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PROPERTY (az) THROUGH TOPOLOGICAL NOTIONS AND SOME

APPLICATIONS

ELVIS APONTE VALLADARES

In memorial to mathematician Jorge Medina Sancho, a great teacher of the ESPOL

Abstract. In this article, for a bounded linear operator defined on a complex infinite-dimensional
Banach space, through classical methods of local spectral theory, we study an important variant

of a-Browder’s theorem, the variant known as the property (az). Among other new results, are
obtained some characterization with topological terms showing that a set of operators that verify

this property (az) is closed. Some existing results are generalized, and from a new perspective,

the stability of this property (az) is studied under the classic perturbations that commute with the
operator.

1. Introduction and Preliminaries

The spectral theory in the last three decades has got several developments through the diverse use
of its techniques, for example, the single-valued extension property (SVEP) has allowing to develop
several works, many of them are mentioned in [3]. In this theory, we have the upper semi-Weyl
operators, i.e., those with the closed range, the difference between the dimension of their kernel and
the co-dimension of their range is negative. These operators have an impact on the theory of linear
operators, since the classical a-Browder’s theorem is defined through the upper semi-Weyl spectrum.
There is a variant of the a-Browder’s theorem called the property (az) [19], which means that the
set of all spectral points λ of T for which λI − T is upper semi-Weyl, coincides with the set of all
eigenvalues λ of T for which λI − T is upper semi-Fredholm with a finite ascent. This variant (az)
has been studied in [4], where it is verified that the properties (az) and (gaz) are equivalent, and
also, through the classical methods of local spectral theory, a relevant study of the property (gaz)
(equivalent for the property (az)) has been made. In [18], we see that the property (az) is equivalent
to the property (Sab), if the upper semi-Berkani Weyl spectrum is equal to the upper semi-Weyl
spectrum, in this case, the property (az) is equivalent to the other 15 properties, in particular, to
the a-Browder’s theorem, or equivalently, to the property (Bv), this property (Bv) is studied in [8],
where it is noted that the upper semi-Fredholm spectrum and Fredholm spectrum are coincident, if
the operator verifies property (az). The property (gaz) has been considered in [10], where by using
algebraic techniques, it is demonstrated that this property is transmitted from T to its Drazin inverse,
in case that T is a Drazin invertible operator. So, in this paper, we shall give other new results for the
property (az), or equivalently, we continue the study for the property (gaz). Actually, in Section 2,
the property (az) is characterized by using the SVEP and then, in Section 3, through the topological
notions. In Section 4, we studied the property (az) under classic perturbations, and some applications
are studied in Section 5.

In what follows, we use the following terminology (see [3], for details).
Let L(X) be the algebra of all bounded linear operators acting on an infinite-dimensional complex

Banach space X. Let T ∈ L(X), denote by α(T ) the dimension of kernel of T denoted by ker T and by
β(T ) the co-dimension of the range R(T ) := T (X). Below, we give the following classical notations:

• Spectrum: σ(T ),
• Approximate point spectrum: σa(T ),
• Fredholm spectrum: σe(T ),
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• Upper semi-Fredholm spectrum: σusf (T ),
• B-Fredholm spectrum: σbf (T ),
• Upper semi B-Fredholm spectrum: σubf (T ),
• Weyl spectrum: σw(T ),
• Upper semi-Weyl spectrum: σuw(T ),
• Lower semi-Weyl spectrum: σlw(T ),
• Upper semi B-Weyl spectrum: σubw(T ),
• Browder spectrum: σb(T ),
• Upper semi-Browder spectrum: σub(T ),
• Lower semi-Browder spectrum: σlb(T ),
• Drazin invertible spectrum: σd(T ),
• Left Drazin invertible spectrum: σld(T ),
• Quasi-nilpotent part: H0(T ) := {x ∈ X : lim

n→∞
∥Tnx∥1/n = 0},

• Subspace hyper-range: T∞(X) :=
∞⋂

n=1
Tn(X),

• p(T ) the ascent of T ,
• q(T ) the descent of T .

The boundary of the spectrum is always contained in the approximate point spectrum (see [3,
Theorem 1.12]).
Let X∗ := L(X,C) be the dual of X. By T ∗ ∈ L(X∗) we denote the classical dual operator of T
defined by

(T ∗f)(x) := f(Tx) for all x ∈ X, f ∈ X∗.

By H(σ(T )) we denote the set of all analytic functions defined on an open neighborhood of σ(T ),
and f(T ) is defined by the classical functional calculus, for every f ∈ H(σ(T )). The single-valued
extension property at λ ∈ C was introduced by Finch in [14].

