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ON THE NADARAYA–WATSON TYPE NONPARAMETRIC ESTIMATE OF

POISSON REGRESSION FUNCTION

PETRE BABILUA AND ELIZBAR NADARAYA

Abstract. The Nadaraya–Watson kernel-type nonparametric estimate of Poisson regression func-
tion is studied. The uniform consistency conditions are established and the limit theorems are proved

for continuous functionals on C[a, 1− a], 0 < a < 1/2.

Let a random variable Y take values 0, 1, 2, . . . with probabilities Π(k, λ) = P{Y = k} = λk

k! e
−λ,

λ > 0, k = 0, 1, . . . . Assume that the parameter λ is the function of an independent variable x ∈ [0, 1].
λ(x) is known as a Poisson regression function [2,6]. Let xi, i = 1, . . . , n be the division points of the
interval [0, 1]:

xi =
2i− 1

2n
, i = 1, 2, . . . , n.

Let, further, Yi, i = 1, 2, . . . , n be independent Poisson random variables with P{Yi = k |xi}=
Π(k, λ(xi)). The problem consists in estimating the function λ(x), x ∈ [0, 1], by the samples
Y1, Y2, . . . , Yn [2]. Problems of this kind arise, for example, in medicine [5, 10], in astrophysics [7],
and so on.

As an estimator for λ(x), we consider the following statistics [8, 11] which is known as Nadaraya–
Watson estimate

λ̂n(x) = λ1n(x)λ
−1
2n (x),

λνn(x) =
1

nbn

n∑
i=1

K
(x− xi

bn

)
Y 2−ν
i , ν = 1, 2,

where K(x) is some distribution density (kernel) and K(x) = K(−x), x ∈ (−∞,+∞), and {bn} is a
sequence of positive numbers converging to zero.

The aim of the present paper is to establish uniform convergence of the estimate λ̂n(x) to the λ(x)
by probability and also to state the limit theorems for continuous functionals connected with this
function on C[a, 1− a], 0 < a < 1

2 .
For obtaining these results, we need the following lemmas given in [1].

Lemma 1. Assume that:

10. K(x) is some function with a bounded variation;
20. λ(x) is also a function with a bounded variation on [0, 1].

If nbn → ∞, then

1

nbn

n∑
i=1

Kν1

(x− xi
bn

)
pν2(xi) =

1

bn

1∫
0

Kν1

(x− u

bn

)
pν2(u) du+O

( 1

nbn

)
, (1)

uniformly in x ∈ [0, 1]; νi ∈ N ∪ {0}, i = 1, 2.
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Let us introduce for the function K(x) the Fourier transform:

ψ(t) =

∞∫
−∞

eitxK(x) dx

and assume that

30. ψ(x) is absolutely integrable. Then we can write
λ1n(x)−Eλ1n(x) in the form

λ1n(x)−Eλ1n(x) =
1

2π

∞∫
−∞

e−iux/bnψ(u)
1

nbn

n∑
j=1

[Yj − λ(xj)]e
iuxj/bn du.

Denote

dn = sup
x∈Ωn

|λ̂n(x)−E p̂n(x)|, Ωn = [bαn, 1− bαn], 0 < α < 1.

Theorem 1. Let K(x) satisfy conditions 10 and 30, and let λ(x) be continuous and satisfy condi-
tion 20.

(a) Let nb2n → ∞, then

Dn = sup
x∈Ωn

|λ̂n(x)− λ(x)| P−→ 0.

(b) If
∞∑

n=1
n−s/2b−s

n <∞, s > 2, then Dn → 0 a.s.

Corollary 1. Under the conditions of Theorem 1,

sup
x∈[a,b]

|λ̂n(x)− λ(x)| → 0

in probability (almost surely) for any fixed interval [a, b] ⊂ [0, 1].

Assume that bn = n−γ , γ > 0. The following conditions of Theorem 1:

n1/2bn → ∞, if 0 < γ <
1

2

and
∞∑

n=1

n−s/2b−s
n <∞, if 0 < γ <

s− 2

2s
, s > 2

are fulfilled.
Before we proceed to proving Theorem 2, let us consider two lemmas below.

Lemma 2. Let the kernel K(x) ≥ 0 be chosen so that it would be a function of a finite variation
and satisfy the conditions K(x) = K(−x), K(x) = 0 for |x| ≥ 1,

∫
K(u) du = 1. Let g(x) ≥ 0,

x ∈ [a, 1− a], 0 < a < 1/2, be any measurable bounded function. Let, further, 0 < inf λ(x), x ∈ [0, 1].

