ON SOME VERSION OF RANDOM VARIABLES

ALEXANDER KHARAZISHVILI

Abstract. The notion of a generalized random variable is introduced in terms of extensions of a given probability measure. Some properties of generalized random variables are considered.

Let Ω be an uncountable set and let P be a continuous probability measure on Ω , i.e., P vanishes at all singletons in Ω . Denoting $S = \operatorname{dom}(P)$, we thus have a probability space (Ω, S, P) such that $P(\{\omega\}) = 0$ for every $\omega \in \Omega$.

Let $f: \Omega \to \mathbf{R}$ be a function, where \mathbf{R} is the real line.

We shall say that f is a generalized random variable (or a quasi-random variable, or a weak random variable) if there exists a measure P' on Ω which extends P and for which f becomes a random variable.

Accordingly, for a natural number n > 0, we shall say that a mapping $F : \Omega \to \mathbf{R}^n$ is a generalized random vector if there exists a measure P' on Ω which extends P and for which F becomes a random vector (the latter means that F is a measurable mapping from $(\Omega, \operatorname{dom}(P'), P')$ into $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, where $\mathcal{B}(\mathbf{R}^n)$ denotes, as usual, the Borel σ -algebra of \mathbf{R}^n).

Example 1. Clearly, if a probability P is defined on the family of all subsets of Ω , then any function $f: \Omega \to \mathbf{R}$ is a random variable (hence, a quasi-random variable). In this case, the concept of a generalized random variable becomes superfluous. However, such a case is very problematic, because, as is known, the statement that dom(P) always differs from the family of all subsets of Ω does not contradict the axioms of the contemporary **ZFC** set theory.

Example 2. Every real-valued function f on Ω whose range is at most countable (i.e., every real-valued step-function f) can be considered as a generalized random variable on Ω . Indeed, let

$$\operatorname{ran}(f) = \{r_0, r_1, \dots, r_k, \dots\}$$

and let $\Omega_k = f^{-1}(r_k)$ for each natural number k. Then the family $\{\Omega_k : k = 0, 1, ...\}$ forms a partition of Ω and, in view of the result obtained in [1], there exists a measure P' on Ω such that P' extends P and all sets Ω_k become P'-measurable. This immediately implies that f turns out to be a P'-measurable function and so, f is a generalized random variable. Observe that the real-valued step-functions on Ω form an algebra of functions and, simultaneously, a lattice of functions. This circumstance is sometimes useful in applications. However, the above-mentioned family is not closed under the standard limit operations of analysis.

The argument presented in Example 2 works for mappings $F : \Omega \to \mathbf{R}^n$, where *n* is a nonzero natural number. Namely, if the range of *F* is at most countable, then *F* can be considered as a generalized random vector.

In connection with Example 2, it makes sense to formulate the following statement which slightly strengthens the result of [1].

Theorem 1. Let (Ω, \mathcal{S}, P) be a probability space and let $\{A_i : i \in I\}$ be a family of subsets of Ω such that $P(A_i \cap A_j) = 0$ for any two distinct indices i and j from I.

Then there exists a probability P' on Ω which extends P and for which all sets A_i $(i \in I)$ are P'-measurable.

Example 3. Let Ω be an uncountable set and let P be a probability on Ω such that, for every set $A \subset \Omega$ with $\operatorname{card}(A) < \operatorname{card}(\Omega)$, one has P(A) = 0. Observe that if $\operatorname{card}(\Omega)$ is not cofinal with $\operatorname{card}(\mathbf{N})$,

²⁰²⁰ Mathematics Subject Classification. 28A05, 28D05.

Key words and phrases. Generalized random variable; Extension of measure; Absolutely nonmeasurable function.

where **N** denotes the set of all natural numbers, then such P can always be defined. According to one of Sierpiński's results (see, e.g., [10]), there exists a family $\{A_i : i \in I\}$ of subsets of Ω satisfying the following relations:

(1) $\operatorname{card}(I) > \operatorname{card}(\Omega);$

(2) $\operatorname{card}(A_i) = \operatorname{card}(\Omega)$ for each index $i \in I$;

(3) $\operatorname{card}(A_i \cap A_j) < \operatorname{card}(\Omega)$ for any two distinct indices *i* and *j* from *I*.

