1

n=0 are orthonormal for each j = 0, 1, 2, . . . .
The spaces

Vj = span{Φj,n, n = 0, 1, 2, . . . , 2j − 1}

and

Wj = span{Ψj,n, n = 0, 1, 2, . . . , 2j − 1}

satisfy the properties:

V0 = {const}, Vj ⊂ Vj+1, Vj+1 = Vj ⊕Wj

and
∞⋃
j=0

Vj = L2(T),

for all j = 0, 1, 2, . . . . The collection {Vj}∞j=0 is called a periodic multiresolution analysis generated
by Φ.

1.2. Wavelet Fourier series (Skopina [13]). If f ∈ L2(T), then

⟨f,Φ0,0⟩Φ0,0 +

∞∑
j=0

2j−1∑
n=0

⟨f,Ψj,n⟩Ψj,n (1.1)

is called wavelet Fourier series. The double sum in (1.1) can be transformed into a single sum by
redenoting periodic wavelets as

w0 = Φ0,0, w2j+L = Ψj,L, 0 ≤ L ≤ 2j − 1,

and the series (1.1) can be rewritten as

∞∑
k=0

⟨f, wk⟩wk. (1.2)

Let SN (f) denote the Nth partial sum of (1.2), with N = 2j + L, 0 ≤ L < 2j − 1 and let S2j−1(f) be

an orthogonal projection of f onto Vj with {Φj,n}2
j−1

n=0 as orthonormal basis in Vj , then

S2j−1(f) =

2j−1∑
n=0

⟨f,Φj,n⟩Φj,n,

SN (f) =

2j−1∑
n=0

⟨f,Φj,n⟩Φj,n +

L∑
n=0

⟨f,Ψj,n⟩Ψj,n.

Set f = w0 = 1 in (1.2) and since ⟨f, wk⟩ = δ0,k, we have SN (f) = 1 for all N, j = 0, 1, 2, . . . . Hence

1∫
0

N∑
k=0

wk(x)wk(t)dt ≡ 1,

1∫
0

2j−1∑
k=0

Φj,k(x)Φj,k(t)dt ≡ 1.
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2. Theorems and Lemmas

This section includes the following Theorem 2.1 and Theorem 2.2, which will be generalized by our
Main Theorem. This section also includes the Lemmas used in the proof of our theorem.

Theorem 2.1 (Skopina [12]). Let ϕ, ψ ∈ L2(R) and n > 1 such that

|ϕ(x)|.|ψ(x)| ≤ C/(1 + |x|n),
f(x) = 0 for all x ∈ [x0 − δ, x0 + δ]. Then

SN (f, x0) = O(N1−n), N → ∞.

Theorem 2.2 (V. Karanjgaokar et al. [5]). Let ϕ,ψ ∈ L2 (R) and n > 1 such that.

|ϕ(x)|, |ψ(x)| ≤ C/(1 + |x|)n,
and if f(x) = 0 ∀x ∈ [x0 − δ, x0 + δ],where 0 < δ < 1/2, x0 ∈ R and C is a constant , then

SN (f, x0) = O(N1−n) as N → ∞.

Lemma 2.3. Let g and h be the functions defined on R, with max(|g(x)|, |h(x)|) = O(Pn(x)), where
Pn(x) is a function of x for each fixed positive integer n and is a positive monotonic decreasing function
of |x|, with the series

∑∞
k=0 Pn(x) converging for fixed n > 1. Then

1∫
0

f(t)

L∑
k=0

∑
l′∈Z

g(2jx+ 2j l′ + k)
∑
l∈Z

h(2jt+ 2j l + k)dt =

∞∫
−∞

f(t)
∑

v∈Z(j,L)

g(2jx+ v)h(2jt+ v)dt,

where Z(j, L) = {v ∈ Z : v = 2j l + k, l ∈ Z, k = 0, 1, . . . , L}. The proof of this lemma is trivial and
one can see the lemma for Pn(x) =

C
1+|x|n , n > 1 in M. Skopina [13].

