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A REMARK ON CONSTRUCTION OF J-UNITARY MATRIX POLYNOMIALS

ALEKSANDRE SAATASHVILI

Dedicated to the memory of Edem Lagvilava

Abstract. A certain algorithm for construction of J-unitary matrices has been proposed in L. Ephre-

midze, A Saatashvili, I. Spitkovsky, On J-unitary matrix polynomials. J. Math. Sci., 2022.

https://link.springer.com/article/10.1007/s10958-022-05878-w. In this note, we provide an
example which shows that the algorithm does not work in all situations when the problem has a

solution.

1. Introduction

Let J be a diagonal matrix

J = diag(j1, j2, . . . , jm−1, 1), (1)

where each jk is either positive or negative 1, jk = ±1. Without lose of generality, we assume that
jm = 1. A matrix U ∈ Cm×m is called J-unitary if UJU∗ = J , where ∗ denotes conjugate transpose.
A matrix function U(t), where T := {t ∈ C : |t| = 1}, is called J-unitary if

U(t)JU∗(t) = J, t ∈ T.

If u(t) =
N∑

k=0

ckt
k, ck ∈ C, is a polynomial, u ∈ P+

N , let ũ(t) =
N∑

k=0

ckt
−k. Note that ũ(t) = u(t) for

t ∈ T.
J-unitary matrix polynomials of the special structure

U(t) =



u11(t) u12(t) · · · u1m(t)
u21(t) u22(t) · · · u2m(t)

...
...

...
...

um−1,1(t) um−1,2(t) · · · um−1,m(t)

ũm1(t) ũm2(t) · · · ũmm(t)

 , uij ∈ P+
N , (2)

with the property

detU(t) = 1, for t ∈ T, (3)

play a crucial role in the generalization of Janashia–Lagvilava method [2,5] for J-spectral factorization
[3]. Particularly, it can be proved (see [1, Theorem 4.1]) that for a matrix function F of the form

F (t) =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ1(t) ζ2(t) ζ3(t) · · · ζm−1(t) 1


, ζk ∈ P−

N , (4)
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where P−
N :=

{ N∑
k=1

αkt
−k : αk ∈ C

}
, there exists a J-unitary matrix polynomial (2) satisfying (3)

such that

FU ∈ (P+
N )m×m, (5)

if and only if the matrix function F (t)JF ∗(t) possesses the left J-spectral factorization. The latter
condition means that the representation

F (t) JF ∗(t) = Φ+(t) J Φ∗
+(t) (6)

is valid, where Φ ∈ (P+
N )m×m and detΦ(t) ̸= 0 for |t| ≤ 1. This is also equivalent to the condition

that the left partial indices of (6) are equal to zero [6].
In [1], an algorithm is proposed for construction of J-unitary matrix polynomials of the aforemen-

tioned structure. The algorithm is a generalization of the Janashia–Lagvilava method for matrices J
with indefinite structure, i.e., for matrices (1) with some jk equal to −1. Similarly to this method, for
a matrix function (4), the algorithm explicitly constructs J-unitary matrix polynomial (2) satisfying
(3) such that (5) holds. It is demonstrated in [1] that the algorithm works well for every matrix func-
tion (4) except for some isolated singular cases. These exceptional situations are not surprising since
unlike the classical case, where J = I and the Janashia–Lagvilava method works well, F (t) JF ∗(t)
might not have zero left partial indices and the corresponding matrix polynomial (2) would not exist
at all. However, the question naturally arises (see [1, Remark 5.2]) if the algorithm works in every
situation where the left partial indices are equal to 0, i.e., the representation (6) holds. In the present
paper, we answer negatively to this question. Particularly, an example of the matrix function (4) is
constructed for which the corresponding J-unitary matrix polynomial exists, however, it cannot be
determined by the algorithm proposed in [1]. This example indicates that further refinement of the
algorithm is desirable for the singular case.

