ON THE NADARAYA–WATSON TYPE NONPARAMETRIC ESTIMATE OF POISSON REGRESSION FUNCTION

PETRE BABILUA AND ELIZBAR NADARAYA

Abstract. The Nadaraya–Watson kernel-type nonparametric estimate of Poisson regression function is studied. The uniform consistency conditions are established and the limit theorems are proved for continuous functionals on C[a, 1-a], 0 < a < 1/2.

Let a random variable Y take values 0, 1, 2, ... with probabilities $\Pi(k, \lambda) = \mathbf{P}\{Y = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$, $\lambda > 0, k = 0, 1, ...$ Assume that the parameter λ is the function of an independent variable $x \in [0, 1]$. $\lambda(x)$ is known as a Poisson regression function [2,6]. Let $x_i, i = 1, ..., n$ be the division points of the interval [0, 1]:

$$x_i = \frac{2i-1}{2n}, \ i = 1, 2, \dots, n.$$

Let, further, Y_i , i = 1, 2, ..., n be independent Poisson random variables with $\mathbf{P}\{Y_i = k \mid x_i\} = \Pi(k, \lambda(x_i))$. The problem consists in estimating the function $\lambda(x)$, $x \in [0, 1]$, by the samples $Y_1, Y_2, ..., Y_n$ [2]. Problems of this kind arise, for example, in medicine [5, 10], in astrophysics [7], and so on.

As an estimator for $\lambda(x)$, we consider the following statistics [8, 11] which is known as Nadaraya–Watson estimate

$$\widehat{\lambda}_n(x) = \lambda_{1n}(x)\lambda_{2n}^{-1}(x),$$
$$\lambda_{\nu n}(x) = \frac{1}{nb_n}\sum_{i=1}^n K\left(\frac{x-x_i}{b_n}\right)Y_i^{2-\nu}, \quad \nu = 1,2$$

where K(x) is some distribution density (kernel) and K(x) = K(-x), $x \in (-\infty, +\infty)$, and $\{b_n\}$ is a sequence of positive numbers converging to zero.

The aim of the present paper is to establish uniform convergence of the estimate $\lambda_n(x)$ to the $\lambda(x)$ by probability and also to state the limit theorems for continuous functionals connected with this function on C[a, 1-a], $0 < a < \frac{1}{2}$.

For obtaining these results, we need the following lemmas given in [1].

Lemma 1. Assume that:

- 1^{0} . K(x) is some function with a bounded variation;
- 2^0 . $\lambda(x)$ is also a function with a bounded variation on [0,1].

If $nb_n \to \infty$, then

$$\frac{1}{nb_n} \sum_{i=1}^n K^{\nu_1} \left(\frac{x-x_i}{b_n}\right) p^{\nu_2}(x_i) = \frac{1}{b_n} \int_0^1 K^{\nu_1} \left(\frac{x-u}{b_n}\right) p^{\nu_2}(u) \, du + O\left(\frac{1}{nb_n}\right),\tag{1}$$

uniformly in $x \in [0, 1]$; $\nu_i \in N \cup \{0\}$, i = 1, 2.

²⁰²⁰ Mathematics Subject Classification. Primary 60F05; Secondary 62G05.

Key words and phrases. Poisson regression function; Consistency; Uniform convergence; Wiener process; Nadaraya–Watson estimate.

Let us introduce for the function K(x) the Fourier transform:

$$\psi(t) = \int_{-\infty}^{\infty} e^{itx} K(x) \, dx$$

and assume that

 3^0 . $\psi(x)$ is absolutely integrable. Then we can write

 $\lambda_{1n}(x) - \mathbf{E} \lambda_{1n}(x)$ in the form

$$\lambda_{1n}(x) - \mathbf{E}\,\lambda_{1n}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iux/b_n} \psi(u) \frac{1}{nb_n} \sum_{j=1}^{n} [Y_j - \lambda(x_j)] e^{iux_j/b_n} \, du.$$

Denote

$$d_n = \sup_{x \in \Omega_n} |\widehat{\lambda}_n(x) - \mathbf{E} \,\widehat{p}_n(x)|, \quad \Omega_n = [b_n^{\alpha}, 1 - b_n^{\alpha}], \quad 0 < \alpha < 1.$$

Theorem 1. Let K(x) satisfy conditions 1^0 and 3^0 , and let $\lambda(x)$ be continuous and satisfy condition 2^0 .

