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Dedicated to the Memory of Edem Lagvilava

Abstract. This paper reviews some fundamental results in prediction theory, spectral factorization

and Wiener filtering with a particular focus on questions of computability. Since the mathematical
theory of prediction and estimation of stationary time series was established by Kolmogorov, Paley,

Szegö, Wiener, and many others, it seems to be an open question whether it is possible to effectively

compute optimal filter coefficients and important performance measures on digital computers, i.e.
on Turing machines.

In this paper, we show that the optimum mean squared error (MSE) for predicting a stationary

time series from its past observations is generally not Turing computable. However, under an ad-
ditional condition on the stochastic process, namely, for strictly positive spectral densities, Turing

computability of the corresponding optimal MSE can be guaranteed. Nevertheless, even if the MSE

is Turing computable, there always exist spectral densities that are polynomial-time computable on
a Turing machine, but such that the corresponding optimal MSE is not polynomial-time computable.

This observation proves a complexity blowup for the computation of the MSE on digital computers.
Finally, we show that the spectral factorization and the calculation of the optimal prediction filter

are generally not Turing computable even under additional strong assumptions on the smoothness

of the spectral density.

1. Introduction

The theory of interpolation, prediction and estimation of time-series has a central role in many
different areas of science and engineering such as communications, control, signal processing, econo-
metrics, statistics, and many more. The general problem is to predict or estimate stochastic time-series
from observations of the same time-series or from observations of a correlated time-series.

From the engineering side, the main part of the theory was developed during the 1940’s and is
particular related to the works of Wiener [46] and Kolmogorov [25]. The theory was then further
developed in many different directions by many other researches [8, 9, 23, 48]. This paper presents
some recent results in three major areas of this theory, namely, in 1) the prediction of stochastic
processes, 2) the computation of the spectral factorization, and 3) the computation of the Wiener
filter.

In prediction theory, we consider the problem of predicting the value x0 of a discrete stochastic
time series {xn}n∈Z from the past values {x−1, x−2, x−3, . . . }. If this prediction should be done by

a linear filter H, it will have the form x̂0 = H(x) =
∞∑

n=1
hnx−n and the problem is to find the filter

coefficients {hn}∞n=1 such that the mean squared error (MSE) σ2 = E
[
|x̂0 − x0|2

]
is minimized. As

mentioned before, the solution of this problem is well known and there exist many different algorithms
for determining the filter coefficients {hn}∞n=1 based on the spectral density φ of x. In general, the
optimal filter H will be an infinite impulse response (IIR) filter, i.e. all coefficients {hn}∞n=1 might be
non-zero. Then for practical implementations, the IIR filter is usually approximated by a finite impulse
response (FIR) filter of length N , obtained, for example, by simply truncating the IIR filter. This gives
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a prediction filter x̂0 = HN (x) =
N∑

n=1
hnx−n. It is clear that the FIR filter has a slightly larger MSE

σ2
N = E

[
|HN (x)− x0|2

]
≥ σ2. So, the obvious practical question is then: How to choose the filter

length N? The answer to this questions seems to be almost trivial: Choose N so that |σ2
N−σ2| < 2−M

for a required precession M ∈ N, which depends on the requirements of the actual application. There
are several algorithms that are especially suited to implement this idea. One example is the Durbin–
Levinson algorithm (cf., Section 3.5). It calculates successively the filter coefficients h1, h2, h3, . . .
and, at the same time, the corresponding MSEs σ2

1 , σ
2
2 , σ

2
3 , . . . . However, in order to terminate the

algorithm, one has to decide algorithmically in every step whether |σ2
N − σ2| < 2−M or not. So, the

question arises whether it is possible to implement an algorithm on a digital computer whose input
is a spectral density φ and a natural number M > 0 and that is able to calculate an index N ∈ N so
that |σ2

N − σ2| < 2−M . We show in this paper that this question has, generally, a negative answer.
Even more, our result does not only hold for the Durbin–Levinson algorithm, but it implies that such
an algorithm never exists for any possible method for calculating FIR approximations of the optimal
filter H. Nevertheless, in a second step, we will derive sufficient conditions on the spectral density φ
of the stochastic process such that a procedure for approximating the optimal filter H by an FIR filter
exists for which it is possible to control the approximation error, i.e. for which it will be possible to
choose algorithmically the approximation degree N so that |σ2

N − σ2| < 2−M . However, even if the
necessary approximation degree N can be determined algorithmically from the given spectral density
φ, we may ask for the computational complexity of this algorithm. We are going to show that even for
low-complexity1 spectral densities the algorithmic computation of the necessary FIR approximation
length N will be of high complexity which means that the computational complexity of determining
N grows faster than any polynomial in the desired precision M .

Apart from the Durbin–Levinson algorithm mentioned above, there are many other algorithms
to determine the optimal prediction filter. In fact, it is known that there even exists a closed form
expression for the transfer function of the optimal prediction filter H. This may be used to determine
the optimal filter coefficients and an FIR approximation [4]. The closed form solution for H relies
on the so-called spectral factorization (also known as Wiener–Hopf factorization [45]) of the spectral
density φ, an operation that is also used in many other applications and which is of great importance
in engineering and signal processing. Consequently, many algorithms were developed [26, 35] for
computing the spectral factorization or at least to approximate the spectral factors.

The more demanding case of matrix-valued spectral factorization [47] was investigated and advanced
especially by Edem Lagvilava and co-authors [13–16, 21, 22] and also, for this case there exist many
different algorithms.

In this paper, we consider only the scalar case and ask whether for a given spectral density φ the
spectral factor φ+ can be computed on a digital computer, i.e. whether it is possible to have an
algorithm that computes an approximation of φ+ and that stops automatically if a predefined error
bound is reached. Of course, the answer depends again on the spectral density and we will provide
a sharp characterization (in terms of the smoothness of the spectral density) of classes of spectral
densities for which the spectral factor can be computed on a digital computer and also of classes for
which this is not possible.

The organization of this paper is as follows. Section 2 introduces the main notation and function
spaces that are used throughout this paper. It also gives a short review of the main results and a notion
from the computability theory. In Section 3, we give a short summary on techniques, algorithms and
results in prediction theory, which are later investigated from a computational point of view. The
computability of the optimal mean squared error (MSE) is investigated in Section 4, and Section 5
will depict that the computation of the optimal MSE shows complexity blowup. Section 6 will finally
discuss the computability of the spectral factorization with an application to Wiener filtering. The
paper is concluded with a short summary in Section 7.

1We will precisely define what this means in Section 2.2.
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2. Notation and Preliminaries

This section introduces the main notion and function spaces that will be used throughout the
remainder of this paper. The first subsection gives definitions of several Banach spaces of functions
on the unit circle and of analytic functions inside the unit disk. In the second subsection, we shortly
introduce the main concepts and notion from computability theory.

2.1. Function spaces on the unit circle and unit disk. Throughout this paper, D = {z ∈ C :
|z| < 1} stands for the open unit disk in the complex plane C, whereas its boundary, the unit circle,
is denoted by T = {z ∈ C : |z| = 1}.

Let µ be a finite positive measure on T. Then for any 1 ≤ p < ∞, we write Lp(µ) for the usual
Banach spaces of integrable functions on T with

∥f∥p =

(
1

2π

π∫
−π

∣∣f(eiθ)∣∣p dµ(eiθ))1/p

<∞ ,

and L∞(µ) is the Banach space of essentially bounded (with respect to µ) functions on T, i.e. the
functions for which

∥f∥∞ = ess sup
ζ∈T

|f(ζ)| <∞ .

If µ is the Lebesgue measure, we simply write Lp(T). Moreover, we notice that L2(µ) is a Hilbert

space with the inner product ⟨f, g⟩ = 1
2π

π∫
−π

f(eiθ)g(eiθ) dµ(eiθ).

As usual, C(T) stands for the Banach space of continuous functions on T equipped with the maxi-
mum norm ∥f∥∞ = maxζ∈T |f(ζ)|. A function f on T is said to be absolute continuous if there exists

a g ∈ L1(T), so that f(eiθ) = f(1) +
θ∫
0

g(eiτ ) dτ for all θ ∈ [−π, π). We write Cac(T) for the set of all

absolute continuous functions on T. For any f ∈ L1(T), the Fourier coefficients are given by

cn(f) =
1

2π

π∫
−π

f(eiθ) e−inθ dθ , n ∈ Z , (1)

and f(eiθ) =
∑

n∈Z cn(f) e
inθ is the corresponding Fourier series which converges in the Lp(T)-norm

for all 1 < p < ∞. The Wiener algebra W is the set of all f ∈ L1(T) with an absolutely converging
Fourier series, i.e.

