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A NOTE ON MUCKENHOUPT WEIGHTS WITH NONSTANDARD GROWTH

ALEXANDRE ALMEIDA1 AND HUMBERTO RAFEIRO2

Abstract. We provide quantitative results on the inclusion of the family of variable power weights

x 7→ |x− ξ|−γ(x) in the Muckenhoupt A1 class, under appropriate conditions on γ. We also present
an application related to variable exponent Muckenhoupt classes Ap(·).

1. Introduction

Qualitative results regarding the belongingness of the weight x 7→ |x|−γ(x) to the Muckenhoupt
A1 class were obtained in [1], whenever γ satisfies (2.1) and (2.2) below. In this small note, we give
quantitative results on the more general function wγ

ξ (x) := |x− ξ|−γ(x), for fixed ξ ∈ Rn, by making

explicit the dependency of the constants on ξ and the exponent function γ(x). Apart some few known
cases, e.g. |x|−γ with constant γ ∈ [0, n), it is hard to estimate the A1 constant of a given weight
due to the difficulty of computing the maximal function in general. So we find of special interest the
study of Muckenhoupt weights of nonstandard growth. Additionally, we show that wγ

ξ ∈ Ap(·) for

appropriate conditions on γ(x)p(x).

2. Muckenhoupt Weights with Nonstandard Growth

Recall that a weight w is said to belong to the Muckenhoupt class A1 if there exists a constant
C > 0 such that Mw(x) ≤ C w(x) a.e., where M denotes the well-known maximal function

Mf(x) = sup
r>0

1

rn

∫
B(x,r)

|f(y)| dy.

The A1 constant of w, denoted by [w]A1
, is the smallest value of C for which the inequality above

holds. We refer to [7] for more details on classical Muckenhoupt weights.
We are interested in the family of weights

wγ
ξ (x) := |ξ − x|−γ(x),

indexed by ξ ∈ Rn, where γ : Rn → [0,∞) satisfies regularity conditions of log-Hölder type.
Recall that a function g : Rn → R is said to be locally log-Hölder continuous if there exists

clog(g) > 0 such that

|g(x)− g(y)| ≤ clog(g)

log(e+ 1/|x− y|)
, for all x, y ∈ Rn, (2.1)

and satisfy the log-Hölder continuity condition at infinity, also known as the decay condition, if there
exist g∞ ∈ [1,∞) and c∗log(g) > 0 such that

|g(x)− g∞| ≤
c∗log(g)

log(e+ |x|)
, for all x ∈ Rn. (2.2)

Below we use the notation γ+
E := ess supx∈E γ(x) and γ−

E := ess infx∈E γ(x). When E = Rn, we
simply write γ+ and γ−, respectively.
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Proposition 1. Let γ be a function satisfying (2.1) and (2.2), and 0 ≤ γ− ≤ γ+ < n. Then wγ
ξ ∈ A1

with

[wγ
ξ ]A1 ≤ c(n)

n− γ+
max

{
eclog(γ), ec

∗
log(γ)(e+ |ξ|)2c

∗
log(γ)

}
, (2.3)

where c(n) > 0 depends only on the dimension n ∈ N.

Proof. Let y ̸= ξ ∈ Rn and r > 0 be fixed. We split the proof in three cases.

Case 1. r < |ξ − y|/2. We have |ξ−y|
2 ≤ |ξ − z| ≤ 3|ξ−y|

2 , when z ∈ B(y, r). This yields the
inequality

|z − ξ|−γ(z) ≤ 2n|y − ξ|−γ(y)|y − ξ|γ(y)−γ(z). (2.4)

We now prove the estimate |y − ξ|γ(x)−γ(z) ≤ c(n)max{eclog(γ), ec
∗
log(γ)(e+ |ξ|)2c

∗
log(γ)}, splitting it in

three cases:
Case 1a. |y − ξ| ≥ 2e. It suffices to estimate the case γ(y)− γ(z) > 0. We have

|y − ξ||γ(y)−γ(z)|

≤ exp

(
|γ(y)− γ∞| log(e+ |y|) log |y − ξ|

log(e+ |y|)
+ |γ(z)− γ∞| log(e+ |z|) log |y − ξ|

log(e+ |z|)

)
≤ exp

{
c∗log(γ) log(e+ |ξ|) + c∗log(γ)[1 + log(e+ |ξ|)]

}
= ec

∗
log(γ)(e+ |ξ|)2c

∗
log(γ), (2.5)

where the second inequality follows from the fact that, for η > 0, R+ ∋ t 7→ log(t + η)/ log(t) is
decreasing and the inequality log |y − ξ| ≤ log(2(|z|+ |ξ|)).