Definition 1. Let X be a complex Banach space and T ∈ L(X). The operator T is said to have
the single-valued extension property at λ0 ∈ C (SVEP at λ0) if for every open disc D with λ0 ∈ D,
the only analytic function f : D → X satisfying the equation (λI − T )f(λ) = 0 for all λ ∈ D, is the
function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has SVEP at every point λ ∈ C.

It is easy to prove that T ∈ L(X) has SVEP at every isolated point of the spectrum, we also have

p(λI − T ) < ∞ ⇒ T has SVEP at λ, (1)

and dually,

q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ, (2)

(see [1, Theorem 3.8]). Furthermore, it is easily seen that

σa(T ) does not cluster at λ ⇒ T has SVEP at λ, (3)

and dually,

σs(T ) does not cluster at λ ⇒ T ∗ has SVEP at λ. (4)

Note that H0(T ) is not generally closed, by ([1, Theorem 2.31])

H0(λI − T ) closed ⇒ T has SVEP at λ. (5)

Remark 1. The converse of the implications (1)–(5) holds also when λI − T is semi-Fredholm, or
semi B-Fredholm (see [2]).

Let M , N be two closed linear subspaces of X and define

δ(M,N) := sup{dist (u,N) : u ∈ M, ∥u∥ = 1},
in the case M ̸= {0}, otherwise the set δ({0}, N) = 0 for any subspace N . According to [15, §2,
Chapter iv], the gap between M and N is defined by

δ̂(M,N) := max{δ(M,N), δ(N,M)}.
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The function δ̂ is a gap metric on the set of all linear closed sub-spaces of X, and the convergence

Mn → M is, obviously, defined by δ̂(Mn,M) → 0, as n → ∞.

The reduced minimal modulus of T is defined as γ(T ) := infx/∈kerT
∥Tx∥

dist(x,kerT ) . We set γ(0) = ∞.

It is well known that: γ(T ) > 0 if and only if T (X) is closed. Also, γ(T ) = γ(T ∗).

Remark 2 ([16, Chapter 10]). If T (X) and Tn(X), (1 ≤ n) are closed in X, and lim
n→+∞

∥ Tn−T ∥= 0,

then as a result, δ̂(ker (Tn), ker (T )) → 0 as n → ∞, and also, δ̂(R (Tn),R(T )) → 0, as n → ∞.
Hence dim (ker (Tn)) = dim (ker (T )) and dim (R (Tn)) = dim (R (T )), for n ≥ N0. Note that
lim

n→+∞
γ(Tn) = γ(T ).

2. Other Characterizations of the Property (az)

In this section, we consider two important sets linked to the operator T ∈ L(X), these are:

∆+(T ) := σ(T ) \ σuw(T ), pa00(T ) := σa(T ) \ σub(T ).

Recently in [9], a study was carried out linking the set ∆+(T ) through the property (VΠ) given for T if
∆+(T ) = σ(T ) \ σd(T ). We continues the study linking to ∆+(T ) through equality ∆+(T ) = pa00(T ),
which implies that

σ(T ) = σa(T ) and σuw(T ) = σub(T ).

Truly, if λ /∈ σa(T ), then λ /∈ σuw(T ), but if λ ∈ σ(T ), then λ ∈ ∆+(T ) = pa00(T ), hence λ ∈ σa(T )
which is a contradiction. Thus σ(T ) = σa(T ), and then σuw(T ) = σub(T ).

In general, pa00(T ) ⊆ ∆+(T ) and under certain conditions, the equality is obtained. In this section,
we give some conditions to obtain such equality, referring precisely to the property (az).

Definition 2 ([19]). T ∈ L(X) verifies property (az) if ∆+(T ) = pa00(T ).

Next, let us consider several consequences and characterizations for the property (az), some through
the set ∆+(T ).

Clearly, if T ∈ L(X) verifies the property (az), so σa(T ) = σ(T ), hence by [4, Lemma 2.4] and [9,
Lemma 2.1], we have the following

Theorem 1. If T ∈ L(X) verifies the property (az), then

σd(T ) = σld(T ), equivalently σa(T ) = σ(T ), equivalently σb(T ) = σub(T ).

Dually, if T ∗ verifies the property (az), then

σd(T ) = σrd(T ), equivalently σs(T ) = σ(T ), equivalently σb(T ) = σlb(T ).

In general σuw(T ) ⊆ σw(T ), but under the effects of the property (az), it is ensured that σuw(T ) =
σw(T ). Formally, we have the following result.

