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BOUNDEDNESS WEIGHTED CRITERIA FOR MULTILINEAR

RIEMANN-LIOUVILLE INTEGRAL OPERATORS

ALEXANDER MESKHI

Abstract. The necessary and sufficient condition on a weight function v governing the weighted
inequality

∥Rα(f1, . . . , fm)∥Lq
v(R+) ≤ C

m∏
k=1

∥fk∥Lpk (R+)

for the one-sided multilinear fractional integral operator

Rα(f1, . . . , fm)(x) =

∫
(0,x)m

f1(x− t1) . . . fm(x− tm)

(t1 + · · ·+ tm)m−α
dt1 . . . dtn

is established.

In this note, we present the weighted criteria for the weighted inequality

∥Rα(f1, . . . , fm)∥Lq
v(R+) ≤ C

m∏
k=1

∥fk∥Lpk (R+), fk ∈ Lpk(R+), k = 1, . . . ,m, (1)

and for the one-sided multilinear fractional integral operator

Rα(f1, . . . , fm)(x) =

∫
(0,x)m

f1(x− t1) . . . fm(x− tm)

(t1 + · · ·+ tm)m−α
dt1 . . . dtm.

Taking α = m, we have multilinear Hardy operator H := Rm. The two-weight criteria for H in the
bilinear case (i.e., for m = 2) were derived in [1].

The operator Rα is the one-sided variant of the multilinear fractional integral operator

Iγ(f1, . . . , fm )(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−γ
dy1 . . . dym, x ∈ Rn, 0 < γ < nm

(see also [2] for Rα).
The operator Iγ is a very natural intermediate operator (written in an m-linear form) between

(Iα1
f1)(Iα2

f2) and Bα1+α2
(f1, f2) (see [6]), where

Iγf(x) =

∫
Rn

f(y)

|x− y|n−γ
dy, x ∈ Rn, 0 < γ < n,

is the Riesz potential, and

Bα(f1, f2)(x) =

∫
Rn

f1(x+ t)f2(x− t)

|t|n−α
dt, 0 < α < n,

is the bilinear fractional integral operator introduced and studied in [3, 4].
The one-weight characterization for Iγ in terms of vector type Muckenhoupt–Wheeden condition

was given in [9], while the trace inequality criterion for Iγ in terms of D. Adams condition was found
in [7].
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Let 1 < s < ∞, Ω be a domain in Rn and w be an a positive a.e. locally integrable function
on Ω. Denote by Ls

w(Ω) the weighted Lebesgue space defined with respect to the norm ∥f∥Ls
w(Ω) :=( ∫

Ω

|f(x)|sw(x)dx
)1/s

.

We assume that p is defined by the identity

1

p
=

m∑
j=1

1

pj
. (2)

Theorem 1. Let 1 < min{p1, . . . , pm} ≤ max{p1, . . . , pm} ≤ q < ∞ and let α > 1/p, where p is
defined by (2). Then inequality (1) holds if and only if

sup
k

( 2k+1∫
2k

v(x)dx

)1/q

2k(α−1/p) < ∞. (3)

This statement for the linear case (i.e., for m = 1) was proved in [8] (see also [10]).
In the bilinear (m = 2) case, we have the following statement.

Theorem 2. Let m = 2, 1 < min{p1, p2} ≤ q < ∞ and let α > 1/p, where p is defined by (2). Then
inequality (1) holds if and only if condition (3) holds.

Finally, we mention that some one-weight estimates for Rα were derived in [5].
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