Lemma 2.4 (Kelly et al. [6]). Let µ be a bounded decreasing and integrable function in [0,∞). Then
for all x, y ∈ R, ∑

k∈Z
|µ(x+ k)||µ(y + k)| ≤ Cµ

( |x− y|
4

)
,

where C is the constant depending only on µ.
The proof of this lemma is simple, its proof can be seen in M. Skopina [12] and Kelly et al. [6]. The
proof of this lemma for µ(x) = 1

(1+|x|)1+ϵ can be seen in V. Karanjgaokar [4].

3. Main Theorem

Theorem 3.1. Let ϕ, ψ ∈ L2(R) and let the inequalities

|ϕ(x)| = O(Pn|x|),
|ψ(x)| = O(Pn|x|),

hold, where for each fixed positive integer n, Pn(x) is a function of x, which is positive, integrable and
monotonic decreasing with |x| and that

∞∑
k=0

2j+kPn(2
j+k)

converges for each fixed n > 1 and all j = 0, 1, 2, . . . .

If for each fixed n > 1, there exists an F (n, j) > 0 such that
∞∑
k=0

2j+kPn(2
j+k) =

∞∑
k=j

2kPn(2
k) = F (n, j) (j = 0, 1, . . .),

then if f(x) = 0, ∀x ∈ [x0 − δ, x0 + δ], 0 < δ < 1
2 , x0 ∈ R, we have

SN (f, x0) = O(F (n,N)) as N → ∞.
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Note.

(1) Our result generalizes the result of M. Skopina [12] for Pn(x) =
C

1+|x|n for fixed n > 1 with

F (n, j) = 2j(1−n).
(2) Our result also generalizes the result of V. Karanjgaokar et al. [5] for Pn(x) = C

(1+|x|)n for

fixed n > 1 with F (n, j) = 2j(1−n).
(3) Four corollaries are given in Section 5, where we establish the results for different values of

Pn(x), in some of them the rate of convergence is found to be faster than that existing in the
results of M. Skopina [12] and V. Karanjgaokar et al. [5]

Proof of Theorem 3.1. Since

S2j−1(f, x0) =

2j−1∑
n=0

⟨f,Φj,n⟩Φj,n(x0)

=

1∫
0

f(t)

2j−1∑
n=0

Φj,n(t)Φj,n(x0)dt

=2j
1∫

0

f(t)

2j−1∑
n=0

∑
l∈Z

ϕ(2jt+ 2j l + n)ϕ(2jx0 + 2j l + n)dt,

therefore, using Lemma 2.3 and Lemma 2.4, we get

|S2j−1(f, x0)| ≤2j
∞∫

−∞

|f(t)|
∑

v∈Z(j,l)

|ϕ(2jt+ v)||ϕ(2jx0 + v)|dt

≤2j
∞∫

−∞

|f(t)|Pn|2j(t− x0)|dt

≤2j2

∞∫
0

|f(t)|Pn|2j(t− x0)|dt.

Let j0 denote the largest integer log2 δ. Using the hypothesis that Pn is monotonic, we have

|S2j−1(f, x0)| ≤2j+1
∞∑

k=j0

∫
2k≤|t−x0|≤2k+1

|f(t)|Pn|2j(t− x0)|dt

≤2j+1
∞∑

k=j0

Pn(2
j+k)

∫
|t−x0|≤2k

|f(t)|dt.

If

I(h) =
1

h

∫
|t−x0|<h

|f(t)|dt,

then I(h) is bounded on (0,∞). Indeed, I(h) = 0 for h < δ.

I(h) ≤ δ−1||f ||1 for δ < h < 1/2



A NOTE ON THE CONVERGENCE OF WAVELET FOURIER SERIES 81

and also

I(h) ≤ 1

h

∫
|t−x0|≤[h]+1

|f(t)|dt

≤2(h+ 1)

h
||f ||1

≤6||f ||1 for h ≥ 1

2
.

Thus

I(h) = O(1),

|S2j−1(f, x0)| = O(1)

∞∑
k=j0

2j+kPn(2
j+k) = O(F (n, j)). (3.1)

This proves the theorem forN=2j−1. In particular, we have proved that the sequence {S2j−1(f, x0)}
converges to 0. Now, for any positive integer N ,

−SN (f, x0) = (S2j−1(f, x0)− SN (f, x0)) +

∞∑
i=j

(S2i+1−1(f, x0)− S2i−1(f, x0)).