W =

{
f ∈ L1(T) : ∥f∥W =

∑
n∈Z

|cn(f)| <∞
}
,

and one has W ⊊ C(T) with ∥f∥∞ ≤ ∥f∥W for all f ∈ W.
The set of all polynomials of degree N ∈ N, i.e. the set of all functions of the form f(z) =

a0 + a1z + a2z
2 + · · · aNzN with z ∈ C and complex coefficients {an}Nn=0 ⊂ C is denoted by PN .

Moreover, we write H(D) for the set of all functions that are holomorphic (i.e. analytic) in the unit
disk D. For 1 ≤ p < ∞, Hp(D) denotes the usual Hardy space (see, e.g., [12, 19, 20]) of all f ∈ H(D)
for which

∥f∥p = sup
r<1

(
1

2π

π∫
−π

∣∣f(reiθ)∣∣p dθ

)1/p

<∞ ,

and H∞(D) is the Banach space of all bounded analytic functions, i.e. the set of all f ∈ H(D)
with ∥f∥∞ = sup

|z|<1

|f(z)| < ∞. For any f ∈ Hp(D), the radial limit lim
r→1

f(reiθ) = f(eiθ) exists for

almost every θ ∈ [−π, π) and this boundary function belongs to Lp(T). Therewith, Hp(D) can be
characterized as a closed subspaces of Lp(T), namely,Hp(D) = {f ∈ Lp(T) : cn(f) = 0 for all n < 0}.
So, any f ∈ Hp(D) can be written as a power series f(z) =

∞∑
n=0

cn(f)z
n. The disk algebra A(D) is
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the Banach algebra of all holomorphic functions in D that are continuous in the closed units disk
D = D ∪ T with the norm ∥f∥∞ = max

z∈D
|f(z)| and with a pointwise multiplication.

Finally, Hp
0 (D) = {f ∈ Hp(D) : f(0) = c0(f) = 0} and the subspaces Lp

0(T) ⊂ Lp(T), C0(T) ⊂ C(T),
and A0(D) ⊂ A(D) are defined in the same way.

Remark 2.1. In this paper, we always work with spaces of functions that are analytic inside the
unit disk D. Nevertheless, especially in engineering and signal processing (cf., e.g., [29,32]), one often
works with functions that are analytic outside the unit disk D. As an example, consider a time-discrete
signal x = {xn}n∈Z with ∥x∥ℓ1 =

∑
n∈Z

|xn| <∞. Then its z-transform is defined to be

X(z) =
∑
n∈Z

xn z
−n , |z| = 1 . (2)

For sequences x ∈ ℓ1 with xn = 0 for all n < 1, the z-transform (2) is analytic for |z| > 1 and
continuous for all |z| ≥ 1. Then the function X1(z) := X(z−1) is analytic in D and continuous for all
|z| ≤ 1. So, our decision to work with analytic functions in D is mainly a question of notation. Using
the mapping z 7→ z−1, all of our results can be translated to results on functions, analytic outside the
unit disk.

2.2. Computability analysis. We investigate the computability of different important performance
measures in prediction theory. So, we ask whether several quantities in this theory can be computed
on a digital computer. To this end, we use the standard model of a Turing machine [41–43]. This is an
abstract device which provides a theoretical model describing the fundamental limits of any realizable
digital computer.

Definition 2.1. A number t ∈ R is said to be computable if there exists a Turing machine TM with
input n ∈ N and output γ(n) = TM(n) ∈ Q such that

|t− γ(n)| ≤ 2−n , for all n ∈ N . (3)

In this case, we say that γ(n) binary converges to t, and we write Rc ⊊ R for the set of all computable
real numbers, and Cc = {z = x+ iy : x, y ∈ Rc} is the set of all computable complex numbers.

For a given t ∈ R, the Turing machine TM in Definition 2.1 will generally need several iterations to
calculate γ(n) ∈ Q, and it will usually require more iterations (i.e. computation time) to determine
γ(n) if n increases. To quantify this behavior, one defines the complexity for computing the number
t ∈ R.

Definition 2.2. Let t ∈ Rc be a computable number. We say that the computational complexity of
t is bounded by a function q : N → N if there exists a Turing machine TM such that (3) is satisfied
after at most q(n) iterations. The number t ∈ Rc is said to be polynomial-time computable if its
computational complexity is bounded by a polynomial q.

We also need the notion of computable functions and some measures to assess the complexity of
computing functions on digital computers. To this end, we use two different machine models which
both give a slightly different view on the problem. Both models are equivalent, however, each model has
different advantages for the understanding of computability in prediction theory and Wiener filtering.
These two computation models are shortly introduced and discussed in the following paragraphs.
Thereby, we mainly follow the presentations in [7, 18,24].

Function-oracle Turing machines. A function-oracle Turing machines is an ordinary Turing machine
TM, but with an additional function-oracle γ that is able to calculate the function value γ in a single
operation. The computation of the function-oracle machine TM on input t with oracle γ is written as
TMγ(t).

Definition 2.3. A function f : [a, b] → R is said to be computable on the interval [a, b] ⊆ R if there
exists a function-oracle Turing machine TM so that for each t ∈ [a, b] and for each γ that binary
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converges to t, the function f̃(n) = TMγ(n) computed by TM with oracle γ binary converges to f(t),
i.e.,

|f(t)− TMγ(n)| < 2−n , for all n ∈ N . (4)

So, any computable function is defined by a function-oracle Turing machine in which the real
numbers at the input and output are replaced by rational approximations that binary converge to
the exact values. Note that any computable function f : [a, b] → R is necessarily continuous (see,
e.g., [31]), i.e., f ∈ C([a, b]).

There exist many different but equivalent definitions for computable functions. However, based on
Definition 2.3, one can also conveniently characterize the complexity for computing a function.

Definition 2.4. Let f : [a, b] → R be computable. We say that the complexity of f is bounded by a
function q : N → N if there exists a function–oracle Turing machine TM that computes f so that for
all γ that binary converge to a t ∈ [0, 1], TMγ(n) satisfies (4) after a computation time of at most
q(n). We say that f : [0, 1] → R is polynomial-time computable if its complexity is bounded by a
polynomial q.

In principle, a Turing machine can exactly compute only with rational numbers. However, later we
consider Turing machines TM whose inputs are not just rational numbers but computable numbers x
or even computable functions f . It should keep clearly in mind that these inputs are given to a Turing
machine in the form of a program (i.e. in the form of a description) that allows TM to compute
the input effectively. So, if we want to give a computable function f to a Turing machine TM, then
we hand over a description of f , i.e. a program which can be executed on TM and which is able to
effectively compute for every computable t in the domain of f a rational approximation of f(t) up to
any necessary precision.

Computation on dyadic grids. We also consider another model to characterize the complexity of com-
puting functions f on an interval [a, b]. For simplicity and without loss of generality, we discuss here
only functions on [0, 1]. In this approach, we restrict a priori the points t for which f(t) is computed
to a discrete set D1 ⊂ [0, 1]∩Rc. Namely, D1 will be the set of dyadic decimals, i.e. rational numbers
in the interval [0, 1] of the form

tj,n = j · 2−n , 0 ≤ j ≤ 2n ,

for some n ∈ N. Next, we give the formal definitions for this model of computation. All of them are
basically taken from [18]. We start with the definition of D1.

Definition 2.5. A dyadic decimal consists of the symbol ’+’ or ’−’ followed by a (possibly empty)
string of 0’s and 1’s which starts (if it is nonempty) with 1, followed by a decimal point, followed by
a second (nonempty) string of 0’s and 1’s.
The set of all dyadic decimals is denoted by D and D1 denotes all d ∈ D which begin with ’+’ and for
which the string to the left of the decimal point is empty.

If d ∈ D, then tnd(d) stands for the total number of digits in d, and pcs(d) is the total number of
digits to the right of the decimal point in d. In this computing model, dyadic decimals d are used to
approximate arbitrary real numbers t ∈ R. Then pcs(d) says something about the precision with that
t is approximated by d, and for any t ∈ R we write d ∼ t if |d− t| ≤ 2− pcs(d).

Definition 2.6. A dyadic approximation function is a pair (g, i) with i ∈ N and with a function
g : D1 → D, so that for all n ∈ N, there exists an m ∈ N such that for every d ∈ D1 with tnd(d) ≥ m,
one has tnd(g(d)) ≥ n.
We say that a dyadic approximation function (g, i) approximates a function f : [0, 1] → R if and only
if for all t ∈ [0, 1] and all d ∈ D1 with tnd(d) ≥ i and d ∼ t, we have g(d) ∼ f(t). In this case, we
write (g, i) ∼ f .

