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ON SOME EXTRAPOLATION IN GENERALIZED GRAND MORREY SPACES

AND APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

ETERI GORDADZE1, ALEXANDER MESKHI1,2 AND MARIA ALESSANDRA RAGUSA3

Abstract. Weighted extrapolation in generalized grand Morrey spaces is investigated. The ob-
tained results are applied to derive one-weight estimates for some operators of Harmonic Analysis

and to study regularity properties of solutions of second order partial differential equations with

discontinuous coefficients in the frame of generalized grand Morrey spaces under the Muckenhoupt
condition on weights.

1. Introduction

Let (X, d, µ) be a quasi-metric measure space (QMMS, briefly) with a quasi-metric d and measure
µ. We say that a measure µ satisfies doubling condition if there is a positive constant Cdc such that
for all x ∈ X and r > 0, µB(x, 2r) ≤ CdcµB(x, r). We will deal with the QMMS with doubling
measure. Such a QMMS is called space of homogeneous type (SHT, briefly).

There are many important examples of an SHT : (a) Carleson (regular) curves on C with arc-length
measure dν and Euclidean distance on C; (b) nilpotent Lie groups with Haar measure and homogeneous
norm (homogeneous groups); (c) bounded domain Ω in Rn together with induced Lebesgue measure
satisfying the so-called A condition, i.e., there is a positive constant C such that for all x ∈ Ω and
ρ ∈ (0, ℓ),

µ(B̃(x, ρ)) ≥ Cρn, (1)

where ℓ is a diameter of Ω and B̃(x, ρ) := Ω ∩B(x, ρ).
Morrey spaces describe regularity problems for solutions of elliptic PDEs more precisely than

Lebesgue spaces. Morrey spaces were introduced by C. B. Morrey [23] in 1938.
Let w be a weight function on X, i.e., w is a µ- a.e. positive integrable function on X. Let Lp,r

w (X)
be the weighted Morrey space defined with respect to the norm (cf., [19])

∥f∥Lp,r
w (X) := sup

B

1(
w(B)

) 1
p+r

∥f∥Lp
w(B),

where 1 < p < ∞, −1/p ≤ r < 0. If −1/p = r, then we have a weighted Lebesgue space Lp
w(X).

In 1992, T. Iwaniec and C. Sbordone [10], in their studies related to the integrability properties
of the Jacobian in a bounded open set Ω, introduced a new type of function spaces Lp)(Ω), called
grand Lebesgue spaces. Their generalized version, Lp),θ(Ω), appeared in L. Greco, T. Iwaniec and
C. Sbordone [9] in 1997 when studying the existence and uniqueness of the solution of certain non-
linear PDEs.

Harmonic Analysis related to these spaces and their associate spaces (called small Lebesgue spaces),
was intensively studied during the last years due to various applications (see also monograph [17] and
references cited therein).

Denote by Φp the class of non-decreasing functions φ(·) on (0, p− 1) such that lim
ε→0

φ(ε) = 0.
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We are interested in the weighted grand Morrey space L
p),r,φ(·)
w (X) with a weight function w defined

by the norm

∥f∥
L

p),r,φ(·)
w (X)

:= sup
0<ε<p−1

sup
B

φ(ε)(
w(B)

) 1
p−ε+r

∥f∥Lp−ε
w (B)

:= sup
0<ε<p−1

φ(ε)∥f∥Lp−ε,r
w (X),

where 1 < p < ∞, −1/p ≤ r < 0 and φ(·) ∈ Φp.
We are stimulated to investigate the extrapolation problem in such a type of grand Morrey space

because of the papers [7, 18], where the same problem was studied in the classical weighted Morrey

spaces Lp,λ
w (Rn) and weighted grand Morrey spaces L

p),λ,θ
w , respectively. The study of the one-weight

problem for integral operators in weighted classical Morrey spaces with Muckenhoupt weights de-
fined on Rn was initiated in paper [19]. Similar problem for sublinear operators involving maximal,
Calderón-Zygmund and fractional integrals in the classical weighted Morrey spaces with Ap weights
was investigated, for example, in [7, 13,24,25,27,28,30].

It should be emphasize that the one-weight boundedness problem for sublinear operators involving
their commutators in grand Morrey spaces was explored in [16] and [15]. Weighted extrapolation in
grand Lebesgue spaces was established in [12].

Unweighted grand Morrey spaces were introduced and studied in [20]. Later, they were generalized
in [26] by introducing grand Morrey spaces defined by the norm including the ”grandification” taken
not only with respect to p but also for another parameter λ.

