DARBOUX TYPE MULTI-DIMENSIONAL PROBLEM FOR A CLASS OF HIGHER-ORDER NONLINEAR HYPERBOLIC EQUATIONS

TEONA BIBILASHVILI

Abstract

Darboux type multi-dimensional problem for a class of higher-order nonlinear hyperbolic equations is considered. The theorems on the existence, uniqueness and nonexistence of solutions of this problem are proved.

1. Introduction

In the Euclidean space \mathbb{R}^{n+1} of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t, we consider the following nonlinear hyperbolic equation with an iterated wave operator in the main part:

$$
\begin{equation*}
\square^{2} u+f(\square u)+g(u)=F(x, t), \tag{1.1}
\end{equation*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, f, g$ and F are given, while u is an unknown scalar function, $n \geq 2$.
Denote by $D_{T}:|x|<t<T, x_{n}>0$, a conical domain which is bounded by the half $S_{T}: t=|x|$, $x_{n} \geq 0,0 \leq t \leq T$ of the truncated characteristic conoid $S: t=|x|$, temporal orientation surface $\Gamma_{1, T}: x_{n}=0,|x| \leq t \leq T$ and the plane $t=T$.

For equation (1.1) in the domain D_{T} consider the following boundary value problem: find the solution $u=u(x, t)$ of the equation (1.1) in the domain D_{T}, which satisfies the following homogeneous conditions on the parts of the boundary S_{T} and $\Gamma_{1, T}$

$$
\begin{gather*}
\left.u\right|_{S_{T}}=0,\left.\quad \frac{\partial u}{\partial \nu}\right|_{S_{T}}=0 \tag{1.2}\\
\left.u\right|_{\Gamma_{1, T}}=0,\left.\quad \frac{\partial^{2} u}{\partial x_{n}^{2}}\right|_{\Gamma_{1, T}}=0 \tag{1.3}
\end{gather*}
$$

where ν is a unit vector of outer normal with respect to the boundary ∂D_{T}.
It should be noted that other boundary value problems posed for equation (1.1) have been investigated in papers [1-3].

Remark 1.1. If u, where $u, \square u \in C^{2}\left(\bar{D}_{T}\right)$, represents the classical solution of problem (1.1)-(1.3), then by introducing the function $\nu=\square u$, this problem can be reduced with respect to the unknown functions u and ν to the following boundary value problem:

$$
\begin{gather*}
L_{1}(u, \nu):=\square u-\nu=0, \quad(x, t) \in D_{T}, \tag{1.4}\\
L_{2}(u, v):=\square u+f(v)+g(u)=F(x, t), \quad(x, t) \in D_{T}, \tag{1.5}\\
\left.u\right|_{S_{T}}=0,\left.\quad u\right|_{\Gamma_{1, T}}=0, \tag{1.6}\\
\left.v\right|_{S_{T}}=0,\left.\quad v\right|_{\Gamma_{1, T}}=0 . \tag{1.7}
\end{gather*}
$$

Vice versa, if $u, v \in C^{2}\left(\bar{D}_{T}\right)$ represents the classical solution of problem (1.4)-(1.7), then the function u will be the classical solution of problem (1.1)-(1.3).

[^0]Definition 1.1. Let $f, g \in C(\mathbb{R}), F \in L_{2}\left(D_{T}\right)$. The system of functions u and v is called a generalized solution of the class W_{2}^{1} of problem (1.4)-(1.7) if

$$
u, v \in \stackrel{0}{W_{2}^{1}}\left(D_{T}, S_{T}, \Gamma_{1, T}\right):=\left\{w \in W_{2}^{1}\left(D_{T}\right):\left.w\right|_{S_{T} \cup \Gamma_{1, T}}=0\right\}
$$

and there exists the sequence

$$
u_{m}, v_{m} \in \stackrel{0}{C^{2}}\left(\bar{D}_{T}, S_{T}, \Gamma_{1, T}\right):=\left\{w \in C^{2}\left(\bar{D}_{T}\right):\left.w\right|_{S_{T} \cup \Gamma_{1, T}}=0\right\}
$$

such that

$$
\begin{gathered}
\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|v_{m}-v\right\|_{W_{2}^{1}\left(D_{T}\right)}=0 \\
\lim _{m \rightarrow \infty}\left\|L_{1}\left(u_{m}, v_{m}\right)\right\|_{L_{2}\left(D_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{2}\left(u_{m}, v_{m}\right)-F\right\|_{L_{2}\left(D_{T}\right)}=0
\end{gathered}
$$

where $W_{2}^{1}\left(D_{T}\right)$ is the well-known Sobolev space.
Remark 1.2. It is clear that the classical solution $u, v \in{ }_{C}^{0}\left(\bar{D}_{T}, S_{T}, \Gamma_{1, T}\right)$ of problem (1.4)-(1.7) represents the generalized solution of the class $W_{2}^{1}\left(D_{T}\right)$ of this problem.

