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MATRIX-FUNCTIONS
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Abstract. It is proposed a generalization of the method developed by the authors for the solution of

the R-linear conjugation problem on the unit circle with rational coefficients. It is done an equivalent
reduction of the matrix-functions to the triangular form using the structure of the considered matrix-

functions (namely, rationality of one of the rows or the columns). Then the obtained triangular

matrix-function is factorized by applying G. N. Chebotarev’s approach.

1. Introduction

The paper deals with an explicit solution of the factorization problem for a class of partly non-
rational matrix-functions.

In the classical framework, the factorization problem means a representation of a square non-
singular matrix-function G ∈ G(M(Γ))n×n defined on a simple closed smooth curve Γ on the complex
plane C in the following form:

G(t) = G+(t)Λ(t)G−(t), (1)

where non-singular matrices G+(t), G−(t) possess an analytic continuation into D+, D−, respectively.
Here, D+, D− are the domains on the Riemann sphere lying, respectively, to the left and to the right
of the curve Γ, with respect to the orientation chosen on Γ. Λ(t) is the n× n diagonal matrix,

Λ(t) = diag

{( t− t+

t− t−

)æ1

, . . . ,
( t− t+

t− t−

)æn
}
, (2)

and t+ ∈ D+, t− ∈ D− are certain (fixed) points. In particular, if Γ = R, then one can choose

t+ = i, t− = −i,

and if Γ is a bounded curve and 0 ∈ D+, then

t− t+

t− t−
= t.

The integers æ1, . . . ,æn are called partial indices, and the matrices G−(t), G+(t) are known as minus-,
plus-factors. The factorization of type (1) is called left-factorization or classical left-factorization. If it
exists, then the partial indices are uniquely determined up to their order, i.e., they are invariants of the
factorization problem. Upon interchangingG+(t) andG−(t) in (1), we arrive at the right-factorization.
In the above definition, by M(Γ))n×n is denoted a class of all square n× n matrix-functions defined
on Γ, and G stands for invertible matrix-functions.

Factorization problem has a long and interesting history (see, e.g., [7, 10, 14, 24] and references
therein). Initially, it is linked to the name by Bernhardt Riemann or, more precisely, with two problems
formulated by him, known as the Riemann boundary value problem (or Riemann–Hilbert boundary
value problem, or C-linear conjugation problem, see [9]), and the Riemann monodromy problem
(or 21st Hilbert problem, or Riemann–Hilbert problem, see [5]). Importance of the factorization
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problem is due to its relation to several mathematical problems of different nature and to its numerous
applications.

At present, the factorization problem is interesting due to its connections with the notable mathe-
matical problems (vector-matrix boundary value problems, systems of singular integral equations, the
Wiener–Hopf and other convolution type equations, the Riemann–Hilbert problem, classification of
vector bundles on the Riemann sphere, non-linear evolution equations, the Toeplitz operators, etc.),
as well as with the applied problems (elasticity and elasto-plasticity, radiation and neutron transport,
wave diffraction, fracture mechanics, geomechanics, signal processing, financial mathematics, etc.).
Several monographs and extended surveys on the theory, on specific approaches and applications of
the factorization of matrix-functions have been published (see an extended list of references on the
theme in the survey paper [12]).

Due to the above-said applications, special attention is paid to constructive approaches, meaning
exact formulas or explicit algorithms to the exact calculations (see [24] and references therein). One of
a widely used approach is due to Chebotarev [6], who proposed an explicit algorithm for determination
of factors and partial indices for 2×2 triangular matrix-function. This algorithm is based on exploiting
of the representation of a ratio of functions in a continued fraction. Generalizations of Chebotarev’s
algorithm is proposed by many authors (see [1, 12,15,21]).

Stability analysis is one of the important directions in the study of the factorization problem (see
pioneering works [4, 11], as well as [13]). Investigations of the proposed algorithms from the stability
point of view is very important especially when we are aimed at getting an approximate solution to
the factorization problem (see, [2, 3, 16, 17]). We have also to mention here the Janashia–Lagvilava
method (see, e.g., [8]) the essential components of which are the triangular factorization followed by
the appropriate approximation and the construction of unitary matrix-functions of a special form.