Remark 2.2. If for a function f : [0, 1] → R there exists a dyadic approximation function, then there
exist a g : D1 → D and an i ∈ N so that (g, i) ∼ f , according to Definition 2.6. The function g
has the property that for a required precision n for calculating the values of g, one can always find
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a sufficiently fine dyadic grid (of width 2−m) in the domain [0, 1] so that evaluating g on this grid
determines g up to a precision of at least n. The positive integer i ∈ N determines for which d ∈ D1

the function g is an approximation of f . For every t ∈ [0, 1], this has to be the case only for such
d ∈ D1 which satisfy d ∼ t and tnd(d) ≥ i, i.e. for d ∈ D1 satisfying |d− t| ≤ 2−i.

Definition 2.7. Let h be a function on N and let (g, i) be a dyadic approximation function of f . We
call h a modulus for (g, i) if for every n ∈ N and all d ∈ D1 with tnd(d) ≥ h(n) holds tnd(f(d)) ≥ n.
If h is a polynomial, then we say that (g, i) has a polynomial modulus.

So, the modulus of a dyadic approximation function characterizes the necessary precision in the
domain of f to guarantee a certain precision in the range of g.

We say that a function g : D1 → D is polynomial-time computable if there exist a polynomial q and
a Turing machine TM with the input d ∈ D1 and output TM(d) = g(d) such that the computation
time is at most q(tnd(d)) for every d ∈ D1. This definition of “polynomial-time computable” now
incorporates the computational complexity for approximating the number t ∈ [0, 1] by a dyadic decimal
d ∈ D1. If a high precision for d is necessary (this depends on g), then tnd(d) and, consequently, the
maximal computation time q(tnd(d)) is large. Based on this definition of polynomial-time complexity
for dyadic approximation functions, one can now define polynomial-time complexity for arbitrary
functions on [0, 1].

Definition 2.8. A function f : [0, 1] → R is said to be polynomial-time computable on dyadic grids
if there exists a polynomial-time computable function g : D1 → D and an i ∈ N so that (g, i) has a
polynomial modulus, and (g, i) ∼ f .

We see that the complexity of approximating t ∈ [0, 1]∩Rc by a dyadic decimal d ∈ D1 is included
in the definition of a polynomial-time computable function. However, if the dyadic approximation
function f is polynomial-time computable and if the necessary precision for the argument d grows at
most polynomially with the required precision for determining g, the function g is polynomial-time
computable.

3. Prediction Theory

We recall shortly the main concepts and notation from prediction theory and refer to many excellent
textbooks (see, e.g., [10, 27, 30, 34, 37]) for more details. In particular, we follow the recent overview
paper [3] to present the main results in the following subsections.

3.1. Stationary stochastic processes. Let (Ω,F , ν) be a probability space, and letR = R(Ω,F , ν)
be the space of all (complex) random variables (rvs) x with zero mean E[x] =

∫
Ω

x(ω) dν(ω) = 0 and

finite second moments E
[
|x|2

]
< ∞. This space R becomes a Hilbert space if the inner product is

defined as the covariance of two rvs, i.e.,

⟨x, y⟩R = cov(x, y) = E[xy] =

∫
Ω

x(ω) y(ω) dν(ω) ,

with the corresponding norm ∥x∥R =

√
E[|x|2]. The correlation of two rvs x, y ∈ R is defined to be

corr(x, y) =
⟨x, y⟩R

∥x∥R · ∥y∥R
=

cov(x, y)

(E[|x|2] · E[|y|2])1/2
.

A sequence x = {xn}n∈Z ⊂ R is said to be a wide-sense stationary (wss) stochastic process if
⟨xn+k, xk⟩R = ⟨xn, x0⟩R for all n, k ∈ Z, and the corresponding function

γx(n) = ⟨xn, x0⟩R , n ∈ Z ,

is said to be the auto-covariance function of x. If x = {xn}n∈Z ⊂ R is a wss stochastic process, then
there exists an orthogonal stochastic measure Zx = Zx(ω), ω ∈ B(T), on the Borel sets of T such
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that

xn =

π∫
−π

e−inθdZx(e
iθ) , for all n ∈ Z ,

and the auto-covariance has the spectral representation

γx(n) =
1

2π

π∫
−π

e−inθdµx(e
iθ) , n ∈ Z , (5)

with the finite spectral measure dµx(e
iθ) = 2π

∥∥dZx(e
iθ)

∥∥2
R. As usual, this measure can be decomposed

as

dµx(e
iθ) = φ(eiθ) dθ + dµs(e

iθ) (6)

with the so-called spectral density φ ∈ L1(T) of x and where µs is the singular part of µx (with respect
to the Lebesgue measure).

For any wss stochastic process x, we write X = span{xn : n ∈ Z} ⊂ R for the Hilbert space
spanned by the whole stochastic process x. For any two n,m ∈ Z with n ≤ m, we write X[n,m] =
span{xn, xn+1, . . . , xm−1, xm} for the subspace spanned by {xn, . . . , xm}. In particular, we write

Xn = X[−∞,n] = span {xk : k ≤ n} and X−∞ =

∞⋂
n=−∞

Xn

for the subspace spanned by the past up to time n and their intersection (called the remote past)
respectively. A wss stochastic process x is called singular if X = X−∞, and regular if X−∞ = {0}.

3.2. Linear prediction. A classical problem is to find the best linear predictor x̂n of xn from finite
(or infinite) many observations of the sequence x. Without loss of generality, we discuss only the
prediction of x0. Moreover, we consider only the prediction of x0 from the past observations of x, i.e.
from the observations of {. . . , x−3, x−2, x−1}. If, for example, one wants to predict x0 from all past
observations, then the optimal linear prediction is given by

x̂0 = argmin
x∈X[−∞,−1]

∥x− x0∥2R = P[−∞,−1](x0) , (7)

where P[−∞,−1] : X → X[−∞,−1] denotes the orthogonal projection onto X[−∞,−1] ⊂ X . The resulting
mean squared error (MSE) is then given by

σ2 = ∥x0 − x̂0∥2R = E
[
|x0 − x̂0|2

]
= E

[ ∣∣x0 − P[−∞,−1](x0)
∣∣2 ] .

The stochastic process x is called deterministic if σ2 = 0, because then x0 can be perfectly predicted
from the past observation. Otherwise, if σ2 > 0, the process x is said to be non-deterministic. We
will consider only non-deterministic stochastic processes and the following result gives the necessary
and sufficient conditions on the spectral measure for x to be non-deterministic.

Theorem 3.1. Let x be a wss stochastic sequence with spectral measure (6). Then x is non-
deterministic if and only if logφ ∈ L1(T), i.e., if and only if

π∫
−π

logφ(eiθ) dθ > −∞ . (8)

In this case, the minimum mean squared error is given by

σ2 = exp

(
1

2π

π∫
−π

logφ(eiθ) dθ

)
> 0 . (9)

Remark 3.1. Condition 8, is also known as Szegö’s condition [40], whereas (9) is known as Kol-
mogorov’s formula [38].
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Theorem 3.1 implies in particular that the spectral measure of a non-deterministic wss stochastic
process has necessarily a non-vanishing spectral density. The so-called Wold decomposition shows
that any wss stochastic sequence x has a unique decomposition {xn} = {xrn} + {xsn} into a non-
deterministic (or regular) sequence xr = {xrn} and a deterministic (or singular) sequence xs = {xsn}.
Then the spectral measure of xr is the absolute continuous part of µx, whereas the spectral measure
of xs is the singular measure µs of µx. Here, we consider only non-deterministic sequences for which
the singular (i.e. the deterministic) part is identical with zero. Such sequences are called purely
non-deterministic. In particular, we always subsequently assume that the spectral measure µx is
completely determined by the spectral density φ and that φ satisfies Szegö’s condition (8).

3.3. Prediction filters. We now discuss shortly the relation to filter design in signal processing. To
this end, we always assume in this section that the spectral density φ of a purely non-deterministic
wss stochastic process x is a continuous function on T and satisfies min

ζ∈T
|φ(ζ)| > 0.

From a signal processing point of view, the linear predictor (7) has the form of a causal linear filter

x̂0 = H(x) =

∞∑
k=1

hkx−k, (10)

where {hk}∞k=1 is the impulse response of H and h(eiθ) =
∞∑
k=1

hk e
ikθ is said to be the transfer function

of H. Since the input of the filter is a stationary stochastic process with auto-covariance γx and
spectral density φx, the sum in (10) converges in mean squared (i.e. in the norm of R) if the impulse
response {hk}k∈N satisfies

∥x̂0∥2R = E
[
|x̂0|2

]
=

∞∑
k=1

∞∑
ℓ=1

hkhℓ γx(ℓ− k) <∞ , (11)

which translates into the condition h ∈ L2(µx), i.e.,

1

2π

π∫
−π

∣∣h(eiθ)∣∣2 dµx(e
iθ) <∞ ,

for the transfer function of the filter H. Moreover, since H is a causal filter, all filter coefficients hk
with k ≤ 0 are equal to zero, and so, the transfer function h can be extended to an analytic function
h(z) =

∑∞
k=1 hkz

k in the unit disk that satisfies h(0) = 0. Consequently, we have to require that the
transfer function h of the linear filter (10) belongs at least to H0(D) ∩ L2(µx).