Theorem 2. Let T ∈ L(X). Then
i) T verifies the property (az) if and only if σb(T ) = σub(T ) = σw(T ) = σuw(T ).
ii) T ∗ verifies the property (az) if and only if σb(T ) = σlb(T ) = σw(T ) = σlw(T ).

Proof. i) Directly. If T verifies the property (az), then σ(T ) = σa(T ) and σuw(T ) = σub(T ). By
Theorem 1, if σub(T ) = σb(T ), then σuw(T ) = σb(T ). Hence

σw(T ) = σuw(T ) = σub(T ) = σb(T ).

Reciprocally, by Theorem 1, as σub(T ) = σb(T ), so σ(T ) = σa(T ). Since σuw(T ) = σub(T ), as a result
T verifies the property (az).

ii) Is obtained similarly to (i) by the duality between spectra. □

Next, the property (az) is characterized through the local SVEP.
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Theorem 3. Let T ∈ L(X). Then
i) T ∗ has the SVEP at λ /∈ σuw(T ) if and only if T verifies the property (az).
ii) T has the SVEP at λ /∈ σlw(T ) if and only if T ∗ verifies the property (az).

Proof. i) Directly. If λ /∈ σuw(T ), then T ∗ has the SVEP at λ, by Remark 1, q(λI − T ) < ∞,
this implies that ind (λI − T ) ≥ 0, hence λ /∈ σw(T ) and this way q(λI − T ) = p(λI − T ) < ∞,
whereby λ /∈ σub(T ), note also that if λ /∈ σa(T ), then λ /∈ σuw(T ), consequently, λ /∈ σ(T ). Hence
σuw(T ) = σub(T ) and σa(T ) = σ(T ). It follows that T verifies the property (az).

Reciprocally, if T verifies the property (az), then by Theorem 2, σb(T ) = σuw(T ). Hence T ∗ has
the SVEP at λ /∈ σuw(T ), since q(λI − T ) < ∞ (see equation (2)).

ii) This proof for the duality between spectra is similar to that of part (i), remember that σb(T ) =
σb(T

∗) and σlw(T ) = σuw(T
∗). □

Clearly, if T ∗ (resp., T ) has the SVEP, then (az) is given for T (resp., T ∗). It is known that
σubw(T ) ⊆ σuw(T ) ⊆ σ(T ), and the property (gaz) is given for T if and only if σubw(T ) = σld(T )
and σa(T ) = σ(T ). As the properties (az) and (gaz) are equivalents, so the following corollary
generalizes [4, Theorem 3.6].

Corollary 1. Let T ∈ L(X). Then
i) T ∗ has the SVEP at λ /∈ σuw(T ) if and only if (gaz) is given for T .
ii) T has the SVEP at λ /∈ σlw(T ) if and only if (gaz) is given for T ∗.

Example 1. Consider the classical Hardy space H2(T ) and let P denote the projection of L2(T )
onto H2(T ). The Toeplitz operator Tϕ on H2(T ), with symbol ϕ, is defined by Tϕf := P (ϕf) for
f ∈ H2(T ).

In [7], it is shown that if orientation of the curve ϕ(T ) is traced clockwise, then T ∗
ϕ has SVEP and,

analogously, if orientation of the curve ϕ(T ) is traced counterclockwise, then Tϕ has SVEP. The SVEP
for T ∗

ϕ or Tϕ, entails that the property (az) holds for Tϕ or T ∗
ϕ , respectively.

Next, a characterization through the quasi-nilpotent part.

Theorem 4. Let T ∈ L(X). Then T verifies the property (az) if and only if H0(λI − T )∗ is finite-
dimensional, ∀λ ∈ ∆+(T ).

Proof. Directly. Suppose that T verifies the property (az), thus by Theorem 2, we have σuw(T ) =
σb(T ), then by [3, Theorem 4.3], as a result, we have H0(λI − T )∗ is finite-dimensional ∀λ ∈ ∆+(T ).

Reciprocally, if ∀λ ∈ ∆+(T ) is H0(λI − T )∗ finite-dimensional so, T ∗ has SVEP at λ (see equation
5). Hence by Theorem 3, as a result, T verifies the property (az). □

Corollary 2. Let T ∈ L(X). Then T ∗ verifies the property (az) if and only if H0(λI − T ) is finite-
dimensional ∀λ ∈ ∆+(T ∗).