The factorization problem is tightly related to the study of vector-matrix boundary value problems.
In fact, the factorization of a given matrix G(t) is equivalent to the construction of the canonical matrix
for the homogeneous Riemann boundary value problem (C-linear conjugation problem) (see [20]) with
G(t), being its matrix coefficient

Φ+(t) = G(t)Φ−(t), t ∈ Γ. (3)

The so-called R-linear conjugation problem [18,19]

φ+(t) = a(t)φ−(t) + b(t)φ−(t) + c(t), t ∈ Γ, (4)

is also reduced to problem (3). Factorization of the corresponding matrix coefficient of the reduced
problem plays an essential role [22, 23]. Thus in [22] is proposed a new algorithm of factorization
consisting of two-fold application of Chebotarev’s approach, namely, an equivalent reduction of the
considered matrix to the triangular form followed by the direct use of Chebotarev’s approach. This
method is applied to the polynomial [22] and to the rational [23] 2×2 matrices related to the R-linear
conjugation problem.

In the present paper, we generalize this method and use it to the factorization of partly rational
2× 2 matrices, i.e., the matrices with one rational row or one rational column. Such matrices may be
either related to R-linear conjugation problem or to have an arbitrary structure.

2. Reduction of the Matrix to the Triangular Form

Let us consider a square non-singular matrix-function G ∈ G(M(Γ))2×2 defined on a simple closed
smooth curve Γ on the complex plane C,

G(t) =

(
a(t) b(t)
c(t) d(t)

)
. (5)

Let D+ = intΓ and D− = extΓ stand for the interior and exterior parts, respectively, of Γ and assume
D+ ∋ 0, D− ∋ ∞. Suppose that one of the rows ((a, b) or (c, d)) or one of the columns ((a, c) or (b, d))
is a rational function, but the remaining terms are arbitrary functions. Without loss of generality, we
may assume that rational are the functions b(t), d(t). All other situations can be reduced to this one
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by multiplication of the matrix G(t) by a constant matrices of the unit determinant T0 =

(
0 1
−1 0

)
from the left/right or from both sides.

2.1. Reduction to the triangular form: the case of the unit determinant. In this subsection,
we consider the reduction to the triangular form of the matrices with the unit determinant

det G(t) = a(t)d(t)− b(t)c(t) ≡ 1, t ∈ Γ. (6)

Such an assumption is rather technical and we will discuss it in the next subsection.
We start with the following equality:

X0,L(t) = G(t)X0,R(t), t ∈ Γ, (7)

where X0,L(t) = E2, X0,R(t) = G−1(t) =

(
d(t) −b(t)
−c(t) a(t)

)
. By the assumption, d(t)

b(t) is a ratio of

polynomials d(t)
b(t) = Q(t)

P (t) . We also suppose, without loss of generality, that degQ(t) ≥ degP (t) (if not,

we interchange columns of G−1(t) by multiplying (7) by T0 from the right).

Our further aim is to expand Q(t)
P (t) in a finite continued fraction

Q(t)

P (t)
= S0(t) +

1

S1(t) +
1

S2(t)+··· 1
Sl(t)

. (8)

First, we divide polynomial Q(t) by the polynomial P (t) and obtain the representation

d(t)

b(t)
=

Q(t)

P (t)
= S0(t) +

R1(t)

P (t)
⇔ 1− S0(t)

P (t)

Q(t)
=

R1(t)

Q(t)
. (9)

Next, we divide polynomial P (t) by the polynomial R1(t) and obtain the representation

P (t)

R1(t)
= S1(t) +

R2(t)

R1(t)
⇔ R1(t)S1(t)− P (t) = −R2(t), (10)

then we divide the polynomial R1(t) by the polynomial R2(t) and get

R1(t)

R2(t)
= S2(t) +

R3(t)

R2(t)
⇔ R1(t)−R2(t)S2(t) = R3(t), (11)

and continue this process up to the l-th step. The last division of the polynomials in our representation

of Q(t)
P (t) in the continued fraction yields two possible situations:

(a) Rl−1(t) is divided by Rl(t) with the vanishing remainder (Rl+1(t) ≡ 0), i.e.,

Rl−1(t)

Rl(t)
= Sl(t). (12)

(b) Rl−1(t) is divided by Rl(t) with a constant remainder (Rl+1(t) ≡ C), i.e.,

Rl−1(t)