In view of Theorem 1, there exists a probability measure P' on Ω which extends P and for which all sets A_i $(i \in I)$ become P'-measurable.

Clearly, for a vector function $F: \Omega \to \mathbf{R}^n$, the following two assertions are equivalent:

(i) F is a random vector in the standard sense;

(ii) all functions $\operatorname{pr}_k \circ F$, where $k = 1, 2, \ldots, n$, are random variables in the standard sense.

For the concept of generalized random vectors, the above-mentioned equivalence fails to be true (cf. Theorem 3 below). At the same time, it can easily be seen that if $F : \Omega \to \mathbb{R}^n$ is a generalized random vector, then all functions $\mathrm{pr}_k \circ F$, where $k = 1, 2, \ldots, n$, are generalized random variables.

In the sequel, we shall say that a function $f: \Omega \to \mathbf{R}$ is absolutely nonmeasurable if f is not a generalized random variable for the trivial continuous probability measure P_0 on Ω , whose domain consists of all countable and co-countable subsets of Ω .

In other words, the absolute nonmeasurability of $f : \Omega \to \mathbf{R}$ means that there exists no nonzero σ -finite measure μ on Ω , vanishing at all singletons of Ω and such that f is measurable with respect to μ (cf. [2,5,6]).

In [2], a certain characterization of absolutely nonmeasurable real-valued functions was given (see also [5,6]). This characterization is based on the notion of an absolute null subset of **R**.

Recall that a set $X \subset \mathbf{R}$ is absolute null (of universal measure zero) if for any σ -finite continuous Borel measure ν on \mathbf{R} , one has $\nu^*(X) = 0$, where ν^* denotes the outer measure produced by ν .

There are very nontrivial examples of uncountable absolute null subsets of \mathbf{R} (see, for instance, [5,7–9]). In particular, any Luzin set in \mathbf{R} is absolute null. The existence of Luzin subsets of \mathbf{R} or of generalized Luzin subsets of \mathbf{R} needs additional set-theoretic hypotheses (cf. [7–9]). On the other hand, the existence of an uncountable absolute null sets in \mathbf{R} can be established within **ZFC** theory (see, e.g., [5], where a slightly more general result is presented).

Theorem 2. For a function $f : \Omega \to \mathbf{R}$, these two assertions are equivalent:

(1) f is absolutely nonmeasurable;

(2) ran(f) is an absolute null subset of \mathbf{R} and the set $f^{-1}(t)$ is at most countable for every point $t \in \mathbf{R}$.

The proof of Theorem 2 is not difficult and can be found in [5] and [6].

Suppose that a natural number $n \ge 2$ and a vector function $F : \Omega \to \mathbb{R}^n$ are given. This F can be written as $F = (f_1, f_2, \ldots, f_n)$, where each f_i is a real-valued function on Ω . Obviously, F produces exactly n vector functions F_1, F_2, \ldots, F_n , where

$$F_i = (f_1, f_2, \dots, f_{i-1}, f_{i+1}, \dots, f_n) \quad (i = 1, 2, \dots, n).$$

Using Theorem 2, one can obtain the following statement.

Theorem 3. Assume Martin's Axiom (MA). Let $\Omega = [0,1]$ and let P be the standard probability Lebesgue measure on [0,1].

There exists a vector function $F: [0,1] \to \mathbb{R}^n$ such that:

(1) any F_i (i = 1, 2, ..., n) is a random vector with respect to some measure P_i which extends P;

(2) the real-valued function $f_1 + f_2 + \cdots + f_n$ associated with F is injective and its range is a generalized Luzin subset of **R** (so, this function is absolutely nonmeasurable).

Consequently, every F_i (i = 1, 2, ..., n) is a generalized random vector, but F itself is not a generalized random vector.

Note that a result similar to Theorem 3 is formulated and proved in [5, Chapter 17]. Moreover, the mentioned result does not need any additional set-theoretical axioms so, it is provable within the **ZFC** set theory.

Observe that if $F: \Omega \to \mathbf{R}^n$ is a random vector and $G: \Omega \to \mathbf{R}^n$ is a generalized random vector, then their sum

$$F + G = (f_1 + g_1, f_2 + g_2, \dots, f_n + g_n)$$

and their product

$$F \cdot G = (f_1 \cdot g_1, f_2 \cdot g_2, \dots, f_n \cdot g_n)$$

are generalized random vectors.