We say that a weight function w belongs to the Muckenhoupt class As(X) (or As) 1 < s < ∞, if

[
w
]
As

:= sup
B

(
1

µ(B)

∫
B

w(x)dµ(x)

)(
1

µ(B)

∫
B

w1−s′(x)dµ(x)

)s−1

< ∞,

where the supremum is taken over all balls B ⊂ X. The symbol
[
w
]
As

is called the characteristic of

w. Further, a weight w belongs to A1(X) if Mw(x) ≤ Cw(x) a.e., where

Mw(x) = sup
B∋x

1

µ(B)

∫
B

w(y)dµ(y).

The characteristic [w]A1(X) is defined as the essential supremum of Mw/w.
Further, the following monotonicity property holds for the Muckenhoupt classes

Ar(X) ⊂ As(X), 1 ≤ r < s < ∞.

2. Weighted Extrapolation

The main result regarding the extrapolation reads as follows:

Theorem 2.1. Let 1 ≤ p0 < ∞ and let F(X) be a collection of non-negative measurable pairs of
functions defined on X. Suppose that for all (f, g) ∈ F(X) and for all w ∈ Ap0

(X), the inequality

∥g∥Lp0
w (X) ≤ CN

(
[w]Ap0

(X)

)
∥f∥Lp0

w (X) (2)

holds, where N
(
[w]Ap0

(X)

)
is the positive constant depending only on the characteristic [w]Ap0

(X) such

that the mapping · 7→ N(·) is non-decreasing, and the constant C does not depend on (f, g) and w.
Then for every 1 < p < ∞, −1/p ≤ r < 0, φ(·) ∈ Φp and w ∈ Ap(X), we have

∥g∥
L

p),r,φ(·)
w (X)

≤ CC∥f∥
L

p),r,φ(·)
w (X)

, (f, g) ∈ F(X),

where C is the constant from (2), and the constant C is independent of (f, g).

Extrapolation statement regarding the A∞ class of weights reads as follows:
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Theorem 2.2. Let F(X) be a family of pairs of functions (f, g), where f and g are defined on X.
Suppose that for some p0 ∈ (0,∞) and for all w ∈ A∞, we have

∥g∥Lp0
w (X) ≤ CN([w]Al(X))∥f∥Lp0

w (X), (f, g) ∈ F , (3)

for some l ≥ 1, where N
(
[w]Ap0 (X)

)
is the positive constant depending only on the characteristic

[w]Ap0 (X) such that the mapping · 7→ N(·) is non-decreasing and the constant C does not depend on

w and (f, g). Then for every 1 < p < ∞, −1/p ≤ r < 0, φ ∈ Φp and w ∈ A∞(X), we have

∥g∥
L

p),r,φ(·)
w (X)

≤ CC∥f∥
L

p),r,φ(·)
w (X)

, (f, g) ∈ F , (4)

where C is the same constant as in (3) and C is independent of (f, g).

These statements for φ(t) = tθ, t > 0 were proved in [18].

Remark 2.1. From the extrapolation results and the fact that the Muckenhoupt condition w ∈
Ap0

(X) on the weights guarantees a one–weight inequality in the classical Lebesgue spaces Lp0
w (X),

we have the one-weight norm estimates for operators of Harmonic Analysis such as Calderón–Zygmund
singular integrals, commutators of singular integrals, fractional integrals and commutators of fractional
integrals in grand Morrey spaces defined on an SHT (cf., [18]).

3. Applications to PDEs

In the last thirty years a number of papers have been devoted to the study of local and global
regularity properties of strong solutions to elliptic equations with discontinuous coefficients. To be
more precise, let us consider the second order equation

Lu ≡
n∑

i,j=1

aij(x)Dxixju = f(x) for almost all x ∈ Ω, (5)

where L is a uniformly elliptic operator over the bounded domain Ω ⊂ Rn, n ≥ 2.
We assume that a domain Ω satisfies A condition (see (1)). In this case, Ω with the induced

Lebesgue measure and Euclidean metrics is an SHT . Hence the previous statements are valid for
such domains.

Regularizing properties of L in Hölder spaces (i.e., Lu ∈ Cα(Ω̄) imply that u ∈ C2+α(Ω̄)) have been
well studied in the case of Hölder continuous coefficients aij(x). Also, a unique classical solvability of
the Dirichlet problem for (5) has been derived in this case (we refer to [8] and references therein). In
the case of uniformly continuous coefficients aij , an Lp-Schauder theory has been elaborated for the
operator L (see [1,8]). In particular, Lu ∈ Lp(Ω) always implies that the strong solution to (5) belongs
to the Sobolev space W 2,p(Ω) for each p ∈ (1,∞). However, the situation becomes rather difficult if
one tries to allow discontinuity at the principal coefficients of L. In general, it is well-known (cf. [21])
that an arbitrary discontinuity of aij implies that the Lp-theory of L and the strong solvability of the
Dirichlet problem for (5) break down. A notable exception of that rule is the two-dimensional case
(Ω ⊂ R2). It was shown by G. Talenti that the solely condition on the measurability and boundedness

of the aij ’s ensures isomorphic properties of L considered as a mapping from W 2,2(Ω)∩W 1,2
0 (Ω) into