Rl(t)
= Sl(t) +

C

Rl(t)
. (13)

Now, we transform relation (7). First, we multiply the both sides of (7) from the right by the
polynomial matrix

T1(t) =

(
1 0

S0(t) 1

)
. (14)

Then we obtain a new right-component X1,R(t) of the solution to (7),

X1,R(t) = X0,R(t)T1(t) =

(
d(t)

(
1− S0(t)

P (t)
Q(t)

)
−d(t)P (t)

Q(t)

F1(t) a(t)

)

=

(
d(t)
Q(t)R1(t) − d(t)

Q(t)P (t)

F1(t) a(t)

)
, (15)
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where F1(t) = −c(t)+a(t)S0(t). Next, we multiply from the right both sides of the relation X1,L(t) =
G(t)X1,R(t) by the polynomial matrix

T2(t) =

(
1 S1(t)
0 1

)
. (16)

Then we obtain a new right-component X2,R(t) of the solution to (7),

X2,R(t) = X0,R(t)T1(t)T2(t) =

(
d(t)
Q(t)R1(t)

d(t)
Q(t) (R1(t)S1(t)− P (t))

F1(t) F2(t)

)

=

(
d(t)
Q(t)R1(t) − d(t)

Q(t)R2(t)

F1(t) F2(t)

)
, (17)

where F2(t) = F1(t)S1(t) + a(t).
Thus, for k even, k ≤ l − 1, we have the representation

Xk,R(t) = X0,R(t)T1(t)T2(t) . . . Tk(t) =

(
d(t)
Q(t)Rk−1(t) − d(t)

Q(t)Rk(t)

Fk−1(t) Fk(t)

)
(18)

and for k odd, k ≤ l − 1, we have

Xk,R(t) = X0,R(t)T1(t)T2(t) . . . Tk(t) =

(
d(t)
Q(t)Rk(t) − d(t)

Q(t)Rk+1(t)

Fk(t) Fk+1(t)

)
. (19)

Therefore in the case (a), we obtain two different representations of Xl,R(t) = Xl−1,R(t)Tl(t) in
the triangular form:

Xl,R(t) =

(
d(t)
Q(t)Rl−1(t) − d(t)

Q(t)Rl(t)

Fl−1(t) Fl(t)

)(
1 0

Sl(t) 1

)
=

(
0 − d(t)

Q(t)Rl(t)

Fl+1(t) Fl(t)

)
, l is even, (20)

Xl,R(t) =

(
d(t)
Q(t)Rl(t) − d(t)

Q(t)Rl−1(t)

Fl(t) Fl−1(t)

)(
1 Sl(t)
0 1

)
=

(
d(t)
Q(t)Rl(t) 0

Fl(t) Fl+1(t)

)
, l is odd. (21)

The first form of representation (20) can be transformed to the second one (21) if we multiply the

relation Xl,L(t) = G(t)Xl,R(t) by the matrix Tl+1(t) =

(
0 1
−1 0

)
, i.e., we have

Xl+1,R(t) =

(
d(t)
Q(t)Rl(t) 0

−Fl(t) Fl+1(t)

)
. (22)

In case (b), we obtain two different representations of Xl,R(t) = Xl−1,R(t)Tl(t) in the triangular
form:

Xl,R(t) =

(
d(t)
Q(t)Rl−1(t) − d(t)

Q(t)Rl(t)

Fl−1(t) Fl(t)

)(
1 0

Sl(t) 1

)
=

(
d(t)
Q(t)C − d(t)

Q(t)Rl(t)

Fl+1(t) Fl(t)

)
, l is even, (23)

Xl,R(t) =

(
d(t)
Q(t)Rl(t) − d(t)

Q(t)Rl−1(t)

Fl(t) Fl−1(t)

)(
1 Sl(t)
0 1

)
=

(
d(t)
Q(t)Rl(t) − d(t)

Q(t)C

Fl(t) Fl+1(t)

)
, l is odd. (24)

The first one is reduced to the triangular form by multiplying Xl,L(t) = G(t)Xl,R(t) by the matrix

Tl+2(t) =

(
1 Rl(t)

C
0 1

)
,

Xl+2,R(t) =

(
d(t)
Q(t)C 0

Fl+1(t) Fl+2(t)

)
, l is even, (25)
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and the second one by multiplying Xl,L(t) = G(t)Xl,R(t) by the product of two matrices Tl+3(t) =(
1 0

Rl(t)
C 1

)(
0 1
−1 0

)
. Hence

Xl+3,R(t) =

(
d(t)
Q(t)C 0

−Fl(t) Fl+2(t)

)
, l is even. (26)

Taking into account that the matrix G, as well as all transformation matrices Tj are polynomials
and have the unit determinant, we can conclude that the following statement holds.

