TRACE INEQUALITIES FOR FRACTIONAL INTEGRALS IN CENTRAL MORREY SPACES

GIORGI IMERLISHVILI

Abstract. We study the trace inequality for fractional integrals K_{α} in central Morrey spaces. In particular, we establish necessary condition and sufficient condition governing the inequality

$$\left\|K_{\alpha}f\right\|_{L^{q,\lambda_{2}}_{a}(X,\nu)} \leq C\left\|f\right\|_{L^{p,\lambda_{1}}_{a}(X,\mu)},$$

where (X, ρ, μ) is a space of homogeneous type, a is a point in X and ν is another measure on X. As a corollary, we have necessary and sufficient conditions on power-type weights $d\nu(x) = d(a, x)^{\beta} d\mu(x)$ for the trace inequality. The results are new even for the Euclidean spaces.

Preliminaries

Let (X, ρ, μ) be a quasi-metric measure space with doubling measure μ . Suppose that ν is another measure on X. In this note, we establish the necessary condition and the sufficient condition on a measure ν guaranteeing the trace inequality

$$\left\| K_{\alpha} f \right\|_{L^{q,\lambda_2}_a(X,\nu)} \le C \left\| f \right\|_{L^{p,\lambda_1}_a(X,\mu)},\tag{1}$$

where $L_a^{q,\lambda_2}(X,\nu)$ and $L_a^{p,\lambda_1}(X,\mu)$ are the central Morrey spaces defined with respect to a point *a* and measures ν and μ , respectively, and K_{α} is the fractional integral operator defined on (X,ρ,μ) .

As a corollary, we have the necessary and sufficient conditions on power-type weights $d\nu(x) = d(a, x)^{\beta} d\mu(x)$ for inequality (1).

The results are new even for fractional integral operators in Morrey spaces defined on \mathbb{R}^n . In particular, we have the necessary condition and the sufficient condition for a measure ν defined on \mathbb{R}^n governing the inequality

$$\left\| I_{\gamma} f \right\|_{L_0^{q,\lambda_2}(\mathbb{R}^n,\nu)} \le C \left\| f \right\|_{L_0^{p,\lambda_1}(\mathbb{R}^n)},$$

where I_{γ} is the Riesz potential operator on \mathbb{R}^n , $0 < \gamma < n$.

We assume that (X, ρ, μ) is a topological space, endowed with a complete measure μ such that the space of compactly supported continuous functions is dense in $L^1(X, \mu)$ and there exists a function (quasi-metric) $\rho: X \times X \to [0, \infty)$ satisfying the following conditions:

1)
$$\rho(x, x) = 0$$
 for $\forall x \in X$;

2)
$$\rho(x, y) > 0$$
 for $\forall x, y \in X$, where $x \neq y$;

3)
$$\rho(x, y) = \rho(y, x)$$
 for $\forall x, y \in X$;

4) there exists a positive constant such that for $\forall x, y, z \in X$,

$$\rho(x,y) \le c_1[\rho(x,z) + \rho(z,y)].$$

The triple (X, ρ, μ) is called a quasi-metric measure space.

We denote by B(x, r) a ball with center x and radius r.

If μ satisfies the doubling condition

$$\mu B(x, 2r) \le C\mu B(x, r),$$

where the positive constant C does not depend of x and r, then the quasi-metric measure space (X, ρ, μ) is called the space of homogeneous type (SHT briefly).

²⁰²⁰ Mathematics Subject Classification. 26A33, 42B35, 47B38.

Key words and phrases. Trace inequalities; Fractional integrals; Central Morrey spaces; Quasi-metric measure spaces, Space of homogeneous type; Boundedness.

Definition 1. We say that an SHT (X, ρ, μ) is normal (see [6]) if there exists a positive constant c such that

$$\frac{1}{c}r^N \le \mu(B(x,r)) \le cr^N,$$

where x is the center of the ball B and $r \in (0, \ell)$, where ℓ is a diameter of X. The constant N is called a dimension of (X, ρ, μ) .

There are many useful for applications examples of a (normal) SHT:

(a) Rectifiable regular (Carleson) curves in $\mathbb C$ with Euclidean metric and arc-length measure;

(b) Nilpotent Lie groups with Haar measure;

(c) Bounded domain Ω in \mathbb{R}^n together with induced Lebesgue measure satisfying the so-called \mathcal{A} condition, i.e., there is a positive constant C such that for all $x \in \overline{\Omega}$ and $\delta \in (0, \ell)$,

$$\mu(B(x,\delta)) \ge C\delta^n,$$

where ℓ is a diameter of Ω and $\widetilde{B}(x, \delta) := \Omega \cap B(x, \delta)$; ect.