L2(Ω). To handle with the multidimensional case (n ≥ 3), it is necessary to add additional properties
on aij(x) to the uniform ellipticity in order to guarantee for L to possess the regularizing property in
Sobolev functional scales. In particular, if aij(x) ∈ W 1,n(Ω) (cf., [22]), or if the difference between
the largest and the smallest eigenvalues of {aij(x)} is small enough (the Cordes condition), then
Lu ∈ L2(Ω) yields that u ∈ W 2,2(Ω) and these results can be extended to W 2,p(Ω) for p ∈ (2−ε, 2+ε)
with sufficiently small ε.

Later, the Sarason class VMO of functions with a vanishing mean oscillation was used in the study
of local and global Sobolev regularity of strong solutions to (5).

Next, we define the space BMO, then the smallest VMO class, where we consider the coefficients
aij and further the class in which we consider the known term f .

In the sequel, let Ω be an open bounded set in Rn.
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Definition 3.1. Let f ∈ L1
loc(Ω). We define the integral mean fx,R by

fx,R :=
1

|Ω∩B(x,R)|

∫
Ω∩B(x,R)

f(y)dy,

where B(x,R) ranges in the class of balls centered in x with radius R and |Ω∩B(x,R)| is the Lebesgue
measure of Ω ∩ B(x,R). If we are not interested in specifying which the center is, we just use the
notation fR.

We now give the definition of Bounded Mean Oscillation functions (BMO) that appeared first in
the note by F. John and L. Nirenberg [11].

Definition 3.2. Let f ∈ L1
loc(Ω). We say that f belongs to BMO(Ω) if the seminorm ∥f∥∗ is finite,

where

∥f∥∗ := sup
B(x,R)

1

|B(x,R)|

∫
B(x,R)

|f(y)− fx,R|dy.

Next, we consider the definition of the space of Vanishing Mean Oscillation functions given first by
D. Sarason [29].

Definition 3.3. Let f ∈ BMO(Ω) and

η(f,R) := sup
ρ≤R

1

|Bρ|

∫
Bρ

|f(y)− fρ|dy,

where Bρ ranges over the class of balls of Rn of radius ρ. Further, a function f ∈ VMO(Ω) if
limR→0 η(f,R) = 0.

The Sarason class is then expressed as the subspace of the functions in the John-Nirenberg class
whose BMO norm over a ball vanishes as the radius of the balls tends to zero. This property implies
a number of good features of VMO functions not shared by general BMO functions; in particular,
they can be approximated by smooth functions.

This class of functions was considered by many others. First, we recall the paper by F. Chiarenza,
M. Frasca and P. Longo [6], where the authors answer a question raised thirty years before by C.
Miranda [22]. In his paper, the author considers a linear elliptic equation where the coefficients aij of
the higher order derivatives are in the class W 1,n(Ω) and asks whether the gradient of the solution is
bounded if p > n. In [6] the authors suppose that aij ∈ VMO and prove that Du is Hölder continuous
for all p ∈]1,+∞[.

Also, it is possible to check that the bounded uniformly functions are in VMO, as well as the
functions of fractional Sobolev spaces W θ,nθ , θ ∈]0, 1[.

The study of Sobolev regularity of strong solutions of (5) was initiated in 1991 with the pioneering
work by F. Chiarenza, M. Frasca and P. Longo [5]. It was found that if aij(x) ∈ VMO ∩ L∞(Ω) and
Lu ∈ Lp(Ω), then u ∈ W 2,p(Ω) for each value of p in the range (1,∞). Moreover, the well-posedness of

the Dirichlet problem for (5) in W 2,p(Ω)∩W 1,p
0 (Ω) was proved. As a consequence, Hölder’s continuity

of the strong solution or of its gradient follows if the exponent p is sufficiently large.
Thanks to the fundamental accessibility of these two papers [4, 6], many other authors have used

VMO class to obtain the regularity results for PDEs and for systems with discontinuous coefficients.
Continuing the study of regularity of PDEs, we see that Hölder’s continuity can be inferred for

small p if one has more information on Lu, such as its belonging to a suitable Morrey class Lp,λ(Ω).
Let us denote by Mp,λ(Ω) the Morrey space defined on a domain Ω ⊂ Rn which is defined with

respect to the norm

∥f∥p,λ := sup
x∈Ω

0<ρ<diamΩ

(
1

ρλ

∫
Ω∩Bρ(x)

|f(y)|p dy
)1/p

.