A function $h : \mathbf{R}^n \to \mathbf{R}^m$ is called universally measurable if, for every Borel subset B of \mathbf{R}^m , the pre-image $h^{-1}(B)$ belongs to the domain of the completion of any σ -finite Borel measure on \mathbf{R}^n .

If h is universally measurable and $F : \Omega \to \mathbb{R}^n$ is a generalized random vector, then the composition $h \circ F : \Omega \to \mathbb{R}^m$ is also a generalized random vector.

Remark 1. In [3] and [4], the notion of an almost measurable function $f : \Omega \to \mathbf{R}$ was introduced and examined, where $\Omega = [0, 1]$ and P is the standard probability Lebesgue measure on Ω . It was also proved in those works that any almost measurable function turns out to be a generalized random variable.

In the analogous manner, the concept of an almost measurable vector function $F : \Omega \to \mathbf{R}^n$ can be defined and it can be proved that such F is a generalized random vector.

Theorem 4. Let $\Omega = [0, 1]$ and let P be again the standard Lebesgue probability measure on Ω . Under **MA**, there exists a vector function

$$G: \Omega \to \mathbf{R}^{\mathbf{N}}$$

satisfying the following relations:

(1) for any nonempty finite set $K \subset \mathbf{N}$, the vector function $\operatorname{pr}_{K} \circ G$ is a generalized random vector;

(2) for any infinite set $K \subset \mathbf{R}$, the vector function $\operatorname{pr}_K \circ G$ is absolutely nonmeasurable, i.e., there exists no continuous probability measure P' on Ω , for which $\operatorname{pr}_K \circ G$ becomes a measurable mapping acting from $(\Omega, \operatorname{dom}(P'), P')$ into $(\mathbf{R}^K, \mathcal{B}(\mathbf{R}^K))$.

Remark 2. The proof of the existence of G is based on the fact that under **MA** every generalized Luzin subset of **R** is of universal measure zero. Moreover, taking into account Example 2, one can additionally assert in the formulation of Theorem 4 that:

(a) the vector function G is injective;

(b) for each natural number n, the range of the function $pr_n \circ G$ is finite;

(c) all functions $\operatorname{pr}_n \circ G$, where $n \in \mathbf{N}$, are measurable with respect to some countably generated σ -algebra of subsets of Ω , which contains dom(P) and does not admit any continuous probability measure.

References

- 1. A. Ascherl, J. Lehn, Two principles for extending probability measures. Manuscripta Math. 21 (1977), no. 1, 43-50.
- A. Kharazishvili, Nonmeasurable Sets and Functions. North-Holland Mathematics Studies, 195. Elsevier Science B.V., Amsterdam, 2004.
- A. Kharazishvili, Almost measurable real-valued functions and extensions of the Lebesgue measure. Proc. A. Razmadze Math. Inst. 150 (2009), 135–138.
- 4. A. Kharazishvili, On almost measurable real-valued functions. Studia Sci. Math. Hungar. 47 (2010), no. 2, 257–266.
- A. Kharazishvili, Set Theoretical Aspects of Real Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
- A. Kharazishvili, A. Kirtadze, On the measurability of functions with respect to certain classes of measures. Georgian Math. J. 11 (2004), no. 3, 489–494.
- K. Kuratowski, *Topology.* vol. I. New edition, revised and augmented Translated from the French by J. Jaworowski Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw 1966.
- J. C. Morgan II, *Point Set Theory*. Monographs and Textbooks in Pure and Applied Mathematics, 131. Marcel Dekker, Inc., New York, 1990.
- J. C. Oxtoby, *Measure and Category*. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, vol. 2. Springer-Verlag, New York-Berlin, 1971.
- W. Sierpiński, Cardinal and Ordinal Numbers. Polska Akademia Nauk. Monografie Matematyczne, Tom 34 Państwowe Wydawnictwo Naukowe, Warsaw 1958.

A. KHARAZISHVILI

(Received 18.02.2023)

A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 2 MERAB ALEKSIDZE II LANE, TBILISI 0193, GEORGIA

I. VEKUA INSTITUTE OF APPLIED MATHEMATICS, 2 UNIVERSITY Str., TBILISI 0186, GEORGIA $\mathit{Email}\ address:\ \texttt{kharaz2@yahoo.com}$