Now, with exactly the same arguments as before, we see that for a fixed transfer function h ∈
H0(D) ∩ L2(µx) the mean squared error (MSE) is given by

σ2(h) = ∥x0 − x̂0∥2R = E
[
|x0 − x̂0(h)|2

]
=

1

2π

π∫
−π

∣∣1− h(eiθ)
∣∣2 dµx(e

iθ) = ∥1− h∥2L2(µx)
. (12)

Then one can always find a unique hopt ∈ H∞
0 (D) that minimizes the MSE, i.e. so that

σ2 = σ2(hopt) = E
[
|x0 − x̂0(hopt)|2

]
= inf

h∈H0(D)
E
[
|x0 − x̂0(h)|2

]
= inf

h∈A0(D)
E
[
|x0 − x̂0(h)|2

]
. (13)

For the last equation, we have used the fact that A0(D) is a dense subset of H0(D), so that it is
sufficient to optimize over A0(D) which is a much more suitable space for practical applications.
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However, it should be noted that the minimizer hopt is generally not in A0(D) but only in H∞
0 (D).

So, (12) shows that the minimal MSE is given by

σ2 = inf
h∈H0(D)

1

2π

π∫
−π

∣∣1− h(eiθ)
∣∣2 dµx(e

iθ) = inf
h∈A0(D)

∥1− h∥2L2(µx)
. (14)

From a practical point of view, the optimal filter hopt ∈ H∞
0 (D) is usually approximated by a certain

FIR filter of a certain length N . This means that hk = 0 for all k > N in (10). Then the optimal
MSE for all FIR filters of length N is obtained by optimizing in (14) over h ∈ PN,0. However, it
should be noted that (14) is usually not very useful for finding the optimal filter hopt (or a certain FIR
approximation), since it is not clear how the minimizer in (14) can actually be calculated. Therefore
the following subsection shortly reviews the methods for the determination of hopt and corresponding
FIR approximations.

3.4. Spectral factorization. One method to derive a closed form expression for the transfer function
hopt of the optimal prediction filter is based on the spectral factorization of the density φ of the regular
stochastic process x.

Definition 3.1. A non-negative function φ ∈ L1(T) is said to possess a spectral factorization if there
exists a φ+ ∈ H1(D) with φ+(z) ̸= 0 for all z ∈ D and so,

φ(eiθ) =
∣∣φ+(e

iθ)
∣∣2 for almost all θ ∈ [−π, π) . (15)

The function φ+ is said to be the spectral factor of φ.

Remark 3.2. The spectral factor φ+ is a so-called outer function, i.e. it is analytic and non-zero

in D, and it can be written as a power series as φ+(z) =
∞∑

n=0
anz

n. Moreover, since φ+ is an outer

function, also 1/φ+ is an outer function.

Remark 3.3. It is often useful to define φ−(z) = φ+(z
−1) =

∞∑
n=0

anz
−n. This function is analytic

and non-zero for all |z| > 1. Therewith (15) can be written as φ(eiθ) = φ+(e
iθ)φ−(e

iθ).

The following well known statement provides a necessary and sufficient condition such that a spec-
tral density possesses a spectral factorization and it gives a closed form expression for the corresponding
spectral factor.

Theorem 3.2. A spectral density φ ∈ L1(T) possesses a spectral factorization if and only if φ satisfies
Szegö’s condition (8). Then its spectral factor is given by

φ+(z) = exp

(
1

4π

π∫
−π

logφ(eiθ)
eiθ + z

eiθ − z
dθ

)
, z ∈ D ,

where the integral is a Cauchy principal value integral. The spectral factor φ+ is unique up to a unitary
factor.

Remark 3.4. Note that in connection with the design of optimal causal linear filters, condition (8),
required in Theorem 3.2, is often called Paley–Wiener condition. Moreover, Kolmogorov’s formula
(9) may be expressed in terms of the spectral factor as σ2 = |φ+(0)|2.

So, if x is a non-deterministic wss stochastic process, then its spectral density φ satisfies Szegö’s
condition (cf., Theorem 3.1) and therefore the corresponding spectral factor φ+ always exists. Based
on this spectral factor, one can now give a simple expression for the optimal prediction filter hopt.

Theorem 3.3. Let x be a purely non-deterministic wss stochastic process with spectral density φ,
then the optimal prediction filter for estimating x0 from the past is given as

hopt(z) =
φ+(z)− φ+(0)

φ+(z)
= 1− φ+(0)

φ+(z)
, (16)

where φ+ is the spectral factor of φ.
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Remark 3.5. In view of (14) and by the orthogonality principle in Hilbert spaces, one has only to
show that 1− hopt is orthogonal (in L

2(φ)) to all monomials em(z) = zm, with m ≥ 1, to prove this
theorem.

Since φ+ is an outer function, i.e. analytic and non-zero in D, its inverse φ−1
+ is again analytic in D

and so, (16) shows that hopt is an analytic function in D, satisfying hopt(0) = 0. Thus hopt ∈ H0(D)
and so, it generally defines an infinite impulse response (IIR) prediction filter (10). If in addition
minζ∈T φ(ζ) > 0, as we will suppose most of the time, then hopt ∈ H∞

0 (D) and so, the filter coefficients
in (10) are given as the Fourier coefficients of hopt, i.e. hk = 1

2π

∫ π

−π
hopt(e

iθ) e−ikθ dθ. However, from
a practical point of view, only the FIR filters of the form

x̂0 = HN (x) =

N∑
k=1

hkx−k

can be implemented. Such an FIR approximation might be obtained from the optimal IIR filter (10)
by truncating the infinite sum at a certain degree N . Then there arises the question whether it is
possible to determine algorithmically the necessary filter length N in order to guarantee a certain
predefined error 2−M . So, the problem that we will study in detail in Section 4 is as follows: Given a
wss stochastic process x with spectral density φ and a precision M ∈ N, is it then possible to find an
algorithm that determines N ∈ N so that ∥Hx−HNx∥2R < 2−M?

3.5. Partial auto-correlations and the Durbin–Levinson algorithm. Another approach to de-
termine the optimal prediction filter is based on the so-called partial autocorrelation function. For a
wss stochastic process x = {xn}n∈Z ⊂ R, it is define by

αx(n) = corr
(
xn − P[1,n−1]xn , x0 − P[1,n−1]x0

)
, n = 1, 2, 3, . . . . (17)

So, αx(n) is the correlation between the prediction error at time n and 0 resulting from the optimal
prediction of these values from the intermediate values x1, . . . , xn−1. These values are also known as
Verblunsky coefficients of x. Their importance streams to a large extend from Verblunsky’s Theorem.

Theorem 3.4. There is a bijective relation between the sequences α = {α(n)}n∈N with α(n) ∈ D and
the probability measures µ on T.

Remark 3.6. So, any arbitrary sequence {αx(n)}n∈N, which is only restricted by the obvious condi-
tion |αx(n)| < 1 for all n ∈ N, is related to a probability measure µx on T, which in turn characterizes
a wss stochastic process. In this sense, one has an unrestricted parametrization for the probability
measures on T.

In contrast to this, we notice that also the spectral representation (5) of the auto-covariance function
γx = {γx(n)}n∈Z gives a bijection between sequences γx and probabilities measures µx on T. However,
in this case, the sequence γx is restricted by the condition to be positive definite (cf., (11)). So, the
auto-covariance functions provide only a restricted parametrization for the probability measures on T.

The partial auto-correlation function plays a fundamental role in the so-called Durbin–Levinson
algorithm for determining the best causal prediction. To explain this algorithm, let x = {xn}n∈Z be
the wss stochastic process and let

x̂n+1 = hn,1xn + · · ·+ hn,nx1 =

n∑
k=1

hn,kxn−k+1

be the best linear predictor of xn+1 based on xn, · · · , x1, we write hn = (hn,1, · · · , hn,n)T for the vector

containing n coefficients of this predictor and denote by σ2
n = E

[
|xn+1 − x̂n+1|2

]
the corresponding

MSE at time n. The Durbin-Levinson algorithm [11,28] determines now the coefficients hn+1 and the
MSE σ2

n+1 at time n+ 1 recursively based on the data at time n as follows:

hn+1,n+1 =
1

σ2
n

[
γx(n+ 1)−

n∑
j=1

hn,jγx(n− j)

]
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and hn+1,1

...
hn+1,n

 =

hn,1...
hn,n

− hn+1,n+1

hn,n...
hn,1

 . (18)

Moreover, starting with σ2
0 = 1, the MSE is determined recursively by

σ2
n+1 = σ2

n

(
1− |hn+1,n+1|2

)
. (19)

We also remark that the coefficients hn,n are equal to the Verblunsky coefficients αx(n) (17), i.e.
hn,n = αx(n) for all n ∈ N. So, in particular, (18) gives

hn,k − hn+1,k = αx(n+ 1)hn,n−k+1 , k = 1, 2, . . . , n ,

and (19) implies that the optimal MSE at step n is given by

σ2
n =

n∏
k=1

(
1− |αx(k)|2

)
. (20)

This shows, in particular, that the sequence
{
σ2
n

}
n∈N is monotonically decreasing and so it converges

as n→ ∞ and one can show that it converges to the minimal MSE (13), i.e., lim
n→∞

σ2
n = σ2.