(a) Let $nb_n^2 \to \infty$, then

$$D_n = \sup_{x \in \Omega_n} |\widehat{\lambda}_n(x) - \lambda(x)| \xrightarrow{P} 0.$$

(b) If
$$\sum_{n=1}^{\infty} n^{-s/2} b_n^{-s} < \infty$$
, $s > 2$, then $D_n \to 0$ a.s.

Corollary 1. Under the conditions of Theorem 1,

$$\sup_{x \in [a,b]} |\widehat{\lambda}_n(x) - \lambda(x)| \to 0$$

in probability (almost surely) for any fixed interval $[a, b] \subset [0, 1]$.

Assume that $b_n = n^{-\gamma}$, $\gamma > 0$. The following conditions of Theorem 1:

$$n^{1/2}b_n o \infty$$
, if $0 < \gamma < rac{1}{2}$

and

$$\sum_{n=1}^{\infty} n^{-s/2} b_n^{-s} < \infty, \text{ if } 0 < \gamma < \frac{s-2}{2s}, \ s > 2$$

are fulfilled.

Before we proceed to proving Theorem 2, let us consider two lemmas below.

Lemma 2. Let the kernel $K(x) \ge 0$ be chosen so that it would be a function of a finite variation and satisfy the conditions K(x) = K(-x), K(x) = 0 for $|x| \ge 1$, $\int K(u) du = 1$. Let $g(x) \ge 0$, $x \in [a, 1-a]$, 0 < a < 1/2, be any measurable bounded function. Let, further, $0 < \inf \lambda(x)$, $x \in [0, 1]$.

(a) If $\lambda(x)$ is continuous and with a bounded variation on [0,1] and $nb_n^2 \to \infty$ as $n \to \infty$, then

$$\overline{\xi}_n = \sqrt{n} \int_a^{1-a} g_1(x) \left[\widehat{\lambda}_n(x) - \mathbf{E} \,\widehat{\lambda}_n(x) \right] dx \xrightarrow{d} N(0, \sigma^2), \quad g_1(x) = g(x)\varphi(x), \quad \varphi(x) = \lambda^{-1/2}(x).$$
(2)

(b) If $nb_n^2 \to \infty$, $nb_n^4 \to 0$, and $\lambda(x)$ has bounded derivatives up to the second order, then

$$\xi_n = \sqrt{n} \int_a^{1-a} g_1(x) [\widehat{\lambda}_n(x) - \lambda(x)] \, dx \xrightarrow{d} N(0, \sigma^2), \quad \sigma^2 = \int_a^{1-a} g^2(x) \, dx,$$

for $n \to \infty$.

430

Remark 1. We have introduced a > 0 in the theorem in order avoid of the boundary effect of the estimate $\hat{\lambda}_n(x)$. More exactly, near the boundary of the interval [0, 1], the estimate $\hat{\lambda}_n(x)$, being a kernel-type estimate, behaves worse in the sense of order of convergence to zero of the bias $\mathbf{E} \hat{\lambda}_n(x) - \lambda(x)$ than in any interval $[a, 1 - a] \subset [0, 1], 0 < a < 1/2$ [4,9].

Lemma 3. Under the conditions (a) and (b) of Lemma 2, we, respectively, have

$$\mathbf{E} \, |\bar{\xi}_n|^s \le c_{13} \left(\int_a^{1-a} g(u) \, du \right)^{s/2}, \ s > 2, \tag{3}$$

and

$$\mathbf{E} |\xi_n|^s \le c_{14} \left(\int_a^{1-a} g(u) \, du \right)^{s/2}, \ s > 2.$$
(4)

Let us introduce the following random processes:

$$\overline{\xi}_n(t) = \sqrt{n} \int_a^t \left(\widehat{\lambda}_n(u) - \mathbf{E} \,\widehat{\lambda}_n(u) \right) \psi(u) \, du, \quad \xi_n(t) = \sqrt{n} \int_a^t \left(\widehat{\lambda}_n(u) - \lambda(u) \right) \psi(u) \, du.$$