2. The Algorithm for Constructing J-Unitary Matrix Polynomials

In this section, we describe the algorithm for constructing J-unitary matrix function (2) for a given
matrix function (4) presented in [1]. A careful examination reveals that this algorithm does not work
in all situations when the problem has a solution. However, it works generically, except for some
isolated singular cases.

Consider the following system of conditions:

ζ1xm − j1x̃1 ∈ P+,

ζ2xm − j2x̃2 ∈ P+,
...

ζm−1xm − jm−1x̃m−1 ∈ P+,

ζ1x1 + ζ2x2 + · · ·+ ζm−1xm−1 + x̃m ∈ P+,

(7)

where ζi ∈ P−
N , i = 1, 2, . . . ,m − 1, are the entries of F in (4), and P+ = ∪N≥1P+

N is the set of all
polynomials.

A vector function u =
(
u1, u2, . . . , um−1, ũm

)T
, where ui ∈ P+

N for each i = 1, 2, . . . ,m, is called
a solution of (7) if all the conditions in (7) are satisfied whenever xi = ui, i = 1, 2, . . . ,m, and it is
proved in [1, Lemma 5.1] that if

u =
(
u1, u2, . . . , ũm

)T
and v =

(
v1, v2, . . . , ṽm

)T
are two (possibly identical) solutions of system (7), then

m−1∑
k=1

jkukṽk + ũmvm = const . (8)

Therefore, the goal is to construct m linearly independent solutions of (7). To this end, (7) is rewritten
in equivalent form of a linear system of equations. Namely, equating all the coefficients of the non-
positive powers of t of the functions in the left-hand side of (7) to zero, except for the free term of



A REMARK ON CONSTRUCTION OF J-UNITARY MATRIX POLYNOMIALS 413

the qth function which is a set equal to 1, one arrives at the following system of algebraic equations
in the block matrix form, which is denoted by Sq:

Sq :=



Γ1Xm − j1X1 = 0,

Γ2Xm − j2X2 = 0,

ΓqXm − jqXq = 1,

Γm−1Xm − jm−1Xm−1 = 0,

Γ1X1 + · · ·+ Γm−1Xm−1 +Xm = 0.

(9)

Here, we use the following notation:

Γi =


0 γi1 γi2 · · · γi,N−1 γiN
γi1 γi2 γi3 · · · γiN 0
γi2 γi3 γi4 · · · 0 0
· · · · · · · ·

γiN 0 0 · · · 0 0

 , i = 1, 2, . . . ,m− 1, (10)

Xi = (ai0, ai1, . . . , aiN )T , i = 1, 2, . . . ,m,

where

ζi(t) =

N∑
n=1

γint
−n, i = 1, 2, . . . ,m− 1, xi(t) =

N∑
n=0

aint
n, i = 1, 2, . . . ,m,

and

0 = (0, 0, . . . , 0)T ∈ C(N+1)×1, 1 = (1, 0, 0, . . . , 0)T ∈ C(N+1)×1.

Determining Xi, i = 1, 2, . . . ,m− 1, from the first m− 1 equations of (9),

Xi = ji
(
Γi Xm − δiq 1

)
, (11)

i = 1, 2, . . . ,m− 1, and then substituting them in the last equation of (9), one gets

j1Γ1 Γ1 Xm + j2Γ2 Γ2 Xm + · · · + jm−1Γm−1 Γm−1 Xm +Xm = jqΓq 1 (12)

(it is assumed that the right-hand side is equal to 1 when q = m) or, equivalently,

∆Xm = jq Γq 1, (13)

where

∆ =

m−1∑
k=1

jkΓkΓ
∗
k + IN+1 (14)

(Γ∗ is used in place of Γ because ΓT = Γ). The algorithm is continued under the additional restriction
that

det∆ ̸= 0. (15)

Therefore (13) has a unique solution for every right-hand side.
Finding Xm from (13) and then determining X1, X2, . . . , Xm−1 from (11), one gets the unique

solution of Sq denoted by (Xq
1 , X

q
2 , . . . , X

q
m−1, X

q
m). Suppose

Xq
i := (aqi0, a

q
i1, . . . , a

q
iN )T , i = 1, 2, . . . ,m, (16)

and let

V =



v11 v12 · · · v1m
v21 v22 · · · v2m
...