The Durbin–Levinson algorithm is a very efficient method to determine recursively the filter coef-
ficients of the optimal prediction filter. However, here also arises the question whether it is possible
to have an algorithmic procedure to stop the iteration of the Durbin–Levinson algorithm at an ap-
propriate index N if for a predefined precision M ∈ N the approximation error for the MSE (20)
satisfies ∣∣σ2

N − σ2
∣∣ < 2−M .

In other words: Is it possible to find an algorithmic stopping criterion for the Durbin–Levinson algo-
rithm that is able to control at each step the quality of the actual approximation? We are going to
show in Section 4.1 that, in general, no such stopping criterion exists, neither for the Durbin–Levinson
algorithm, nor for any other possible algorithm that approximates the optimal MSE σ2.

4. Computation of the Mean Squared Prediction Error

Let x be a purely non-deterministic wss stationary process with spectral density φ. According to
Theorem 3.1, φ satisfies Szegö’s condition (8). However, in the following we restrict our considerations
to stochastic processes with very well behaving spectral density. Concretely, we consider the set

MD =
{
φ ∈ Cc(T) : φ′ ∈ Cc(T) and logφ ∈ L1(T)

}
,

of spectral densities φ that are computable continuous functions on T with a first derivative φ′ that
is also a computable continuous function on T. Then we define the functional E∞ : MD → R+ given
by

σ2 = E∞(φ) = inf
h∈A0(D)

1

2π

π∫
−π

∣∣1− h(eiθ)
∣∣2 φ(eiθ) dθ . (21)

As discussed in Section 3.3, σ2 = E∞(φ) is the optimal MSE that can be obtained by predicting x0
of a regular wss stochastic process x with spectral density φ ∈ MD from its past {. . . , x−3, x−2, x−1}
using a causal linear filter.

4.1. Non-computability of the optimal MSE. It is a problem of considerable practical importance
to calculate the optimal MSE σ2 = E∞(φ) given by (21) for arbitrary φ ∈ MD. Even though MD

contains already only spectral densities with very nice analytic properties, it is clear that even for
fairly simple densities φ ∈ MD, (21) cannot be calculated in a closed form and so, one generally needs
numerical algorithms to calculate E∞(φ). This brings us to the following problem.

Question 1. Does there exist a Turing machine TM whose input is a description of the spectral
density φ ∈ MD and which calculates a description of the number E∞(φ) ∈ R+?
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In (21), we optimize over all linear filters h ∈ A0(D). From a practical point of view, it might be
sufficient to ask for an FIR prediction filter. This yields the simpler optimization problem

σ2
n = En(φ) = inf

p∈Pn,0

1

2π

π∫
−π

∣∣1− p(eiθ)
∣∣2 φ(eiθ) dθ , (22)

where we minimize only over all polynomials of maximum degree n. Then En(φ) is the minimal
MSE that can be achieved by predicting x0 of a regular wss stochastic process with spectral density
φ ∈ MD from its past {x−n, . . . , x−3, x−2, x−1} by using a causal linear FIR filter of length n. It is
clear from the definition that En+1(φ) ≤ En(φ) for all n ∈ N and that

lim
n→∞

En(φ) = E∞(φ) , for all φ ∈ MD .

It seems an obvious idea, to use the sequence {En(φ)}n∈N of simpler functionals to approximate the
value E∞(φ). However, to make this idea effective, one needs an algorithmic stopping criterion, i.e.
one needs a Turing machine that is able to find algorithmically for anyM ∈ N and any given φ ∈ MD

an index N ∈ N such that |EN (φ)− E∞(φ)| < 2−M . This brings us to our second problem.

Question 2. Does there exist a Turing machine TM whose two inputs are an arbitrary description
of φ ∈ MD and a number M ∈ N and that is able to calculate an index N = N(φ,M) ∈ N such that∣∣EN(φ,M)(φ)− E∞(φ)

∣∣ < 2−M?

We are going to show that both, Question 1 and Question 2, have a negative answer. This will
follow from the following

Theorem 4.1. There exists a φ∗ ∈ MD so that E∞(φ∗) /∈ Rc.

Remark 4.1. The proof of this result will be given in a forthcoming publication.

Theorem 4.1 immediately implies the following practical consequences concerning our two questions.

Corollary 4.2. Let φ∗ ∈ MD be the spectral density as in Theorem 4.1. There exists no Turing
machine that is able to compute E∞(φ∗). In particular, Question 1 has a negative answer.

Note that the negative answer to Question 1 is the strongest possible. There not only exists Turing
machine TM(φ) whose input is a (description of a) spectral density φ ∈ MD and that is able to
calculate (a description of) E∞(φ) for all possible spectral densities φ ∈ MD, it is even impossible to
have a particular Turing machine TM∗ that is able to compute E∞(φ∗) for only one spectral density
φ∗ ∈ MD.

Corollary 4.3. For the spectral density φ∗ ∈ MD as in Theorem 4.1 there does not exist a Turing
machine TM whose input is a number M ∈ N and that is able to determine N ∈ N so that

∣∣σ2
N − σ2

∣∣ =
|EN (φ∗)− E∞(φ∗)| < 2−M . In particular, Question 2 has a negative answer.

So, even although En(φ) monotonically converges to E∞(φ) as n → ∞, Corollary 4.3 shows that
the convergence speed is generally not algorithmically computable. Similarly, as for Question 1, this
negative answer to Question 2 is the strongest possible in the sense that there is not only a general
Turing machine for all φ ∈ MD but it is even impossible to design a particular Turing machine
TM∗(M) for the spectral density φ∗ and with input M ∈ N that is able to compute N = N(M) for
which |EN (φ∗)− E∞(φ∗)| < 2−M .

After the joint works of Kolmogorov, Paley, Szegö, Wiener, many other researchers tried to find
algorithms to determine FIR approximations for the optimal prediction filter by controlling the perfor-
mance of this FIR approximation. One example is the Durbin–Levinson algorithm, shortly discussed
in Section 3.5. This recursive algorithm determines in each iteration the MSE σ2

n = En(φ). However,
Corollary 4.3 shows that it is generally impossible to decide algorithmically whether σ2

n is sufficiently
close to the optimal MSE σ2, i.e. there is generally no way to terminate the iteration if certain error
bound is achieved, simply because it is impossible to determine whether the error bound is already
achieved.
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Moreover, it should be emphasized that the above results (in particular, Corollary 4.3) are inde-
pendent of any particular method that tries to approximate the minimal MSE σ2 = E∞(φ). So, these
negative results hold not only for the particular sequence

{
σ2
n

}
n∈N given by (22), but for any other

sequence
{
σ̃2
n

}
n∈N that converges to σ2. In other words, there exists, in general, no algorithm on a

digital computer that is able to effectively compute an approximation of the minimum mean squared
error E∞(φ) in the sense that for every M ∈ N, the algorithm is able to compute an σ̃2

n that is
guaranteed to satisfy

∣∣σ2 − σ̃2
n

∣∣ < 2−M .

4.2. Sufficient condition for computability. We have seen in Subsection 4.1 that for some spectral
densities φ ∈ MD, the corresponding optimal prediction MSE σ2 = E∞(φ) given by (21), is not a
computable number. So, it is natural to ask for conditions on the spectral density φ so that E∞(φ)
is a computable number.

Question 3. For which φ ∈ MD do we have σ2 = E∞(φ) ∈ Rc?

The following theorem gives an answer, namely, it provides a sufficient condition on the spectral
density φ for σ2 = E∞(φ) to be computable. A proof of this theorem will be presented in a forthcoming
publication.

Theorem 4.4. If φ ∈ MD satisfies φ(ζ) > 0 for all ζ ∈ T, then σ2 = E∞(φ) ∈ Rc.

Remark 4.2. Theorem 4.4 only shows that if φ is strictly positive, then the optimal MSE is a
computable number. However, as we will see later, this does, generally, not imply that also the
spectral factor φ+ or the corresponding optimal prediction filter hopt is computable.