For the definition and some essential properties of an SHT we refer, e.g., to [3, 6, 7].

Let (X, ρ, μ) be a quasi-metric measure space. Suppose that ν is another measure on $X, \lambda \ge 0$ and $1 \le p < \infty$. Let $L^{p,\lambda}(X,\nu,\mu)$ be the Morrey space by means of two measures μ and ν , which is the set of all functions $f \in L^p_{loc}(X,\nu)$ such that

$$||f||_{L^{p,\lambda}(X,\nu)} := \sup_{B} \left(\frac{1}{\mu(B)^{\lambda}} \int_{B} |f(y)|^{p} d\nu(y)\right)^{\frac{1}{p}} < \infty,$$

where the supremum is taken over all balls B.

If $\nu = \mu$, then we have the Morrey space $L^{p,\lambda}(X,\mu)$ with original measure μ on X. When $\lambda = 0$, then $L^{p,\lambda}(X,\nu) = L^p(X,\nu)$ is the Lebesgue space with measure ν .

A complete characterization of the trace inequality for the fractional integral operator in $L^{p,\lambda}$ spaces defined on a quasi-metric measure space can be found in [5].

We deal with the Morrey space $L_a^{\hat{p},\lambda}(X,\nu)$, which is the set of all functions $f \in L_{loc}^p(X,\nu)$ such that

$$\|f\|_{L^{p,\lambda}_{a}(X,\nu)} := \sup_{r>0} \left(\frac{1}{\mu(B(a,r))^{\lambda}} \int_{B(a,r)} |f(y)|^{p} d\nu(y) \right)^{\frac{1}{p}} < \infty,$$

where a is a point in X and the supremum is taken over all positive r.

In the Euclidean space $X = \mathbb{R}^n$, let us take the Lebesgue measure $d\mu = dx$ and Euclinead distance $\rho(x, y) = |x - y|$. Suppose ν is a measure on \mathbb{R}^n , $\lambda \ge 0$, $1 \le p < \infty$ and, finally, a = 0, then we have the space $L_0^{p,\lambda}(\mathbb{R}^n, \nu)$ which is the set of all functions $f \in L_{\text{loc}}^p(\mathbb{R}^n)$ such that

$$\|f\|_{L^{p,\lambda}_{0}(\mathbb{R}^{n},\nu)} := \sup_{r>0} \left(\frac{1}{r^{\lambda n}} \int\limits_{B(0,r)} |f(y)|^{p} d\nu(y) \right)^{\frac{1}{p}} < \infty,$$

where the supremum is taken over the positive radius r. If ν is the Lebesgue measure, then we have the unweighted central Morrey space $L_0^{p,\lambda}(\mathbb{R}^n)$.

Let $0 < \alpha < 1$. We consider the fractional integral operator K_{α} given by

$$K_{\alpha}(f)(x) := \int\limits_{X} \frac{f(y)}{\mu(B(x,\rho(x,y))^{1-\alpha}} d\mu(y),$$

for suitable f on X.

The Riesz potential operator I_{γ} is a particular case of K_{α} ; this operator is given by the formula

$$I_{\gamma}(f)(x) := \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\gamma}} dy,$$

for suitable f on \mathbb{R}^n .

The Sobolev-type inequality for I_{γ} was proved by Spanne and Adams (see [2]).

The following statement is the trace inequality for the operator K_{α} (see [1] or [4, Ch. 6]).

Theorem A. Let (X, ρ, μ) be an SHT. Suppose that $1 and <math>0 < \alpha < \frac{1}{p}$. Assume that ν is another measure on X. Then K_{α} is bounded from $L^{p}(X, \mu)$ to $L^{q}(X, \nu)$ if and only if

$$\nu(B) \le c\mu(B)^{q\left(\frac{1}{p} - \alpha\right)},\tag{2}$$

for all balls B in X.

The next statement is the boundedness characterization for the operator K_{α} from $L^{p,\lambda_1}(X,\mu)$ to $L^{q,\lambda_2}(X,\nu)$.

Theorem B ([5]). Let (X, ρ, μ) be an SHT and let $1 . Suppose that <math>0 < \alpha < \frac{1}{p}$, $0 < \lambda_1 < 1 - \alpha p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Then K_{α} is bounded from $L^{p,\lambda_1}(X,\mu)$ to $L^{q,\lambda_2}(X,\nu)$ if and only if condition (2) holds.