Proof. The proof is obtained by Theorem 4 and the duality. □

The spectral mapping theorem is known to be invalid for the Weyl-type spectra, however, for
spectra, σ(T ), σa(T ), σld(T ), i.e., σ(f(T )) = f(σ(T )), the same is given for the other two spectra,
with f ∈ H(σ(T )). Next, the property (az) is characterized by the spectral mapping theorem.

Theorem 5. Let f ∈ H(σ(T )) and T ∈ L(X) checking the property (az). Then σubw(f(T )) =
f(σubw(T )) if and only if f(T ) verifies the property (az).

Proof. Directly, by the hypothesis, as a result, T verifies the property (gaz) and σa(T ) = σ(T ). But
σubw(f(T )) = f(σubw(T )) so, σubw(f(T )) = f(σld(T )) = σld(f(T )). Clearly, σa(f(T )) = σ(f(T )).
Therefore f(T ) verifies the property (gaz) or, equivalently, f(T ) verifies the property (az).

Reciprocally, if f(T ) verifies the property (az), or equivalently f(T ) verifies the property (gaz), then
σubw(f(T )) = σld(f(T )), also, by the hypothesis if σubw(T ) = σld(T ), then f(σubw(T )) = σld(f(T )).
Hence σubw(f(T )) = f(σubw(T )). □



PROPERTY (az) THROUGH TOPOLOGICAL NOTIONS AND SOME APPLICATIONS 421

3. Property (az) and Topological Notions

In this section, by Cl(A), int(A) and ∂(A) we denote the closure, interior and border, respectively,
of A ⊆ C. With this notation, some notions of topology are used to characterize the property (az).
If ∆+(T ) has an empty interior, several results are obtained, among which the property (az) is given
for T . To begin, note that σuw(T ) ⊆ σa(T ), and recall that a set of the upper semi-Weyl operators is
open in L(X).

Theorem 6. Let T ∈ L(X). If int (∆+(T )) = ∅, then σ(T ) = σa(T ).

Proof. Let λ0 /∈ σa(T ) and suppose that λ0 ∈ σ(T ), then λ0I−T is upper semi-Weyl, and hence there
exists an open disc D(λ0, ε), centered at λ0, such that λI − T is upper semi-Weyl and bounded below
for all λ ∈ D(λ0, ε). Notice that D(λ0, ε) ⊆ σ(T ), if not, ∅ ̸= D(λ0, ε) ∩ ∂σ(T ) ⊆ σa(T ). Therefore
D(λ0, ε) ⊆ int∆+(T ), which is a contradiction, hence λ0 /∈ σ(T ) and then σ(T ) = σa(T ). □

The following theorem will allow us to prove that a set of operators that verify the property (az)
is closed in L(X). Since σubw(T ) ⊆ σuw(T ), this theorem generalizes a part of Theorem 3.2 stated
in [4].

Theorem 7. For T ∈ L(X), the following statements are equivalent:
i) T verifies the property (az).
ii) ∆+(T ) ⊆ isoσa(T ) ⊆ ∂σa(T ).
iii) int (∆+(T )) = ∅.
iv) ∆+(T )

⋂
acc(σa(T )) = ∅, and σ(T ) = σa(T ).

Proof. (i) ⇔ (ii) In one direction, ∆+(T ) = pa00(T ) ⊆ Πa(T ) ⊆ isoσa(T ) ⊆ ∂σa(T ). In the reverse
direction, if λ ∈ ∆+(T ), then λ ∈ isoσa(T ), and by equation 3, T verifies the SVEP at λ, and then
by Remark 1, p(λI − T ) < ∞, so λ ∈ pa00(T ). Then T verifies the property (az).

(ii) ⇒ (iii) Is clear.
(iii) ⇒ (i) If int (∆+(T )) = ∅, then by Theorem 6, σ(T ) = σa(T ). On the other hand, if λ0 ∈ ∆+(T ),

there exists an open disc D(λ0, ϵ) such that λ /∈ σuw(T ) for all λ ∈ D(λ0, ϵ), but λ0 ∈ ∂(σ(T )), otherwise
there exists an open disc D(λ0, ϵ1) such D(λ0, ϵ1) ⊆ σ(T ), then λ0 is an interior point of ∆+(T ) which
is not possible. Hence, λ0 ∈ ∂(σ(T )) and so T has the SVEP at λ0, and then σuw(T ) = σub(T ), hence
T verifies the property (az).