So, Theorem 4.4 shows that to any given φ ∈ MD with minζ∈T φ(ζ) > 0 there exists a computable
(i.e., recursive) function e : N → N such that for all M ∈ N, one has

|E∞(φ)− EN (φ)| < 2−M provided that N ≥ e(M) .

However, knowing that σ2 = E∞(φ) is computable, we may ask for the complexity of computing
E∞(φ). This will be done in more detail in Section 5.

5. Complexity Blowup of Computing the Optimal MSE

The previous section gave the sufficient conditions on the spectral density φ ∈ MD such that the
corresponding optimal MSE σ2 = E∞(φ) is computable. This section now analyzes the computational
complexity for computing σ2. To this end, we assume that φ ∈ MD is a spectral density that satisfies
min
ζ∈T

φ(ζ) > 0. Then, according to Theorem 4.4, σ2 = E∞(φ) is a computable number. This means

that there is a Turing machine TMσ2 with inputs φ and n ∈ N and whose output satisfies∣∣σ2 − TMσ2(φ, n)
∣∣ < 2−n . (23)

If σ2 would even be polynomial-time computable, then there would exist a polynomial q so that the
computation time for achieving the error bound (23) is at most q(n). Our question is now, whether
σ2 is indeed polynomial-time computable.

To this end, it is important to notice first that the computational complexity of TMσ2(φ, n) depends
strongly on the computational complexity of φ. In fact, in order that TMσ2 is able to process the input
φ, one needs to prepare a description of φ which could be understood by TMσ2 . If, for example, φ is
polynomial-time computable, then there exists a function-oracle Turing machine TMγ (cf., Def. 2.4)
such that for every θ ∈ [−π, π), TMγ obtains an output that satisfies∣∣φ(eiθ)− TMγ(n)

∣∣ < 2−n

in a computational time which grows at most polynomial in n. In other words, TMγ is a Turing
machine that is able to determine the desired description of φ in polynomial time. So, it is clear that
the complexity for computing σ2 is at least as large as the computational complexity of the spectral
density φ. Nevertheless, we may hope that for a polynomial-time computable φ, the optimal MSE
σ2 is also polynomial time computable. Otherwise, if the computation of σ2 = E∞(φ) is much more
complex, than the computation of φ, we speak of a complexity blowup.
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Definition 5.1. We say that the calculation of the minimum mean squared error shows complexity
blowup, if there exists a polynomial-time computable spectral density φ ∈ MD with min

ζ∈T
φ(ζ) > 0 so

that σ2 = E∞(φ) is not polynomial-time computable.

We are going to show that the calculation of the optimal MSE shows indeed complexity blowup.
In order to formulate this statement precisely, we first need some more notion from the complexity
theory which is shortly reviewed in the following subsection.

5.1. Complexity classes. Classifying the complexity of numerical problems is based on complexity
classes. The best known are the classes P and NP which are related to the decision problems. P is the
class of all questions (problems) that can be answered (solved) by a deterministic Turing machine in
polynomial time, and NP is the class of all questions (problems) for which a given answer (solution)
can be verified in polynomial time by a deterministic Turing machine. From the definition, it is clear
that P ⊆ NP but it is still an open question whether P = NP or P ⊊ NP . It is widely assumed that
P is a proper subset of NP .

This paper considers also the function evaluation problems. Therefore, the complexity classes FP
and #P are needed. Let {0, 1}n be the set of all words of length n ∈ N in the alphabet {0, 1} and let
{0, 1}∗ be the set of all finite words in the alphabet {0, 1}. The length of a word x ∈ {0, 1}∗ will be
denoted by len[x].

Definition 5.2. A function f : {0, 1}∗ → N is in FP if it can be computed by a deterministic Turing
machine in polynomial time. A function f : {0, 1}∗ → N is in #P if there exist a polynomial p : N → N
and a polynomial-time Turing machine M, so that for every string x ∈ {0, 1}∗,

f(x) =
∣∣∣{y ∈ {0, 1}p(len[x]) : M(x, y) = 1

}∣∣∣ .
Remark 5.1. M : {0, 1}∗ × {0, 1}∗ → {0, 1} might be seen as a Turing machine that checks in
polynomial time a certificate y for a problem x. Then f(x) is the number of valid certificates for the
problem x. So whereas a problem in NP only asks whether there exists a polynomial-time certificate
for the input, a problem in #P asks for the number of such certificates.

Again, it follows from the definition that FP ⊆ #P but it is an open problem whether FP = #P ,
i.e. whether any problem in #P can efficiently (in polynomial time) be solved by a Turing machine. It
is commonly assumed that FP ⊊ #P . Moreover, if FP = #P , then this would imply that P = NP .
Conversely, P ̸= NP implies FP ̸= #P . Finally, a function f ∈ #P is said to be complete in #P if
any other g ∈ #P can be reduced to f by a polynomial-time Turing machine.

We will also need sub-classes of FP and #P containing all functions in FP and #P , respectively,
that are defined only on {0}∗ ⊂ {0, 1}∗, i.e. on the set of all finite words in the alphabet {0}, i.e. the
set of all 0-sequences: {0}∗ = {{0}, {0, 0}, {0, 0, 0}, . . . }.

Definition 5.3. A function f : {0}∗ → N is said to be in FP1 if it can be computed by a deterministic
Turing machine in polynomial time. A function f : {0}∗ → N is said to be in #P1 if there exist a
polynomial p : N → N and a polynomial-time Turing machine M, so that for every string x ∈ {0}∗,

f(x) =
∣∣∣{y ∈ {0}p(len[x]) : M(x, y) = 1

}∣∣∣ .
As in the previous cases, we have FP1 ⊆ #P1 but it is open whether FP1 = #P1. However, it is

widely assumed that FP1 ⊊ #P1. Similarly as above, an f ∈ #P1 is said to be complete in #P1 if
any other g ∈ #P1 can be reduced to f by a polynomial-time Turing machine.

5.2. Complexity blowup for computing the MSE prediction error. After the necessary prepa-
rations in the previous subsection, we are now able to give our main results regarding the computa-
tional complexity of the optimal mean squared prediction error σ2

x for a wss stochastic process with
spectral density φx.
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Theorem 5.1.
1. For any polynomial-time computable φ ∈ MD that satisfies min

ζ∈T
φ(ζ) > 0, the computation of

E∞(φ) is in #P1.
2. There exists a φ∗ ∈ MD with minζ∈T φ∗(ζ) > 0 which is polynomial-time computable but such

that the computation of E∞(φ∗) is #P1 complete.

Theorem 5.1 shows that the computation of the optimal MSE E∞(φ) is generally a problem in
#P1. So, if the conjecture FP1 ̸= #P1 is indeed true, then E∞(φ) might not be polynomial-time
computable. Indeed, the second part of Theorem 5.1 shows that there exists a polynomial-time
computable spectral density φ∗ such that the computation of E∞(φ∗) is #P1 complete, i.e. it is at
least as complex as any other problem in #P1. Consequently, if FP1 ̸= #P1, then E∞(φ∗) is not
polynomial-time computable, even though φ∗ is. This verifies that the computation of the optimal
MSE shows a complexity blowup (provided FP1 ̸= #P1).

Similarly, as in Section 4.1, we emphasis that the statement of Theorem 5.1 is independent of any
specific algorithm but holds for any possible algorithm which computes σ2 = E∞(φ). For example,
one may use the Durbin–Levinson algorithm as discussed in Section 3.5 to calculate a sequence σ2

n,
n ∈ N that converges to σ2 = E∞(φ) as n → ∞. This algorithm needs as input a description
(approximation) φ̃ of the spectral density φ. If one requires that |φ(ζ)− φ̃(ζ)| < 2−M for all ζ ∈ T
and for some precision M ∈ N, then the preparation of φ̃ needs a computation time that grows
polynomially in M , because φ is assumed to be polynomial-time computable. However, Theorem 5.1
shows that the calculation of a σ2

n and the verification that σ2
n satisfies

∣∣σ2
n − σ2

∣∣ < 2−M needs
generally (and in particular for the spectral density φ∗) a computation time that grows faster than
any polynomial inM , provided FP1 ̸= #P1. The same is true for any other algorithm that is designed
to compute the minimum mean squared error σ2.

It is also interesting to note that computer science basically applies two different approaches to
characterize the “non-computability” of computational problems. From a mathematical point of
view, one has a very precise definition of “non-computability” (see, e.g., [31, 43]), namely, every
computational problem for which the solution does not depend recursively on the parameters and
inputs is not computable (on a digital computer). However, in practical and applied investigations,
one uses a more heuristic definition to characterize whether a computational problem is “(practically)
computable” or not. Namely, a problem is considered to be “(practically) non-computable” if the
complexity for calculating the solution (using the best possible algorithm) grows faster than any
polynomial in the number of parameters of the problem. Conversely, if the computational complexity
(i.e. the number of calculation steps) grows at most polynomially in the number of parameters, the
problem is considered to be “(practically) computable”. This second approach of “practical non-
computability” lies at the heart of modern cryptography and it is therefore the basis of present-day
technology for secure communication. In this respect, Theorem 5.1 shows that the computation of
the optimal MSE is in general “practically non-computable”.