2. Main Results

The following lemma holds.
Lemma 2.1. Let $f, g \in C(\mathbb{R}), F \in L_{2}\left(D_{T}\right)$. Then for any generalized solution u, v of the class W_{2}^{1} of problem (1.4)-(1.7), the following inequality:

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}\right)} \leq c\|v\|_{L_{2}\left(D_{T}\right)} \tag{2.1}
\end{equation*}
$$

where the constant $c>0$ does not depend on the functions u, v and F, is true.
Consider the following conditions imposed on the functions f and g

$$
\begin{gather*}
\int_{0}^{s} f(\tau) d \tau \geq-M_{1}-M_{2} s^{2} \quad \forall s \in \mathbb{R}, \quad M_{i}=\mathrm{const} \geq 0, \quad i=1,2 \tag{2.2}\\
g \in C(\mathbb{R}), \quad|g(s)| \leq N_{1}+N_{2}|s| \quad \forall s \in \mathbb{R}, \quad N_{i}=\mathrm{const} \geq 0, \quad i=1,2 \tag{2.3}
\end{gather*}
$$

Based on the inequalities (2.1)-(2.3), we prove the following lemma about the a priori estimate for the generalized solution of the class W_{2}^{1} of problem (1.4)-(1.7).

Lemma 2.2. Let $f, g \in C(\mathbb{R}), F \in L_{2}\left(D_{T}\right)$, and the functions f and g satisfy conditions (2.2), (2.3). Then for any generalized solution u, v of the class W_{2}^{1} of problem (1.4)-(1.7), the following a priori estimate

$$
\|u\|_{W_{2}^{1}\left(D_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2}, \quad\|v\|_{W_{2}^{1}\left(D_{T}\right)} \leq c_{3}\|F\|_{L_{2}\left(D_{T}\right)}+c_{4}
$$

is valid; here, the constants $c_{i}=$ const $\geq 0, i=1, \ldots, 4$, do not depend on the functions u, v and F, and at the same time $c_{1}>0, c_{3}>0$.

Using Lemma 2.2, the following theorem is proved.
Theorem 2.1. Let the functions $f, g \in C(\mathbb{R})$ satisfy conditions (2.2), (2.3) and

$$
\begin{equation*}
|f(v)| \leq \gamma_{1}+\gamma_{2}|v|^{\alpha} \forall v \in \mathbb{R}, \quad 0 \leq \alpha=\text { const }<\frac{n+1}{n-1} \tag{2.4}
\end{equation*}
$$

where $\gamma_{i}=\mathrm{const} \geq 0, i=1,2$. Then for any function $F \in L_{2}\left(D_{T}\right)$, problem (1.4)-(1.7) has at least one generalized solution of the class W_{2}^{1} in the sense of Definition 1.1; besides, if, in addition, the functions f and g satisfy the conditions

$$
\begin{array}{ll}
f \epsilon C^{1}(\mathbb{R}), & \left|f^{\prime}(s)\right| \leq d_{1}+d_{2}|s|^{\gamma} \\
g \epsilon C^{1}(\mathbb{R}), & \left|g^{\prime}(s)\right| \leq d_{3}+d_{4}|s|^{\gamma} \quad \forall s \in \mathbb{R},
\end{array}
$$

where $d_{i}=\mathrm{const} \geq 0, i=1, \ldots, 4 ; 0 \leq \gamma=\mathrm{const}<\frac{2}{n-1}$, then we have also the uniqueness of the solution.

Now, let us consider one case in which problem (1.4)-(1.7) does not have a solution.
Theorem 2.2. Let $g=0$ and the function $f \in C(\mathbb{R})$ satisfy condition (2.4) and

$$
\begin{equation*}
f(s) \leq-|s|^{p} \quad \forall s \in \mathbb{R}, \quad p=\mathrm{const}>1 \tag{2.5}
\end{equation*}
$$

$F=\lambda F_{0}$, where $\left.F_{0}\right|_{D_{T}}>0, F_{0} \in L_{2}\left(D_{T}\right)$. Then there exists a number $\lambda_{0}=\lambda_{0}\left(F_{0}, p\right)>0$ such that for $\lambda>\lambda_{0}$, problem (1.4)-(1.7) does not have a generalized solution of the class W_{2}^{1} in the sense of Definition 1.1.

Note that when condition (2.5) holds, then condition (2.2) violates.

References

1. S. Kharibegashvili, On the solvability of the Cauchy characteristic problem for a nonlinear equation with iterated wave operator in the principal part. J. Math. Anal. Appl. 338 (2008), no. 1, 71-81.
2. S. Kharibegashvili, B. Midodashvili, Solvability of characteristic boundary-value problems for nonlinear equations with iterated wave operator in the principal part. Electron. J. Differential Equations 2008, no. 72, 1-12.
3. S. Kharibegashvili, B. Midodashvili, On one boundary value problem for a nonlinear equation with the iterated wave operator in the principal part. Georgian Math. J. 15 (2008), no. 3, 541-554.
(Received 11.11.2022)
Georgian Technical University, 77 Kostava Str., Tbilisi 0160, Georgia
Email address: teonabibilashvili12@gmail.com

[^0]: 2020 Mathematics Subject Classification. 35G30.
 Key words and phrases. Nonlinear higher-order hyperbolic equations; Darboux type multi-dimensional problem; Existence; Uniqueness and nonexistence of solutions.