(ii) ⇒ (iv) It is clear, since isoσa(T ) ∩ acc (σa(T )) = ∅, and as (ii) ⇒ (i), then σ(T ) = σa(T ).
(iv) ⇒ (ii) If λ ∈ ∆+(T ), then λ /∈ acc (σa(T )), so then σa(T ) does not cluster at λ, thus by

equation 3, T has SVEP at λ, hence p(λI − T ) < ∞ (see Remark 1), thus λ ∈ σ(T ) \ σub(T ) =
σa(T ) \ σub(T ) ⊆ Πa(T ) ⊆ isoσa(T ) ⊆ ∂σa(T ). Hence ∆+(T ) ⊆ isoσa(T ) ⊆ ∂σa(T ). □

Corollary 3. Let T ∈ L(X). Then T verifies the property (az) if and only if σuw(T ) = σb(T ).

Proof. Directly. If T verifies the property (az), then by Theorem 2, we have σuw(T ) = σb(T ).
Reciprocally, if σuw(T ) = σb(T ), then ∆+(T ) ⊆ isoσa(T ), thus by Theorem 7, we have that T

verifies the property (az). □

Corollary 4. Let T ∈ L(X) and f ∈ H(σ(T )). If acc (σ(T )) = ∅, then f(T ) verifies the property
(az).

Proof. If acc (σ(T )) = ∅, then acc (σ(f(T ))) = ∅, so int (∆+(f(T ))) = ∅. Hence by Theorem 7, f(T )
verifies the property (az). □

Example 2. An operator T ∈ L(X) is said to be algebraic if there exists a complex nontrivial polyno-
mial h such that h(T ) = 0. Every algebraic operator T has a finite spectrum, whereby acc (σ(T )) = ∅.
Then for f ∈ H(σ(T )), f(T ) verifies the property (az).

Corollary 5. Let T ∈ L(X), if T ∗ has SVEP, then int (∆+(f(T ))) = ∅, for each f ∈ H(σ(T )).

Proof. By [1, Theorem 2.40], we find that f(T ∗) has SVEP, thus f(T ) verifies the property (az),
whereby by Theorem 7, we get int (∆+(f(T ))) = ∅. □
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Example 3. Let L ∈ L(ℓ2(N)) be the left shift given by

L(x1, x2, . . . ) := (x2, x3, . . . ), for all x = (xk)k∈N ∈ ℓ2(N).

Hilbert’s adjoint is known to L∗ = R, alsoR∗ = L, whereR is the right shift defined asR(x1, x2, . . . ) :=
(0, x1, x2, . . . ) for all x = (xk)k∈N ∈ ℓ2(N). It is known that R has SVEP. Thus if f ∈ H(σ(L)), then
int (∆+(f(L))) = ∅.

The following theorem generalizes Theorem 3.15 from [4].

Theorem 8. Let T ∈ L(X). Then T verifies the property (az) if and only if the mapping λ →
γ(λI − T ) is not continuous at λ, for each λ ∈ ∆+(T ).

Proof. Directly. If T verifies the property (az), then T verifies the property (gaz). Now, if λ0 ∈ ∆+(T ),
then λ0 ∈ ∆+

g (T ). By [4, Theorem 3.15], the mapping λ → ker (λI − T ) is not continuous at λ0 in a
gap metric, because γ(λ0I − T ) > 0, since the range of λ0I − T is closed, and by [1, Theorem 1.38],
the mapping λ → γ(λI − T ) is not continuous in λ0.

Reciprocally. Let λ0 ∈ ∆+(T ) so, the range of λ0I − T is closed, whereby γ(λ0I − T ) > 0, thus
by [1, Theorem 1.38], the mapping λ → ker (λI − T ) is not continuous in λ0 in a gap metric. But
λ0I − T is upper semi-Fredholm so, by [1, Theorem 1.64], there exist ϵ0 > 0 and a disc Dϵ0(λ0) such
that ∀λ ∈ Dϵ0(λ0)− {λ0} is k := α(λI − T ) ≤ α(λ0I − T ) < ∞.

Note that the mapping λ → ker (λI − T ) is not continuous ∀λ ∈ ∆+(T ) in a gap metric, whereby
α(λI − T ) < α(λ0I − T ), ∀λ ∈ Dϵ0(λ0)− {λ0}.

We known that ρuw(T ) := σ(T ) \ σuw(T ) is open, so ∃ ϵ1 > 0 and a disc Dϵ1(λ0) such that
Dϵ1(λ0) ⊆ ρuw(T ). We consider ϵ = min {ϵ0, ϵ1}, then ∀λ ∈ Dϵ(λ0) − {λ0} implies that λ ∈ ρuw(T )
and α(λI − T ) < α(λ0I − T ).