Up to this point, we have used the notion of polynomial-time computability as given in Defini-
tion 2.4. This definition is based on a function oracle Turing machine, which seems to be somewhat
artificial at the beginning. Nevertheless, we have also introduced the notion of computability on
dyadic-grids in Definition 2.8 which seems to be a very natural model for algorithms on digital com-
puters. As mentioned earlier, both computation models are equivalent. Therefore, our previous results
on the complexity blowup of computing E∞(φ) can be reformulated in the computation model on
dyadic grids. This follows from the next theorem due to Friedman. It shows that both computation
models are equivalent.

Theorem 5.2 (Friedman [18]). Let f : [0, 1] → R be a given function. Then f is polynomial-time
computable on dyadic grids (cf., Definition 2.8) if and only if f is polynomial-computable (in the sense
of Definition 2.4).

Using this theorem, we easily get the following reformulation of our blowup result in Theorem 5.1

Corollary 5.3. Assume FP1 ̸= #P1, then there always exists a spectral density φ∗ ∈ MD with
minζ∈T |φ∗(ζ)| > 0 with the following to properties:
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1. For every n ∈ N, one can compute φ∗(ζ) on the grid

ζk,n = exp
(
i2π · k · 2−n

)
, 0 ≤ k ≤ 2n ,

exactly up to an error of at most 2−n in polynomial time, i.e. one can compute φ̃∗(ζk,n) so that

|φ̃∗(ζk,n)− φ∗(ζk,n)| < 2−n , for all 0 ≤ k ≤ 2n ,

and in a computation times that grows at most polynomial in n.
2. The optimal MSE σ2 = E∞(φ∗) cannot be computed in polynomial time, i.e. the time for

computing an approximation σ̃2 so that ∣∣σ2 − σ̃2
∣∣ < 2−n

grows faster than any polynomial in the required precision n.

6. Computability of the Spectral Factorization

This section investigates under which conditions on a computable spectral density φ, the spectral
factor φ+ will be again a computable function. The previous section already showed that the spectral
density φ needs to be strictly positive for the minimal mean squared error E∞(φ) to be a computable
number (cf., Theorem 4.4). We will show in this section that generally much stronger conditions on
φ are necessary in order for the spectral factor φ+ to be a computable function.

To formalize these additional conditions on φ, we first need some more notation and function spaces
which are introduced in the first subsection. Here, we follow mainly the notion in [6].

6.1. Functions of finite Dirichlet energy. Let f ∈ C(T) be a continuous function on T with
Fourier coefficients (1). The Dirichlet energy of f is given by the square of the extended (cf. [2])
seminorm

∥f∥E =

(∑
n∈Z

|n| |cn(f)|2
)1/2

. (24)

We notice that the seminorm (24) has an important interpretation as physical energy in many appli-
cations (see, e.g., [5, 33]). For f ∈ A, the Dirichlet energy can be expressed in terms of the Dirichlet
integral as

∥f∥2E =
1

π

∫∫
D

|f ′(z)|2 dz .

We write H1/2(T) =
{
f ∈ L2(T) : ∥f∥E < +∞

}
for the Sobolev space of all functions of finite

Dirichlet energy with the norm ∥f∥H1/2(T) = max (∥f∥∞ , ∥f∥E), and B = {f ∈ C(T) : ∥f∥E <∞} ⊂
H1/2(T) stands for the subspace of continuous functions of finite Dirichlet energy with the norm
∥f∥B = max

(
∥f∥∞ , ∥f∥E

)
. Then Bc = H1/2(T) ∩ Cc(T) will be the set of all f ∈ B that are

computable as the functions in B.
Since we study spectral factorization, we need spaces of positive functions. Therefore we define D

as the set of all spectral densities φ ∈ B that are strictly positive, i.e.,

D =
{
φ ∈ B : min

ζ∈T
φ(ζ) > 0

}
.

We emphasize that D is not a linear space because of the required positivity of φ ∈ D. For this reason,
it turns out to be useful to consider the sets

log(D) = {f = logφ : φ ∈ D} and exp(B) = {φ = exp f : f ∈ B}

of all functions defined by f(ζ) = logφ(ζ), ζ ∈ T with φ ∈ D, and the set of all positive functions φ
defined by φ(ζ) = exp

(
f(ζ)

)
for ζ ∈ T with f ∈ B, respectively.
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Since we are interested whether a given density φ ∈ D has a computable spectral factor φ+, we
require a priori that φ itself is computable. Therefore we consider

Dc =
{
φ ∈ D : φ ∈ Cc(T)

}
=

{
φ ∈ Cc(T) : ∥φ∥E <∞ and min

ζ∈T
φ(ζ) > 0

}
,

i.e. the set of spectral densities φ ∈ D that are computable as a continuous function. Subsequently,
we consider only spectral densities that belong to Dc or to certain subsets of Dc.

6.2. Non-computability and computability of the spectral factor. Our first result taken from
[6], shows that even for spectral densities with fairly nice analytic properties, the spectral factor will
usually not be computable.

Theorem 6.1. There exists a spectral density φ ∈ Dc with the following properties:

(a) φ ∈ Cac(T) and φ ∈ W;
(b) φ+ ∈ B and φ+ ∈ Cac(T) and φ+ ∈ W,

but such that φ+(1) /∈ Cc.

So, there are spectral densities φ with very favorable analytic properties but with a spectral factor
φ+ that is not computable at certain points on the unit circle. In fact, Theorem 6.1 shows that there is
a spectral density φ that is strictly positive, continuous, computable, that has finite Dirichlet energy,
and for which we know that its spectral factor φ+ is absolutely continuous with an absolute converging
Fourier series but such that φ+(1) is not a computable number. This shows, in particular, that for
such spectral density φ, the spectral factor φ+ does not satisfy the weakest necessary condition for a
computable function. and so these spectral factors are not computable in any stronger notion [1, 43]
of computability. In particular, φ+ is not a computable continuous function.

Since, according to Theorem 6.1, not all computable spectral densities φ ∈ Dc have a computable
spectral factor φ+, we may ask for subsets of Dc so that every spectral density in this subset possesses
a computable spectral factor. To characterize such subsets, we introduce for every α ≥ 0, the usual
Sobolev space Hα(T) of functions in L2(T) with

∥f∥Hα(T) =

(∑
n∈Z

(1 + |n|α)2 |cn(f)|2
)1/2

<∞ .

For α = 1/2, the so-defined space coincides with H1/2(T) of all functions of finite Dirichlet energy as
defined previously. For α > 1/2, we have Hα(T) ⊂ H1/2(T), i.e. all functions in Hα(T) have finite
Dirichlet energy. Moreover, we notice that for α > 1/2, we have Hα(T) ⊂ W ⊂ C(T) . Indeed, let
f ∈ Hα(T) and m ∈ N be arbitrary, then the Cauchy–Schwarz inequality gives∣∣(Smf) (eiθ)∣∣ = ∣∣∣∣ m∑

n=−m

cn(f) e
inθ

∣∣∣∣ ≤ m∑
n=−m

|cn(f)|

≤
( m∑

n=−m

(1 + |n|α)2 |cn(f)|2
)1/2( m∑

n=−m

1

(1 + |n|α)2

)1/2

≤ K(α) ∥f∥H1/2(T) (25)

with the constant

K(α) =

( ∞∑
n=−∞

1

(1 + |n|α)2

)1/2

≤
(
1 + 2

∞∑
n=1

1

n2α

)1/2

,

which is a computable real number for every α ∈ Rc with α > 1/2. Since the right-hand side of (25)
is independent of m, this inequality also holds for m→ ∞, and so it shows that for every f ∈ Hα(T),
the partial Fourier series Smf converges to f uniformly on T. In particular, we have Hα(T) ⊂ B for
α > 1/2, and it is clear that

∥f − Sm2
f∥Hα(T) ≤ ∥f − Sm1

f∥Hα(T) , for m2 ≥ m1 .
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Based on these preparations, we are now able to characterize computable spectral densities φ ∈ Dc

that possess a computable spectral factor φ+.

Theorem 6.2. Let α ∈ Rc, α > 1/2 be fixed, and let φ ∈ Dc be a spectral density such that logφ ∈
Hα

c (T). Then φ+ ∈ Cc(T).