Lemma 1. Let the matrices Xs,R(t), s = l, l + 1, l + 2, l + 3 be determined by formulas (21), (22),
(25), (26), respectively, and

Xl,L(z) = T1(z)T2(z) . . . Tl(z); Xs,L(z) = T1(z)T2(z) . . . Tl(z)Ts(z), s = l + 1, l + 2, l + 3.

Then the following properties hold for matrices Xl,L(z), Xs,L(z), Xs,R(t) :

(i) The matrices Xs,L(t), Xs,R(t), s = l, l + 1, l + 2, l + 3 satisfy the boundary relation

Xs,L(t) = G(t)Xs,R(t), t ∈ Γ. (27)

(ii) The matrix Xs,L(t) is a polynomial and thus possesses an analytic continuation X+
s,L(z) into

the domain D+.
(iii) The matrix Xs,R(t) has no analyticity property, it is defined only on the contour Γ and is

represented there in the triangular form

Xs,R(t) = ∆(t) =



(
d(t)
Q(t)Rl(t) 0

(−1)l+1Fl(t)
Q(z)

d(t)Rl(t)

)
in case(a),(

C d(t)
Q(t) 0

(−1)lFl+1(t)
Q(t)
Cd(t)

)
in case(b).

(28)

In (28), the number s is equal either to l, or to l + 1, or to l + 2, or to l + 3.
It follows that the matrix G(t) is represented in the form

G(t) = X+
s,L(t)∆

−1(t), t ∈ Γ. (29)

Here,

∆−1(t) =



(
Q(z)

d(t)Rl(t)
0

(−1)lFl(t)
d(t)
Q(t)Rl(t)

)
in case(a),(

Q(t)
Cd(t) 0

(−1)l+1Fl+1(t) C d(t)
Q(t)

)
in case(b).

(30)

Note that the above formulation depends on the parity of the number l. The obtained representation
can be interchanged accordingly.

2.2. Reduction to the triangular form: the case of an arbitrary determinant. In this sub-
section, we consider the case of a nonsingular matrix with a non-unit determinant and two rational
entries. As before, without loss of generality, we can suppose that the second column is a rational
vector. Applying the same transformations as in Subsection 2.1, we can obtain the following result,
similar to that of Lemma 1.

Lemma 2. Let G(t) =

(
a b
c d

)
, t ∈ Γ, be a nonsingular matrix on Γ (i.e. λ(t) := det G(t) =

a(t)d(t)− b(t)c(t) ̸= 0, t ∈ Γ). Let the second column of G(t) be a rational vector.
Let the matrices Xs,R(t), s = l, l + 1, l + 2, l + 3 be determined by formulas (21), (22), (25), (26),

respectively, and

Xl,L(z) = T1(z)T2(z) · · ·Tl(z); Xs,L(z) = T1(z)T2(z) · · ·Tl(z)Ts(z), s = l + 1, l + 2, l + 3.

Then the following properties hold for matrices Xl,L(z), Xs,L(z), Xs,R(t):
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(i) The matrices Xs,L(t), Xs,R(t), s = l, l + 1, l + 2, l + 3 satisfy boundary relation

Xs,L(t) = G(t)Xs,R(t), t ∈ Γ. (31)

(ii) The matrix Xs,L(t) is a polynomial one and thus it possesses an analytic continuation X+
s,L(z)

into domain D+.
(iii) The matrix Xs,R(t) has no analyticity property, it is defined only on the contour Γ and is

represented there in the triangular form

Xs,R(t) = ∆(t) =



(
d(t)
Q(t)Rl(t) 0

(−1)l+1Fl(t)
λ(t)Q(t)
d(t)Rl(t)

)
in case (a),(

C d(t)
Q(t) 0

(−1)lFl+1(t)
λ(t)Q(t)
Cd(t)

)
in case (b).