Now, we suppose there exists λ1 such that α(λ1I − T ) > 0 and λ1 ∈ Dϵ(λ0) − {λ0}, so α(λ1I −
T ) < α(λ0I − T ). But notice that λ1 ∈ ∆+(T ), how is it made for λ0, by the discontinuity at λ1,
∃λ2 ∈ Dϵ(λ0) − {λ0, λ1} such that k = α(λ2I − T ) < α(λ1I − T ) = k, which is absurd. Hence
α(λ1I − T ) = 0.

Thus ∀λ ∈ Dϵ(λ0) − {λ0} we have α(λI − T ) = 0 and so, λ0 ∈ isoσa(T ), since α(λ0I − T ) > 0.
Hence ∆+(T ) ⊆ isoσa(T ), so by Theorem 7, T verifies the property (az). □

The set of operators that verify the property (az) is closed in L(X). In fact.

Theorem 9. Let T ∈ L(X) and Tn be a sequence of operators in L(X) such that Tn verifies the
property (az), n ≥ 1, if lim

n→+∞
∥ Tn − T ∥= 0. Then:

i) For some N3 ∈ N, the mapping λ → γ(λI − Tn) is not continuous at λ in gap a metric,
∀λ ∈ ∆+(T ) and ∀n ≥ N3.

ii) T verifies the property (az).
iii) lim

n→+∞
γ(λI − Tn) = γ(λI − T ), ∀λ ∈ ∆+(T ).

Proof. i) The set of upper semi-Weyl operators is open. Let λ0 ∈ ∆+(T ), so by the convergence of Tn

to T , ∃N0 ∈ N such that λ0 /∈ σuw(Tn), ∀n ≥ N0. Since λ0 ∈ σ(T ), by Remark 2, we have ∃N1 ∈ N
such that λ0 ∈ σ(Tn), ∀n ≥ N1. Hence if N3 := max{N0, N1}, then

∆+(T ) ⊆ ∆+(Tn), ∀n ≥ N3.

By Theorem 8, ∀n ≥ N3, the mapping λ → γ(λI − Tn) is not continuous at λ0 ∈ ∆+(Tn) in a gap
metric. Hence ∀n ≥ N3, the mapping λ → γ(λI − Tn) is not continuous at each λ ∈ ∆+(T ) in a gap
metric.

ii) As in the previous part, there exists N3 ∈ N such that ∀n ≥ N3, ∆
+(T ) ⊆ ∆+(Tn). But by

Theorem 7, int∆+(Tn) = ∅. Hence int∆+(T ) = ∅. Again, by Theorem 7, we conclude that T verifies
the property (az).

iii) Let λ ∈ ∆+(T ) be arbitrary, then (λI − T )(X) is closed and so, γ(λI − T ) > 0, also, by the
hypothesis, lim

n→+∞
∥ Tn − T ∥= 0, by Remark 2, it follows that ∀λ ∈ ∆+(T ) is lim

n→+∞
γ(λI − Tn) =

γ(λI − T ). □
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4. Property (az) Under Perturbations

In this section, we study (in a summary way) mainly the stability of the property (az) under
commuting perturbations which are nilpotent, quasi-Nilpotent, Riesz and algebraic. First is justified,
and then establish the result.

An operator N ∈ L(X) is nilpotent if there is an n ∈ N such that Nn = 0. We know that if N
commutes with T ∈ L(X), then σ(T ) = σ(T +N) and by [1, Theorem 3.65], σuw(T ) = σuw(T +N),
thus ∆+(T ) = ∆+(T +N). Therefore by Theorem 7, we havethe next

Theorem 10. Let T ∈ L(X) and N ∈ L(X) be a nilpotent operator that commutes with T . Then T
verifies the property (az) if and only if T +N verifies the property (az).

Recall that an operator Q ∈ L(X) is quasi-Nilpotent if for all λ ̸= 0, λI −Q is invertible, that is,
σ(Q) = 0. We suppose that Q commutes with T ∈ L(X). Thus by [3, Corollary 3.24], σ(T ) = σ(T+Q)
and by [3, Corollary 3.18], σuw(T ) = σuw(T + Q). Hence ∆+(T ) = ∆+(T + Q). By Theorem 7, we
have the next

Theorem 11. Let T ∈ L(X), and let Q ∈ L(X) be a quasi-Nilpotent operator that commutes with T .
Then T verifies the property (az) if and only if T +Q verifies the property (az).