Case 1b. 1 ≤ |y − ξ| ≤ 2e. It is immediate that |y − ξ|γ(y)−γ(z) ≤ (2e)n.
Case 1c. |y− ξ| ≤ 1. It is enough to study the case γ(y)− γ(z) < 0. Since |y− ξ| > 2|y− z| we get

|y − ξ|−|γ(y)−γ(z)| ≤ exp
(
log(2|z − y|)−|γ(y)−γ(z)|

)
≤ eclog(γ). (2.6)

Taking into account all the previous estimates, we obtain∫
B(y,r)

|z − ξ|−γ(z)dz ≤ c(n) rn |y − ξ|−γ(y) max
{
eclog(γ), ec

∗
log(γ)(e+ |ξ|)2c

∗
log(γ)

}
.

Case 2. |y − ξ|/2 ≤ r < 2|y − ξ|. We decompose the integral
∫

B(y,r)

|z − ξ|−γ(z)dz as

∫
B(y,r)

|y−ξ|<|z−ξ|<3|y−ξ|

|z−ξ|−γ(z)dz+

∫
B(y,r)

1<|z−ξ|<|y−ξ|

|z−ξ|−γ(z)dz+

∫
B(y,r)

|z−ξ|<|y−ξ|∧|z−ξ|<1

|z−ξ|−γ(z)dz =: I1+I2+I3.

Estimation of I1. The proof of

I1 ≤ c(n) rn|y − ξ|−γ(y) max{eclog(γ), ec
∗
log(γ)(e+ |ξ|)2c

∗
log(γ)}

proceeds along the same lines as the proof of Case 1, since (2.4) is valid up to a multiplicative constant
depending only on n.
Estimation of I2. In this case, we have

|z − ξ|−γ(z) = |z − ξ|−γ(y)|z − ξ|γ(y)−γ(z) ≤ (e+ |ξ|)2c
∗
log(γ)|z − ξ|−γ(y), (2.7)
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where the proof follows very closely the proof of (2.5), except for the replacement of |y− ξ| by |z− ξ|
and the usage of the inequality |z − ξ| < |y − ξ|. We have∫

B(y,r)

1<|z−ξ|<|y−ξ|

|z − ξ|−γ(y)dz ≤
∫

|z−ξ|<|y−ξ|

|z − ξ|−γ(y)dz

= c(n)

|y−ξ|∫
0

tn−γ(y)−1dt ≤ c(n)

n− γ+
rn|y − ξ|−γ(y), (2.8)

which, together with (2.7), yields

I2 ≤ c(n)

n− γ+
rn(e+ |ξ|)2c

∗
log(γ)|y − ξ|−γ(y).

Estimation of I3. Letting B := B(y, r) and using polar coordinates like in (2.8), we derive the estimate

I3 ≤
∫

|z−ξ|<|y−ξ|

|z − ξ|−γ+
Bdz ≤ c(n)

n− γ+
rn eclog(γ)|y − ξ|−γ+

B .

If |y − ξ| ≥ 1, then |y − ξ|−γ+
B ≤ |y − ξ|−γ(y). In the remaining case, we have

|y − ξ|−γ+
B ≤ c · eclog(γ)|y − ξ|−γ(y),

which follows from the inequality |y − u| ≤ 4|y − ξ| and

|y − ξ|γ(y)−γ+
B = |y − ξ|−|γ(y)−γ(u)| = exp

(
clog(γ)

log(1/|y − ξ|)
log(e+ 1/|y − u|)

)
,

for some u ∈ B, due to the continuity of γ.
Case 3. r ≥ 2|y − ξ|. Defining Λ := B(y, 2|y − ξ|) and Ξ := B(y, r) \B(y, 2|y − ξ|), set∫
B(y,r)

|z − ξ|−γ(z)dz =

( ∫
Λ

|z−ξ|≤1

+

∫
Λ

|z−ξ|≥1

+

∫
Ξ

|y−ξ|≥1

+

∫
Ξ

|z−ξ|≤1

+

∫
Ξ

|y−ξ|≤1∧|z−ξ|≥1

)
|z − ξ|−γ(z)dz

=: J1,1 + J1,2 + J2,1 + J2,2 + J2,3.