...
...

...
vm−1,1 vm−1,2 · · · vm−1,m

ṽm1 ṽm2 · · · ṽmm

 , (17)
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where

vij(z) =

N∑
n=0

ajinz
n, 1 ≤ i, j ≤ m, (18)

Then the columns of (17) are the solutions of the system (7) and it is proved in [1] that if det∆0 ̸= 0,
where ∆0 is the N × N submatrix of ∆ obtained by deleting its first row and column, then V (1) is
invertible and

U(z) = V (z)
(
V (1)

)−1
(19)

is the desired J-unitary matrix polynomial.
Theorem 5.1 in [1] proves that if det∆ ̸= 0 and det∆0 = 0, then the desired J-unitary matrix

polynomial does not exist. Namely, detV (t) ≡ 0 in this situation and the algorithm cannot be applied

as
(
V (1)

)−1
does not exist in (19). However, the following specific question was left unanswered in [1]:

If we know that det∆ = 0, can we again claim that the desired J-unitary matrix polynomial does not
exist? An example constructed in the following section provides the negative answer to this question.

3. The Specific Example

In this section, we provide an example of the matrix function (4) such that the left partial indices
of F (t) JF ∗(t) are equal to 0, i.e., the representation (6) holds, and (15) does not hold. As it was
mentioned above, for such F , there exists a J-unitary matrix polynomial (2) satisfying (3) such that
(5) holds, however, this U cannot be constructed by the algorithm proposed in [1].

The example is similar to the one given in [1]. Namely, let m = 2, J = diag(−1, 1), and

F (t) =

(
1 0√

α(t−1 + t−2) 1

)
, (20)

where the positive constant α is specified later.
We used the symbolic computations of MATLAB to obtain some of the following relations. The

equations where the variable t is involved are assumed to hold for t ∈ T.
The corresponding to (20) matrix Γ is

Γ =

 0
√
α

√
α√

α
√
α 0√

α 0 0


and, consequently, (see (15))

∆ = −ΓΓ∗ + I3 = −

2α− 1 α 0
α 2α− 1 α
0 α α− 1

 . (21)

The determinant of (21) is−(α3−6α2+5α−1) which has the roots α=5.0489 . . . , 0.6431 . . . , 0.3080 . . . .
Also, for α ̸= 0, we have

F (t) J F ∗(t) = F1(t)F2(t)F3(t), (22)

where

F1(t) =

(
−
√
αt+

√
α− 1/

√
α t− 1

−α
√
α

)
, F2(t) =

(
t 0

(α2 − 3α+ 1)/
√
α t−1

)
,

and F3(t) =( √
αt−3 αt−2 + (α− 1)t−1 + 1

−(α2 − 3α+ 1)t−2 + (α− 1)t−1 − 1 −(α2 − 3α+ 1)
√
αt−1 − (α3 − 5α2 + 5α)/

√
α

)
.

One can check that detF1(t) = −1 and detF3(t) = 1. Hence the left partial indices of (22) coincide
with those of F2 for each α ̸= 0.
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It is well known (see, e.g., formula (1.23) in [4]) that the left partial indices of

(
t 0
ε t−1

)
are (1,−1)

if ε = 0 and (0, 0) if ε ̸= 0, since (
t 0
ε t−1

)
=

(
1 t
0 ε

)(
0 −1/ε
1 (εt)−1

)
.

Therefore, (cf., [1, Example]), partial indices of (22) are nonzero if α2 − 3α + 1 = 0 (that is
α = 2.6180 . . . , 0.3820 . . .) and they are zero otherwise. Hence the left partial indices are equal to
0 and, correspondingly, the left J-spectral factorization of (22) exists even for values of α such that
α3 − 6α2 + 5α − 1 = 0, i.e., when the determinant of (21) is equal to 0. According to the above-
mentioned Theorem 4.1 in [1], the desired unitary matrix function U exists in such situations.
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