Recall that R ∈ L(X) is a Riesz operator if for all λ ̸= 0, λI−R is an Fredholm operator. If Rn for
some n ∈ N is a Riesz operator, then by [1, Theorem 3.4], we find that R is a Riesz operator, also, if R
commutes with T ∈ L(X), then by [3, Corollary 3.18], we have σuw(T ) = σuw(T +R), by [3, Theorem
3.16], T has a finite ascent if and only if T + R has finite ascent, so then σub(T ) = σub(T + R).
Analogous result is that σlb(T ) = σlb(T + R), hence σb(T ) = σb(T + R). Now, applying Corollary 3,
we get the next.

Theorem 12. Let T ∈ L(X) such that RT = TR, being Rn a Riesz operator, for some n ∈ N . Then
T verifies the property (az) if and only if T +R verifies the property (az).

An operator T ∈ L(X) is hereditarily polaroid if every isolated point of the spectrum is a pole of the
resolvent of T|M , where M is a closed T -invariant subspace of X, by [3, Theorem 4.31], we have that T
has SVEP. On the other hand, if K ∈ L(X) is algebraic and commutes with T , so by [5, Theorem 2.3],
T +K has the SVEP, then f(T +K) has SVEP for f ∈ H(σ(T +K)). Therefore we have the following

Theorem 13. If T ∈ L(X) is hereditarily polaroid, then T ∗, T ∗ + K∗ and f(T + K)∗ verify the
property (az), where f ∈ H(σ(T +K)) and K ∈ L(X) is algebraic and commutes with T .

Corollary 6. If T ∈ L(X) is hereditarily polaroid, then f(T )∗ +K∗ verifies the property (az), where
f ∈ H(σ(T )) and K ∈ L(X) is algebraic commuting with T .

5. Some Applications

In this section, we obtain some applications of the results obtained with the property (az).
i) We consider ∆+(T ) := σ(T ) \ σusf (T ), if int∆+(T ) = ∅, then proceeding in a similar way as in

proving (iii) ⇒ (i) of Theorem 7, we get that T has SVEP at λ /∈ σusf (T ), by [17, Theorem 2.2], we
have that σusf (T ) = σub(T ) or, equivalently, T verifies the property (bz), but, ∆+(T ) ⊆ ∆+(T ), thus
T verifies the property (az) (see Theorem 7), for that σa(T ) = σ(T ), and then the applied Theorems
1 and 2 result in

σusf (T ) = σe(T ) = σuw(T ) = σw(T ) = σub(T ) = σb(T ).

On the other hand, note that T verifies the property (gaz) so, σubw(T ) = σld(T ) and σ(T ) = σa(T )
(then σd(T ) = σld(T )) and by [17, Theorem 2.4], also, T verifies the property (gbz), i.e., σubf (T ) =
σld(T ). Therefore

σubf (T ) = σbf (T ) = σubw(T ) = σbw(T ) = σld(T ) = σd(T ).

For instance, if S is a left m-invertible contraction such that σ(S) ⊆ Γ, then λ ∈ σ(S) is a polo of
S if and only if (λI − S) (X) is closed, (see [13], for definition and details). Hence as ∀λ ∈ ∆+(S), we
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have that (λI − S) (X) is closed, then ∆+(S) ⊆ ∆+(S) ⊆ p00(S) ⊆ Π(S) ⊆ isoσa(S), whereby:

σusf (S) = σe(S) = σuw(S) = σw(S) = σub(S) = σb(S).

σubf (S) = σbf (S) = σubw(S) = σbw(S) = σld(S) = σd(S).

ii) Recall that an operator T ∈ L(X) is said to be Drazin invertible if there exist an operator
S ∈ L(X) (called the Drazin inverse of T ) and an integer n ≥ 0 such that

TS = ST, STS = S, TnST = Tn. (6)

The operator S described in (6) is unique and also is Drazin invertible (see [11]).
By [9, Theorem 4.2], we have

0 ∈ σ(S) \ σuw(S) ⇔ 0 ∈ σ(T ) \ σuw(T ).

Also, from [6], if λ ̸= 0, we have

σuw(S) \ {0} = { 1
λ
: λ ∈ σuw(T ) \ {0}}.

Note that int∆+(T ) = ∅ if and only if int∆+(S) = ∅. Therefore by Theorem 7,

T verifies the property (az) if and only if S verifies the property (az).

On the other hand, in [10], it is proved that T verifies the property (gaz) if and only if S verifies the
property (gaz), but using other algebraic methods.

iii) Let Y be an infinite-dimensional Banach space, we considered that S ∈ L(Y ) and T ∈ L(X).
Note that σuw(T ⊕S) ⊆ σuw(T )∪σuw(S) and how p(T ⊕S) = max(p(S), p(T )), the same for descent,
we get that

σub(T ⊕ S) = σub(T ) ∪ σub(S) and σb(T ⊕ S) = σb(T ) ∪ σb(S).