(32)

In (32), the number s is equal either to l, or to l + 1, or to l + 2, or to l + 3.
It follows that the matrix G(t) is represented in the form

G(t) = X+
s,L(t)∆

−1(t), t ∈ Γ. (33)

Here

∆−1(t) =



(
Q(t)

d(t)Rl(t)
0

(−1)l Fl(t)
λ(t)

d(t)
λ(t)Q(t)Rl(t)

)
in case (a),(

Q(t)
Cd(t) 0

(−1)l+1 Fl+1(t)
λ(t) C d(t)

λ(t)Q(t)

)
in case (b).

(34)

2.3. Factorization of matrix G(t). Now, we are ready to factorize the matrix coefficient G(t) of
problem (3). To avoid additional technical difficulties, let us consider in this section only the case of
unit determinant. More general case will be a subject for further publications.

We start with the representation of the matrix G(t) in the form (29), where the triangular matrix
∆−1(t) has representation (30).

Further, we have to factorize the matrix ∆−1(t) following Chebotarev’s approach [6]. The matrix
∆−1(t) has the following form:

∆−1(t) =

(
x(t) 0
a(t) y(t)

)
,

where the components are described in Lemma 1. First, we factorize the diagonal elements x(t), y(t),

i.e., represent them in the form x(t) = x+(t)
x−(t) , y(t) =

y+(t)
y−(t) .

Then, following [6], we introduce the Cauchy type integral (for its properties one can consult
e.g., [9])

σ±(z) =
1

2πi

∫
T

a(τ)x−(τ)dτ

y+(τ)(τ − z)
, z ∈ D±. (35)

Then the pair of matrices

Y ±(z) =

(
x±(z) 0

y±(z)σ±(z) y±(z)

)
(36)

satisfies the boundary condition
Y +(t) = ∆−1(t)Y −(t), (37)

the matrices are analytic in the corresponding domains and nonsingular everywhere except probably
infinity.

Note that Y ±(z) are not necessarily the canonical matrices of the boundary value problem (37)
(see, e.g. [20]), i.e., the order of det Y −(z) at infinity is not necessarily equal to the sum of orders
of the columns of the matrix Y −(z) at infinity. To avoid this we expand the function 1

σ−(z) into a

continued fraction
1

σ−(z)
= U0(z) +

1

U1(z) +
1

U2(z)+··· 1
Ur(z)

,
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where U0(z), U1(z), . . . , Ur(z) are the polynomials of order q0, q1, . . . , qr, respectively. At each step
(except of the last one) of the expansion, we will have the identities

1 = U0(z)σ
−(z) + V1(z),

σ−(z) = U1(z)V1(z) + V2(z),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,
Vs−3(z) = Us−2(z)Vs−2(z) + Vs−1(z),

where the remainder terms V1(z), V2(z), . . . , Vs−1(z) have at infinity the orders ν1, ν2, . . . , νs−1, re-
spectively. At the last step, we will have as before either

Vs−1(z) = Us(z)Vs(z),

or

Vs−1(z) = Us(z)Vs(z) + C.

Next, we perform multiplication of both sides of (37) by triangular polynomial matrices of type(
1 0

Ui(t) 1

)
or

(
1 Ui(t)
0 1

)
in order to get the necessary property of the transformed matrix Ỹ −.

Whenever it is obtained, the orders of the columns æ1,æ2 of the transformed matrix Ỹ −(z) become
partial indices of the matrix △−1(t). Finally, we have the following result.

Theorem 1. Let G(t) be a square non-singular matrix-function G ∈ G(M(Γ))2×2 defined on a simple
closed smooth curve Γ on the complex plane C. Suppose additionally that at least one row or one
column of the matrix G(t) is rational and det G(t) ≡ 1.

Then the matrix G(t) possesses the factorization

G(t) = G+(t)Λ(t)G−(t), t ∈ Γ, (38)

where

G+(t) = X+
s,L(t)Ỹ

+(t), Λ(t) =

(
tæ1 0
0 tæ2

)
, G−(t) = Λ−1(t)Ỹ −(t).

Here, the matrices Ỹ +(t), Ỹ −(t) are those appeared as the result of the above described transformation
of equality (37).
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