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DARBOUX TYPE MULTI-DIMENSIONAL PROBLEM FOR A CLASS OF

HIGHER-ORDER NONLINEAR HYPERBOLIC EQUATIONS

TEONA BIBILASHVILI

Abstract. Darboux type multi-dimensional problem for a class of higher–order nonlinear hyperbolic
equations is considered. The theorems on the existence, uniqueness and nonexistence of solutions of

this problem are proved.

1. Introduction

In the Euclidean space Rn+1 of variables x = (x1, . . . , xn) and t, we consider the following nonlinear
hyperbolic equation with an iterated wave operator in the main part:

□2u+ f (□u) + g (u) = F (x, t) , (1.1)

where □ : = ∂2

∂t2 −
n∑

i=1

∂2

∂x2
i
, f , g and F are given, while u is an unknown scalar function, n ≥ 2.

Denote by DT : |x| < t < T , xn > 0, a conical domain which is bounded by the half ST : t = |x|,
xn ≥ 0, 0 ≤ t ≤ T of the truncated characteristic conoid S : t = |x| , temporal orientation surface
Γ1,T : xn = 0, |x| ≤ t ≤ T and the plane t = T .

For equation (1.1) in the domain DT consider the following boundary value problem: find the
solution u = u (x, t) of the equation (1.1) in the domain DT , which satisfies the following homogeneous
conditions on the parts of the boundary ST and Γ1,T

u|ST
= 0,

∂u

∂ν
|ST

= 0, (1.2)

u|Γ1,T
= 0,

∂2u

∂x2
n

|Γ1,T
= 0, (1.3)

where ν is a unit vector of outer normal with respect to the boundary ∂DT .
It should be noted that other boundary value problems posed for equation (1.1) have been investi-

gated in papers [1–3].

Remark 1.1. If u, where u,□u ∈ C2
(
DT

)
, represents the classical solution of problem (1.1)–(1.3),

then by introducing the function ν = □u, this problem can be reduced with respect to the unknown
functions u and ν to the following boundary value problem:

L1 (u, ν) := □u− ν = 0, (x, t) ∈ DT , (1.4)

L2 (u, v) := □u+ f (v) + g (u) = F (x, t) , (x, t) ∈ DT , (1.5)

u|ST
= 0, u|Γ1,T

= 0, (1.6)

v|ST
= 0, v|Γ1,T

= 0. (1.7)

Vice versa, if u, v ∈ C2
(
DT

)
represents the classical solution of problem (1.4)–(1.7), then the

function u will be the classical solution of problem (1.1)–(1.3).
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Definition 1.1. Let f, g ∈ C (R), F ∈ L2 (DT ). The system of functions u and v is called a generalized
solution of the class W 1

2 of problem (1.4)–(1.7) if

u, v ∈
0

W 1
2 (DT , ST ,Γ1,T ) :=

{
w ∈ W 1

2 (DT ) : w|ST∪Γ1,T
= 0

}
and there exists the sequence

um, vm ∈
0

C2
(
DT , ST ,Γ1,T

)
:=

{
w ∈ C2

(
DT

)
: w|ST∪Γ1,T

= 0
}

such that

lim
m→∞

∥um − u∥W 1
2 (DT ) = 0, lim

m→∞
∥vm − v∥W 1

2 (DT ) = 0,

lim
m→∞

∥L1 (um, vm)∥L2(DT ) = 0, lim
m→∞

∥L2 (um, vm)− F∥L2(DT ) = 0,

where W 1
2 (DT ) is the well-known Sobolev space.

Remark 1.2. It is clear that the classical solution u, v ∈
0

C2
(
DT , ST ,Γ1,T

)
of problem (1.4)–(1.7)

represents the generalized solution of the class W 1
2 (DT ) of this problem.

2. Main Results

The following lemma holds.

Lemma 2.1. Let f, g ∈ C (R), F ∈ L2 (DT ). Then for any generalized solution u, v of the class W 1
2

of problem (1.4)–(1.7), the following inequality:

∥u∥W 1
2 (DT ) ≤ c∥v∥L2(DT ), (2.1)

where the constant c > 0 does not depend on the functions u, v and F , is true.

Consider the following conditions imposed on the functions f and g
s∫

0

f (τ) dτ ≥ −M1 −M2s
2 ∀s ∈ R, Mi = const ≥ 0, i = 1, 2, (2.2)

g ∈ C (R) , |g (s)| ≤ N1 +N2 |s| ∀s ∈ R, Ni = const ≥ 0, i = 1, 2. (2.3)

Based on the inequalities (2.1)–(2.3), we prove the following lemma about the a priori estimate for
the generalized solution of the class W 1

2 of problem (1.4)–(1.7).

Lemma 2.2. Let f, g ∈ C (R), F ∈ L2 (DT ), and the functions f and g satisfy conditions (2.2), (2.3).
Then for any generalized solution u, v of the class W 1

2 of problem (1.4)–(1.7), the following a priori
estimate

∥u∥W 1
2 (DT ) ≤ c1∥F∥L2(DT ) + c2, ∥v∥W 1

2 (DT ) ≤ c3∥F∥L2(DT ) + c4

is valid; here, the constants ci = const ≥ 0, i = 1, . . . , 4, do not depend on the functions u, v and F ,
and at the same time c1 > 0, c3 > 0.

Using Lemma 2.2, the following theorem is proved.

Theorem 2.1. Let the functions f, g ∈ C (R) satisfy conditions (2.2), (2.3) and

|f (v)| ≤ γ1 + γ2|v|α ∀v ∈ R, 0 ≤ α = const <
n+ 1

n− 1
, (2.4)

where γi = const ≥ 0, i = 1, 2. Then for any function F ∈ L2 (DT ) , problem (1.4)–(1.7) has at least
one generalized solution of the class W 1

2 in the sense of Definition 1.1; besides, if, in addition, the
functions f and g satisfy the conditions

fϵC1 (R) , |f ′ (s)| ≤ d1 + d2|s|γ ∀s ∈ R,
gϵC1 (R) , |g′ (s)| ≤ d3 + d4|s|γ ∀s ∈ R,
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where di = const ≥ 0, i = 1, . . . , 4; 0 ≤ γ = const < 2
n−1 , then we have also the uniqueness of the

solution.

Now, let us consider one case in which problem (1.4)–(1.7) does not have a solution.

Theorem 2.2. Let g = 0 and the function f ∈ C (R) satisfy condition (2.4) and

f (s) ≤ −|s|p ∀s ∈ R, p = const > 1, (2.5)

F = λF0, where F0|DT
> 0, F0 ∈ L2 (DT ) . Then there exists a number λ0 = λ0 (F0, p) > 0 such that

for λ > λ0, problem (1.4)–(1.7) does not have a generalized solution of the class W 1
2 in the sense of

Definition 1.1.

Note that when condition (2.5) holds, then condition (2.2) violates.
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