Theorem 2. Let all conditions of Lemma 2 be fulfilled. Then for all continuous functionals $f(\cdot)$ on C[a, 1-a], 0 < a < 1/2 the distributions of $f(\overline{\xi}_n(t))$ and $f(\xi_n(t))$ converge to the distribution of f(w(t-a)), where w(t-a), $a \le t \le 1-a$, is a Wiener process with a correlation function $r(s,t) = \min(t-a, s-a)$, w(t-a) = 0, t = a.

Proof. First, we show that the finite-dimensional distributions of the processes $\overline{\xi}_n(t)$ converge to the finite-dimensional distributions of the process, $w(t-a), t \ge a$.

Let us consider one moment of time t_1 ; we have to show that

$$\overline{\xi}_n(t_1) \stackrel{d}{\longrightarrow} w(t_1 - a). \tag{5}$$

To prove (5), it suffices to take $g(x) = I_{[a,t_1]}(x)$ in (2). Then by virtue of Lemma 2,

 $\overline{\xi}_n(t_1) \stackrel{d}{\longrightarrow} N(0, t_1 - a).$

Consider now two moments of time $t_1, t_2, t_1 < t_2$. Towards this end, we have to show that

$$\left(\overline{\xi}_n(t_1), \overline{\xi}_n(t_2)\right) \xrightarrow{d} \left(w(t_1 - a), w(t_2 - a)\right).$$
 (6)

To prove (6), it suffices to take

$$g(x) = (\lambda_1 + \lambda_2)I_{[a,t_1)}(x) + \lambda_2 I_{[t_1,t_2)}(x)$$

in (2), where λ_1 , λ_2 are arbitrary finite numbers. Then by virtue of Lemma 2,

$$\lambda_1\overline{\xi}_n(t_1) + \lambda_2\overline{\xi}_n(t_2) \stackrel{d}{\longrightarrow} N\Big(0, (\lambda_1 + \lambda_2)^2(t_1 - a) + \lambda_2^2(t_2 - t_1)\Big).$$

On the other hand,

$$\lambda_1 w(t_1 - a) + \lambda_2 w(t_2 - a) = (\lambda_1 + \lambda_2) [w(t_1 - a) - w(0)] + \lambda_2 [w(t_2 - a) - w(t_1 - a)]$$

is distributed as $N(0, (\lambda_1 + \lambda_2)^2(t_1 - a) + \lambda_2^2(t_2 - t_1)).$

Therefore (6) holds. The case of three and more moments of time is considered analogously. Now, let us show that the sequence $\{\overline{\xi}_n(t)\}$ is dense, i.e., the sequence of respective distributions is dense. To this end, it suffices to show that for any $t_1, t_2 \in [a, 1-a]$ and all n,

$$\mathbf{E}\left|\overline{\xi}_{n}(t_{1}) - \overline{\xi}_{n}(t_{2})\right|^{s} \le c_{19}|t_{1} - t_{2}|^{s/2}, \ s > 2.$$

Indeed, this inequality is obtained from (3) for $g(x) = I_{[t_1, t_2]}(x)$.

Further, taking into account (4) and statements (b) of Lemma 2, we easily conclude that the finitedimensional distributions of the processes $\xi_n(t)$ converge to the finite-dimensional distributions of the Wiener process w(t-a), and also

$$\mathbf{E} |\xi_n(t_1) - \xi_n(t_2)|^s \le c_{20} |t_1 - t_2|^{s/2}, \ s > 2.$$

Thus the proof of the theorem follows from Theorem 2 of the monograph [9, p. 583].