Estimation of J1,1. The inequality |z − ξ| ≤ 3|y − ξ|, together with similar arguments to those used
in the estimation of I3 above, yields the bound

J1,1 ≤ c(n) eclog(γ) rn|y − ξ|−γ(y).

Estimation of J1,2. The integrand |z − ξ|−γ(z) in the integral J1,2 satisfies the inequality

|z − ξ|−γ(z) ≤ c(n)(e+ |ξ|)2c
∗
log(γ)|z − ξ|−γ(y),

which can be obtained following the same lines as in (2.5). From this inequality and passing to polar
coordinates, as done in (2.8), it follows the inequality

J1,2 ≤ c(n)

n− γ+
(e+ |ξ|)2c

∗
log(γ)rn|y − ξ|−γ(y).

Estimation of J2,1. Since |y−ξ| ≤ |z−ξ|, when z ∈ Ξ, we have |z−ξ|−γ(z) ≤ |y−ξ|−γ(y)|y−ξ|γ(y)−γ(z).

Following the scheme of proof of (2.5), we obtain |y− ξ|γ(y)−γ(z) ≤ (e+ |ξ|)2c
∗
log(γ), from which we get

I2,1 ≤ c(n)(e+ |ξ|)2c
∗
log(γ)rn|y − ξ|−γ(y).

Estimation of J2,2. We have |z−ξ|−γ(z) ≤ c(n)eclog(γ)|y−ξ|γ(y). This is a consequence of the inequality
|z − ξ| ≤ 1 and following, mutatis mutandis, the arguments in (2.6). The above mentioned estimates
yield

J2,2 ≤ c(n) eclog(γ)rn|y − ξ|−γ(y).
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Estimation of J2,3. The estimate J2,3 ≤ c(n) rn|y − ξ|−γ(y) is immediate, taking into account that
|z − ξ| ≤ 1, |y − ξ| ≤ 1, and 2|y − ξ| ≤ |z − ξ|.

Taking all previous estimates into account, for ξ, y ∈ Rn, y ̸= ξ, and r > 0, we have∫
B(y,r)

|z − ξ|−γ(z)dz ≤ c(n)

n− γ+
rn max

{
eclog(γ), ec

∗
log(γ)(e+ |ξ|)2c

∗
log(γ)

}
|y − ξ|−γ(y),

which yields (2.3). □

Basing ourselves on Proposition 1, we obtain results regarding Ap(·)-weights in Corollary 2. Before
we proceed, it is necessary to first recall some definitions.

The class P is defined as the set of all bounded measurable functions p : Rn → [1,∞). The variable
exponent Lebesgue space, denoted by Lp(·)(Rn), with p ∈ P, is the space of all measurable functions
f such that

∥f∥p(·) := inf

{
λ > 0 :

∫
Rn

∣∣∣∣f(x)λ

∣∣∣∣p(x) dx ⩽ 1

}
< ∞, (2.9)

for more information on variable exponent Lebesgue spaces, see [3, 5]. For a function p ∈ P, we say
that a weight w belongs to the variable exponent class Ap(·) if

[w]Ap(·) := sup
B

|B|−1 ∥w1B∥p(·) ∥w−11B∥p′(·) < ∞,

where the supremum is taken over all balls B in Rn. For more information on these classes, see [2,4,6].

Corollary. Let γ(x)p(x) satisfy (2.1) and (2.2), and 0 ⩽ (γp)− ⩽ (γp)+ < n. Then wγ
ξ ∈ Ap(·).

Proof. We know, see [1], that w ∈ A1 ⇒ w
1

p(·) ∈ Ap(·). The result now follows from Proposition 1. □
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