Our aim is to investigate a similar problem for fractional integrals in the central Morrey spaces.

MAIN RESULTS

Now we formulate the main statements of this note.

Theorem 1. Let (X, ρ, μ) be an SHT and let $1 . Suppose that <math>0 < \alpha < \frac{1}{p}$, $0 < \lambda_1 < 1 - \alpha p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Then the necessary condition for the boundedness of K_{α} from $L_a^{p,\lambda_1}(X,\mu)$ to $L_a^{q,\lambda_2}(X,\nu)$ is that condition (2) holds for all balls B centered at a. Further, the sufficient condition for this boundedness is (2), but satisfied for any balls B in X.

Now, we consider the case of power weights $d\nu(x) = d(a, x)^{\beta} d\mu(x)$. As a corollary, we have the following statement.

Corollary 1. Let (X, d, μ) be a normal SHT with dimension N and let $1 . Suppose that <math>0 < \alpha < \frac{1}{p}$, $0 < \lambda_1 < 1 - \alpha p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Then the inequality

$$\|K_{\alpha}f\|_{L^{q,\lambda_2}_a(X,d(a,x)^{\beta}d\mu)} \le C\|f\|_{L^{q,\lambda_1}_a(X,\mu)}$$

holds if and only if

$$\beta = qN\left(\frac{1}{p} - \alpha\right) - N.$$

As a special case, it is possible to get the appropriate results for the Riesz potentials I_{α} . Namely, we have

Theorem 2. Let $1 . Suppose that <math>0 < \gamma < \frac{n}{p}$, $0 < \lambda_1 < n - \gamma p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Then the necessary condition for the boundedness of I_{γ} from $L_0^{p,\lambda_1}(\mathbb{R}^n)$ to $L_0^{q,\lambda_2}(\mathbb{R}^n,\nu)$ is that there is a positive constant c such that

$$\nu(B(x,R)) \le cR^{q\left(\frac{n}{p} - \gamma\right)},\tag{3}$$

for x = 0 and all R > 0. The sufficient condition for this boundedness is (3), but satisfied for all x and all R > 0.

Taking now the power weight $d\nu(x) = v(x)dx = |x|^{\beta}dx$, we have

Corollary 2. Let $1 . Suppose that <math>0 < \gamma < \frac{n}{p}$, $0 < \lambda_1 < n - \gamma p$ and $\frac{\lambda_2}{q} = \frac{\lambda_1}{p}$. Then the trace inequality

 $\left\|I_{\gamma}f\right\|_{L^{q,\lambda_2}_{0}(\mathbb{R}^n,|x|^{\beta}dx)} \le C\left\|f\right\|_{L^{q,\lambda_1}_{0}(\mathbb{R}^n)}$

with the positive constant C independent of f, holds if and only if

$$\beta = q\left(\frac{n}{p} - \gamma\right) - n.$$

G. IMERLISHVILI

Acknowledgement

The work was supported by the Shota Rustaveli National Science Foundation of Georgia (Project No. PHDF-22-6359).

References

- 1. D. R. Adams, A trace inequality for generalized potentials. Studia Math. 48 (1973), 99-105.
- 2. D. R. Adams, A note on Riesz potentials. Duke Math. J. 42 (1975), no. 4, 765-778.
- R. R. Coifman, G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. (French) Étude de certaines intégrales singulières. Lecture Notes in Mathematics, Vol. 242. Springer-Verlag, Berlin-New York, 1971.
- 4. D. E. Edmunds, V. Kokilashvili, A. Meskhi, *Bounded and Compact Integral Operators*. Mathematics and its Applications, 543. Kluwer Academic Publishers, Dordrecht, 2002.
- 5. A. Eridani, V. Kokilashvili, A. Meskhi, Morrey spaces and fractional integral operators. *Expo. Math.* **27** (2009), no. 3, 227–239.
- R. A. Macías, C. Segovia, Lipschitz functions on spaces of homogeneous type. Adv. in Math. 33 (1979), no. 3, 257–270.
- J. O. Strömberg, A. Torchinsky, Weighted Hardy Spaces. Lecture Notes in Mathematics, 1381. Springer-Verlag, Berlin, 1989.

(Received 15.10.2022)

Georgian Technical University, VI Building, Faculty of Informatics and Control Systems, 77 Kostava, Tbilisi 0175, Georgia

A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 2 MERAB ALEKSIDZE II LANE, TBILISI 0193, GEORGIA

 $Email \ address: \verb"imerlishvili180gmail.com"$