The result will be proved for arbitrary N, if we are able to establish the relation

S2j+L(f, x0)− S2j−1(f, x0) = O(F (n, j)) (3.2)

for all j = 0, 1, . . . , L = 0, 1, . . . , 2j − 1. Using the definition of SN (f, x0), the left-hand side of
equation (3.2) can be represented by

1∫
0

f(t)

L∑
k=0

Ψj,k(t)Ψj,k(x0)dt,

thus equation (3.2) can be proved similarly to equation (3.1) which completes the proof of the theorem.

4. Corollaries

Here, we present four corollaries for different values of Pn(x) two of which give faster rate of
convergence.

Corollary 4.1. Let

Pn(x) =
x−n

(log x)n
.

Then for N = 2j − 1,

SN (f, x0) = O
{ N1−n

(log(N + 1))n

}
, (N → ∞).

Proof. For x = 2j+k,

Pn(2
j+k) = (2(j+k)(−n)

)(log 2j+k)−n.

Hence
∞∑

k=j0

2j+k(Pn(2
j+k)) =

∞∑
k=j0

(2j+k)1−n(log 2j+k)−n

≤2j(1−n)(log 2j)−n
∞∑
k=0

(2k)1−n

=O(1)2j(1−n)(log 2j)−n

=O(1)(N + 1)1−n(log(N + 1))−n.
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Thus we take

F (n,N) = N1−n(log(N + 1))−n.

Substitute it into the main theorem to get the result. □

Corollary 4.2. Let

Pn(x) = x−n logn(x).

Then for N = 2j − 1,

SN (f, x0) = O{N (1−n)(log 2)n}, (N → ∞).

Compare this Pn(x) with Theorem 2.1 of Skopina [12].

Proof. For

x = 2j+k,

Pn(2
j+k) = (2(j+k))−n(log 2(j+k))n

and
∞∑

k=j0

2j+kPn(2
j+k) =

∞∑
k=j0

(2(j+k))(1−n)(j + k)n(log 2)n

=2j(1−n)(log 2)n
∞∑

k=j0

2k(1−n)(j + k)n

=O(1)(2j)(1−n)(log 2)n.

Since the series on the right-hand side converges by D’Alenbert’s ratio test, we have

F (n, j) = (2j)1−n(log 2)n

and

F (n,N) = (N + 1)(1−n)(log 2)n.

Substitute it in the main theorem to get the result. □

Note: for fixed positive integer n > 1,

x−n < x−n(log x)n, (x > 2).

Thus

Pn = O(x−n) ⇒ Pn(x) = O(x−n(log x)n),

i.e., a weaker condition but the ultimate (N + 1)(1−n)(log 2)n is sharper than (N + 1)(1−n).

Corollary 4.3. In our theorem, if we take Pn(x) = e−nx, (fixed n > 0), then

F (n, j) = 2je−n2j +
2j+1

en2j+1 − 2
. (4.1)

Note. The rate of convergence in equation (4.1) is faster than F (n, j) = 2j(1−n), (fixed n > 1)
in M. Skopina [12] and V. Karanjgaokar et al. [5].

Corollary 4.4. In our theorem, if we take Pn(x) =
1
nx log(1 +

n
x ), (fixed n > 0), then

F (n, j) =

∞∑
i=1

(−1)i−1 2i ni−1

2ij (2i − 1) i
≤ 1

2j−1 − n
,

which tends to zero as j tends to ∞.
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Note. If we take Pn(x) =
1
nx log(1 + 1

nx ), (fixed n > 1), then

F (n, j) ≤ 1

2j−1 − 1
,

which tends to zero as j tends to ∞.
Our results in this paper not only generalize the existing results but also give sufficient examples

of Pn(x) in the form of corollaries in which the rate of convergence is faster than that existing in the
results due to M. Skopina [12] and V. Karanjgaokar et al. [5]
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