Note that Theorem 6.2 is sharp with respect to the parameter α. Therewith we have a complete
characterization of sets of spectral densities such that for every φ in these sets, the spectral factor
φ+ is guaranteed to be a computable continuous function. Indeed, for α = 1/2 and φ ∈ Dc, one

can show that logφ ∈ H
1/2
c (T). However, according to Theorem 6.1, there are the densities φ such

that φ+(1) /∈ Cc, i.e. such that φ+ is not a function that maps computable numbers in T ∩ Cc onto
computable numbers in Cc. So, Theorem 6.2 does indeed not hold for α = 1/2. Only if logφ ∈ Hα

c (T)
with α > 1/2, α ∈ Rc, then φ+ is always a computable continuous function, according to Theorem 6.2.

6.3. Spectral factorization for polynomial densities. One particular but important case of spec-
tral factorization is the situation where the spectral density φ is a trigonometric polynomial, i.e.

a function of the form φ(eiθ) =
N∑

n=−N

cne
inθ. For all polynomial spectral densities φ that satisfy

min
ζ∈T

|φ(ζ)| > 0, the spectral factor φ+ is always computable. Indeed, for polynomials, the spectral

factorization is equivalent to the Fejér–Riesz theorem [17]. It states that if φ is a function of the form

φ(z) =
N∑

n=−N

cnz
n that is non-negative for |z| = 1, then the roots of φ occur in para-conjugate pairs

ξ and 1/ξ. So, either a root of φ lies on the unit circle (in that case, it will have even multiplicity), or
one root of the pair ξ, 1/ξ lies inside D, whereas the other lies outside D. Therefore, any polynomial
density φ can be written as

φ(z) = c0

N∏
n=1

(z − ξn)
(
z−1 − ξn

)
, z ∈ C ,

with a constant c0 > 0 and with ξn ∈ C satisfying |ξn| > 1 for all n = 1, 2, . . . , N . Consequently,

the spectral factor of φ is given by φ+(z) =
√
c0

N∏
n=1

(z − ξn) and the spectral factorization problem

reduces to the problem of subdividing the roots of φ into those roots which lie inside and outside the
unit disk, respectively. In other words, for determining the spectral factor of a positive polynomial φ,
one has to compute the roots of φ. This is a classical problem in mathematics and there exist many
different proofs of the fundamental theorem of algebra since the first proof of Gauss in 1799. However,
it was not before 1925 that Hermann Weyl [44] gave a first constructive proof of this theorem (cf. also
discussion in [36]).

The main problem is the fact that there exists, in general, no simple function that is able to
determine the zeros of a polynomial of degree larger than 4 from its coefficients2. Nevertheless, since
the field Cc of computable complex numbers is algebraically closed, the roots of polynomials with
computable coefficients are again computable complex numbers. Even though this observation does
not necessarily imply that it is always possible to determine the roots of a polynomial effectively
from its coefficients, E. Specker proved [39] that the relation between the coefficients and roots of a
computable polynomial is, in fact, effective. So, let PN,c be the set of all computable polynomials
of degree N (i.e. polynomials of degree N with computable coefficients). Then for every N ∈ N
there exists a recursive function on PN,c that associates the roots of a polynomial p ∈ PN,c with the
polynomial p [39]. So, starting with a computable polynomial density φ ∈ PN,c∩Dc, it is, in principle,

possible to effectively determine its roots {ξn}2Nn=1 ⊂ Cc. Since φ ∈ Dc is strictly positive on T, it
follows that |ξn| ̸= 1 for all n = 1, 2 . . . , N . Then one can determine all those ξn with |ξn| > 1. This
gives finally the spectral factor φ+ as described above.

2In other words and according to Galois theory only polynomial equations of degree N ≤ 4 can generally be solved
by radicals.
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As in Section 5, we may ask for the computational complexity of determining the spectral factor φ+

of a polynomial density φN ∈ PN,c. In [36], computational complexity was precisely investigated and
it was shown that the complexity grows at most polynomial with the degree N and in the precisionM .

6.4. Application to prediction and Wiener filtering. We already discussed in Section 3.4 that
the spectral factorization is closely related to the problem of finding the optimal (minimal MSE) causal
filter for predicting the value x0 of a wss stochastic process x from it past values {x−1, x−2, x−3, . . . }.
If the spectral density of x is φ, then the transfer function hopt of the optimal prediction filter is given
by (16). Form this formula, it is immediately clear that Theorem 6.1 and Theorem 6.2 hold verbatim
also for hopt.

Corollary 6.3. There exists a wss stochastic process x with a spectral density φ ∈ Dc such that
φ ∈ Cac(T) ∩ W and φ+ ∈ B ∩ Cac(T) ∩ W but such that the optimal prediction filter (16) satisfies
hopt(1) /∈ Cc.

If, on the other side, the spectral density φ ∈ Dc of x satisfies logφ ∈ Hα
c (T) for some α ∈ Rc,

α > 1/2, then hopt ∈ Cc(T).

There is a slightly but practically important generalization of the previously discussed prediction
problem. To explain this, assume y = {yn}n∈Z ⊂ R is a second wss stationary stochastic process that
is stationary correlated with x. This means that E[xn+kyk] = ⟨xn+k, yk⟩R = ⟨xn, y0⟩R = E[xny0] for
all n, k ∈ Z. Then the cross-covariance function is defined to be γx,y(n) = ⟨xn, y0⟩R with a spectral
representation similarly to (5) but with a spectral measure µx,y. As before, we assume that both
stochastic processes are purely non-deterministic and that the spectral measure has no singular part.
Then the cross-covariance function is completely determined by the cross-spectral density ψ ∈ L1(T),
so that

γx,y(n) =
1

2π

π∫
−π

einθψ(eiθ) dθ , n ∈ Z .

Now our aim is to find an estimate x̂0 of the random variable x0 based on the past {yn : n ≤ 0} of the

stochastic process y such that the mean squared error E[|x0 − x̂0|2] is minimized. If we require that
the estimator is a linear filter, it will have the form

x̂0 = H(y) =

∞∑
k=0

hk y−k ,

with the impulse response {hk}∞k=0 and transfer function h(eiθ) =
∞∑
k=0

hk e
ikθ. The optimal filter is

known as a (causal) Wiener filter [25, 46] given by

hWF(e
iω) =

1

φ+(eiω)

(
P+

[ ψ
φ−

]) (
eiω

)
=

1

φ+(eiω)

1

2π

π∫
−π

ψ(eiθ)

φ−(eiθ)

eiθ

eiθ − eiω
dθ . (26)

Therein P+ : L2(T) → H2(D) is the orthogonal projection from L2(T) onto H2(D) given by

P+ : f(eiω) =

∞∑
n=−∞

cn(f) e
inω 7→

∞∑
n=0

cn(f)z
n .

Similarly, as for the prediction filter, we may ask whether the optimal Wiener filter (26) is com-
putable. The following statement, which easily follows from Theorem 6.1 (cf., [6]), shows that hWF is
generally not computable even under strong assumptions on the spectral densities φ and ψ.

Corollary 6.4. There exist spectral densities φ,ψ ∈ Bc with φ,ψ ∈ Cac(T) and φ,ψx,y ∈ W such that
the transfer function of the causal Wiener filter (26) satisfies hWF ∈ B, hWF ∈ Cac(T), and hWF ∈ W
but such that hWF(1) is not computable.
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So, similarly as for the prediction filter discussed in Section 6.2, the Wiener filter is, generally, not
computable, even if the two spectral densities φ and ψ are computable functions with very nice analytic
properties, the transfer function of the corresponding Wiener filter (26) is usually not a computable
function. In fact, hWF is even not computable at certain points on the unit circle and, in particular,
hWF is not a computable continuous function.

7. Summary

This paper has considered computational aspects in some important areas of prediction and Wiener
filter theory. It was shown that for the problem of linear causal prediction, the important performance
measure of the minimum mean squared error (MMSE) is, generally not a computable number, even
for spectral densities with fairly nice analytic properties. Then, based on the smoothness of the
spectral density, we have been able to characterize precisely subsets of spectral densities for which
the MMSE is a computable number. Nevertheless, it turned out that even for these subsets the
computation of the MMSE shows complexity blowup, i.e. even if the spectral density is low-complexity
(i.e. polynomial-time computable), the calculation of the MMSE is generally of high complexity (i.e.
not polynomial-time computable) under the complexity theoretical condition that FP1 ̸= #P1.

As a second problem, we investigated the computability of the spectral factorization. There we could
show that even under strong conditions on the smoothness of the spectral density, the spectral factor
is generally not computable. This non-computability then easily translates into the non-computability
of the Wiener filter. On the other hand, we have given a sharp characterization of sets of spectral
densities φ that possess a computable spectral factor. It was shown that if logφ is sufficiently smooth,
then spectral factor will always be computable.
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