The exponent λ may take the values that do not belong to ]0, n[ but the unique cases of real interest
are those for which λ ∈]0, n[. Indeed, from the definition, we immediately see that Mp,λ(Ω) = Lp(Ω),



ON SOME EXTRAPOLATION IN GENERALIZED GRAND MORREY SPACES 439

if λ ≤ 0. Sometimes later we will explicitly use the fact that Mp,0(Ω) = Lp(Ω).
Moreover, if λ = n, by applying the Lebesgue differentiation theorem, we find that

lim
ρ→0+

1

ρn

∫
Ω∩Bρ(x)

|f(y)|p dy= lim
ρ→0+

1

ρn

∫
Bρ(x)

|f(y)|pdy=C|f(x)|p

for every Lebesgue point or, equivalently, almost everywhere in Ω. Then in order that f(x) ∈ Mp,n(Ω),
it is necessary and sufficient that f is bounded. It means that Mp,n(Ω) = L∞(Ω).
If λ > n, then Mp,λ(Ω) = {0}.

Using the spaces defined above, there arises a natural problem, namely, to study the regularizing
properties of the operator L in Morrey spaces in the case of VMO principal coefficients. In [2], it is
proved that each W 2,p-viscosity solution to (5) lies in C1+α(Ω) if f(x) belongs to the Morrey space
Mn,nα(Ω) with α ∈ (0, 1).

One of the main results of this note is to obtain the local regularity, in the grand Morrey Spaces,
for the highest order derivatives of solutions of elliptic non-divergence form with coefficients that may
be discontinuous.

We recall that in the case of continuous coefficients of the above kind equation, the results are ob-
tained by S. Agmon, A. Douglis and L. Nirenberg [1]. Later, discontinuous coefficients were considered
by S. Campanato [3].

Then this paper can be regarded as a continuation of the study of Lp regularity of solutions of
second order elliptic PDEs for the maximum order derivatives of the solutions to a certain class of
linear elliptic equations in nondivergence form with discontinuous coefficients (see also [18] for related
topics).

Let us consider the second order differential operator

L ≡ aij(x)Dij , Dij ≡
∂2

∂xi∂xj
.

Here we have adopted the usual summation convention on repeated indices.
In the sequel, we need the following regularity and ellipticity assumptions on the coefficients of

L, ∀i, j = 1, . . . , n :
aij(x) ∈ L∞(Ω) ∩ VMO,

aij(x) = aji(x), a.a. x ∈ Ω

∃ κ > 0 : κ−1|ξ|2 ≤ aij(x)ξiξj ≤ κ|ξ|2, ∀ξ ∈ Rn, a.a. x ∈ Ω.

(6)

Set ηij for the VMO-modulus of the function aij(x) and let η(r) =
( n∑

i,j=1

η2ij

)1/2

. We denote by

Γ(x, t) the normalized fundamental solution of L, i.e.,

Γ(x, ξ) =
1

n(2− n)ωn

√
det{aij(x)}

( n∑
i,j=1

Aij(x)ξiξj

)(2−n)/2

for a.a. x and all ξ ∈ Rn \ {0}, where Aij(x) stand for the entries of the inverse matrix of the matrix
{aij(x)}i,j=1,...,n, and ωn is the measure of the unit ball in Rn. We set also

Γi(x, ξ) =
∂

∂ξi
Γ(x, ξ), Γij(x, ξ) =

∂

∂ξi∂ξj
Γ(x, ξ),

M = max
i,j=1,...,n

max
|α|≤2n

∥∥∥∥∂αΓij(x, ξ)

∂ξα

∥∥∥∥
L∞(Ω×Σ)

.

It is well known that Γij(x, ξ) are the Calderón–Zygmund kernels in the ξ variable.

Theorem 3.1. Let (6) be true, 1 < p < ∞, −1/p ≤ r < 0, φ(·) ∈ Φp. Let Ω be a domain satisfying
A condition (see (1)) and let w be a weight on Ω such that w ∈ Ap(Ω). Then there exist positive
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constants c = c(n, κ, p, r, φ(·),M,w) and ρ0 = ρ0(C, n) such that for every ball Bρ ⊂⊂ Ω, ρ < ρ0 and

every u ∈ W 2,p
0 (Bρ) such that Diju ∈ L

p),r,φ(·)
w (Bρ), for w ∈ Ap(Ω), we have

∥Diju∥Lp),r,φ(·)
w (Bρ)

≤ c∥Lu∥
L

p),r,φ(·)
w (Bρ)

, ∀i, j = 1, . . . , n. (7)
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Italy
Email address: alexander.meskhi@tsu.ge

Email address: mariaalessandra.ragusa@unict.it