Now, if both T and S satisfy the property (az), then

T ⊕ S verifies property (az) if and only if σuw(T ) ∪ σuw(S) = σuw(T ⊕ S).

In fact, in the direct sense, the result shows that σub(T ⊕S) = σuw(T ⊕S). Clearly, if λ /∈ σuw(T ⊕S),
then λ /∈ (σub(T ) ∪ σub(S)), but T and S satisfy the property (az), whereby λ /∈ (σuw(T ) ∪ σuw(S)).
Hence σuw(T ) ∪ σuw(S) = σuw(T ⊕ S). On the other hand, in the reciprocal sense, how T and S
satisfy the property (az) so, by Corollary 3, we get that σuw(T ) = σb(T ) and σuw(S) = σb(S), whereby
σuw(T ⊕ S) = σb(T ⊕ S), therefore again, by Corollary 3, the result shows that T ⊕ S verifies the
property (az).

iv) Let W be a proper closed subspace of X, and we consider the following set:

P(X,W ) := {T ∈ L(X) : T (W ) ⊆ W,Tn0(X) ⊆ W, for somen0 ≥ 1}.
Let T ∈ P(X,W ), TW denotes the restriction of T over the T -invariant subspace W of X. Thus, T is
not surjective. On the other hand, if q(T ) = ∞, or p(T ) = ∞, then by [12, Theorem 4.1], we have

σ(T ) = σ(TW ), σa(T ) = σa(TW ), σuw(T ) = σuw(TW ) and σub(T ) = σub(TW ).

So, applying Theorems 1 and 2, we obtain

T verifies the property (az) if and only if TW verifies the property (az).

Note that by Theorem 7 the same result is obtained, if 0 ∈ σuw(TW ). Truly, if 0 ∈ σuw(TW ) so,
0 ∈ σuw(T ), whereby, if λ /∈ σuw(TW ) or λ /∈ σuw(T ), then λ ̸= 0, and by [12, Lemma 3.2], if λ ̸= 0,
we obtain

R(λI − TW ) = R(λI − T ) ∩W, α(λI − T ) = α(λI − TW ), β(λI − T ) = β(λI − TW ).

In this way, the result is: σ(T ) = σ(TW ), σuw(T ) = σuw(TW ), whereby

int (∆+(T )) = ∅ if and only if int (∆+(TW )) = ∅.
Thus by Theorem 7, T verifies the property (az) if and only if TW verifies the property (az).

v) Let T ∈ L(X) checking property (az) be such that σuw(T ) = σuw(T +K), where K ∈ L(X) is
algebraic that commutes with T and σuw(T )

⋂
σ(K) = ∅. Then T +K verifies the property (az). Since

T has the property (az), by Theorem 2, we have σuw(T ) = σb(T ). Now, if λ /∈ σuw(T ), then T ∗ has
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the SVEP at λ. Also, σ(K) = σ(K∗) and K∗ is algebraic. By [5, Theorem 2.3], we find that T ∗ +K∗

has the SVEP at λ /∈ σuw(T ) = σuw(T +K). Hence by Theorem 3, T +K verifies the property (az).
Dually, if K is an algebraic operator that commutes with T , with σlw(T ) = σlw(T + K) and

σlw(T )
⋂
σ(K) = ∅, then by Theorem 3, we have that T ∗ +K∗ verifies the property (az).

6. Conclusions

In this article, we have studied the property (az), equivalent to the property (gaz). Therefore we
were able to add important results to these two properties which have found some applications. It
should be noted that the obtained in this paper results make it possible to establish that the set of
operators that verify the property (gaz) or, equivalently, the property (az), is closed in L(X). Other
results are obtained in a simplified way, for example, those of Section 4.
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17. K. Ouidren, H. Zariouh, New approach to a-Weyl’s theorem through localized SVEP and Riesz-type perturbations.

Linear Multilinear A., 1–17, 2020.

18. J. Sanabria, C. Carpintero, E. Rosas, O. Garćıa, On property (Saw) and others spectral properties type Weyl-
Browder theorems. Rev. Colombiana Mat. 51 (2017), no. 2, 153–171.

19. H. Zariouh, Property (gz) for bounded linear operators. Mat. Vesnik 65 (2013), no. 1, 94–103.

(Received 07.06.2021)
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