Corollary 2. By virtue of Theorem 2 and Theorem 1 from [3, p. 371], we can write

$$p\Big\{\max_{a \le t \le 1-a} \xi_n(t) > \lambda\Big\} \longrightarrow \frac{2}{\sqrt{2\pi(1-2a)}} \int_{\lambda}^{\infty} \exp\Big\{-\frac{x^2}{2(1-2a)} \, dx\Big\}, \ 0 < a < \frac{1}{2}, \ as \ n \to \infty.$$

This result makes it possible to construct the goodness-of fit test of the level α for testing hypothesis H_0 , according to which

$$H_0: \lim_{n \to \infty} \mathbf{E} \,\widehat{\lambda}_n(x) = \lambda_0(x), \ a \le x \le 1 - a,$$

when the alternative hypothesis is

$$H_1: \int_a^{1-a} \psi_0(x) \Big(\lim_{n \to \infty} \mathbf{E} \,\widehat{\lambda}_n(x) - \lambda_0(x)\Big) \, dx > 0, \quad \psi_0(x) = \lambda_0^{-1/2}(x).$$

Further, we note that the functionals

$$f_1(x(\,\cdot\,)) = \sup_{a \le t \le 1-a} |x(t)|, \quad f_2(x(\,\cdot\,)) = \int_a^{1-a} x^2(t) \, dt$$

are continuous on C[a, 1-a]. Therefore Theorem 2 also implies

$$f_1(\xi_n(\,\cdot\,)) \stackrel{d}{\longrightarrow} f_1(W(\,\cdot\,))$$

and

$$f_2(\xi_n(\cdot)) \xrightarrow{d} f_2(W(\cdot)).$$

Remark 2. Let t_i be the division points of the interval [0,1] chosen so that

$$H(t_j) = \frac{2j-1}{2n}, \ j = 1, \dots, n,$$

where $H(x) = \int_{0}^{x} h(u) du$, h(u) is some known continuous distribution density on [0, 1]. Then, arguing analogously to the above, one can obtain a generalization of the results of this paper.

References

- P. K. Babilua, E. A. Nadaraya, G. A. Sokhadze, On the square-integrable measure of the divergence of two nuclear estimations of the Bernoulli regression functions. Translation of Ukraïn. Mat. Zh. 67 (2015), no. 1, 3–18; Ukrainian Math. J. 67 (2015), no. 1, 1–18.
- 2. S. Efromovich, *Nonparametric Curve Estimation*. Methods, theory, and applications. Springer Series in Statistics. Springer-Verlag, New York, 1999.
- I. I. Gikhman, A. V. Skorohod, Introduction to the Theory of Random Processes. (Russian) Izdat. Nauka, Moscow, 1965.
- 4. J. D. Hart, T. E. Wehrly, Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models. J. Amer. Statist. Assoc. 87 (1992), no. 420, 1018–1024.
- 5. C.-H. Hwang, J.-Y. Shim, Semiparametric kernel Poisson regression for longitudinal count data. Commun. Stat. Appl. Methods 15 (2008), no. 6, 1003–1011.
- M. Kohler, A. Krzyżak, Asymptotic confidence intervals for Poisson regression. J. Multivariate Anal. 98 (2007), no. 5, 1072–1094.
- E. D. Kolaczyk, Nonparametric Estimation of Gamma-Ray Burst intensities using Haar wavelets. The Astrophysical Journal 483 (1997), no. 1, 340–349.
- 8. E. A. Nadaraja, On a regression estimate. (Russian) Teor. Verojatnost. i Primenen. 9 (1964), 157–159.
- 9. E. A. Nadaraya, R. M. Absava, Some Probems of the Theory of Nonparametric Estimation of Functional Characteristics of the Observations Distribution Law. (Russian) Tbilisi University Press, Tbilisi, 2008.

- Y. Pawitan, F. O'Sullivan, Data-dependent bandwidth selection for emission computed tomography reconstruction. IEEE Transactions on Medical Imaging 12 (1993), no. 2, 167–172.
- 11. G. S. Watson, Smooth regression analysis. Sankhya Ser. A 26 (1964), 359–372.

(Received 14.09.2022)

DEPARTMENT OF MATHEMATICS, FACULTY OF EXACT AND NATURAL SCIENCES, IVANE JAVAKHISHVILI TBILISI STATE UNIVERSITY, 13 UNIVERSITY STR., TBILISI 0186, GEORGIA

Email address: petre.babilua@tsu.ge

Email address: elizbar.nadaraya@tsu.ge