(a) If λ(x) is continuous and with a bounded variation on [0, 1] and nb2n → ∞ as n→ ∞, then

ξn =
√
n

1−a∫
a

g1(x)
[
λ̂n(x)−E λ̂n(x)

]
dx

d−→ N(0, σ2), g1(x) = g(x)φ(x), φ(x) = λ−1/2(x). (2)

(b) If nb2n → ∞, nb4n → 0, and λ(x) has bounded derivatives up to the second order, then

ξn =
√
n

1−a∫
a

g1(x)[λ̂n(x)− λ(x)] dx
d−→ N(0, σ2), σ2 =

1−a∫
a

g2(x) dx,

for n→ ∞.
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Remark 1. We have introduced a > 0 in the theorem in order avoid of the boundary effect of the

estimate λ̂n(x). More exactly, near the boundary of the interval [0, 1], the estimate λ̂n(x), being a

kernel-type estimate, behaves worse in the sense of order of convergence to zero of the bias E λ̂n(x)−
λ(x) than in any interval [a, 1− a] ⊂ [0, 1], 0 < a < 1/2 [4, 9].

Lemma 3. Under the conditions (a) and (b) of Lemma 2, we, respectively, have

E |ξn|s ≤ c13

( 1−a∫
a

g(u) du

)s/2

, s > 2, (3)

and

E |ξn|s ≤ c14

( 1−a∫
a

g(u) du

)s/2

, s > 2. (4)

Let us introduce the following random processes:

ξn(t) =
√
n

t∫
a

(
λ̂n(u)−E λ̂n(u)

)
ψ(u) du, ξn(t) =

√
n

t∫
a

(
λ̂n(u)− λ(u)

)
ψ(u) du.

Theorem 2. Let all conditions of Lemma 2 be fulfilled. Then for all continuous functionals f( · )
on C[a, 1 − a], 0 < a < 1/2 the distributions of f(ξn(t)) and f(ξn(t)) converge to the distribution
of f(w(t − a)), where w(t − a), a ≤ t ≤ 1 − a, is a Wiener process with a correlation function
r(s, t) = min(t− a, s− a), w(t− a) = 0, t = a.

Proof. First, we show that the finite-dimensional distributions of the processes ξn(t) converge to the
finite-dimensional distributions of the process, w(t− a), t ≥ a.

Let us consider one moment of time t1; we have to show that

ξn(t1)
d−→ w(t1 − a). (5)

To prove (5), it suffices to take g(x) = I[a,t1](x) in (2). Then by virtue of Lemma 2,

ξn(t1)
d−→ N(0, t1 − a).

Consider now two moments of time t1, t2, t1 < t2. Towards this end, we have to show that(
ξn(t1), ξn(t2)

) d−→
(
w(t1 − a), w(t2 − a)

)
. (6)

To prove (6), it suffices to take

g(x) = (λ1 + λ2)I[a,t1)(x) + λ2I[t1,t2)(x)

in (2), where λ1, λ2 are arbitrary finite numbers. Then by virtue of Lemma 2,

λ1ξn(t1) + λ2ξn(t2)
d−→ N

(
0, (λ1 + λ2)

2(t1 − a) + λ22(t2 − t1)
)
.

On the other hand,

λ1w(t1 − a) + λ2w(t2 − a) = (λ1 + λ2)
[
w(t1 − a)− w(0)

]
+ λ2

[
w(t2 − a)− w(t1 − a)

]
is distributed as N(0, (λ1 + λ2)

2(t1 − a) + λ22(t2 − t1)).
Therefore (6) holds. The case of three and more moments of time is considered analogously. Now,

let us show that the sequence {ξn(t)} is dense, i.e., the sequence of respective distributions is dense.
To this end, it suffices to show that for any t1, t2 ∈ [a, 1− a] and all n,

E
∣∣ξn(t1)− ξn(t2)

∣∣s ≤ c19|t1 − t2|s/2, s > 2.

Indeed, this inequality is obtained from (3) for g(x) = I[t1,t2](x).
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Further, taking into account (4) and statements (b) of Lemma 2, we easily conclude that the finite-
dimensional distributions of the processes ξn(t) converge to the finite-dimensional distributions of the
Wiener process w(t− a), and also

E |ξn(t1)− ξn(t2)|s ≤ c20|t1 − t2|s/2, s > 2.

Thus the proof of the theorem follows from Theorem 2 of the monograph [9, p. 583]. □

Corollary 2. By virtue of Theorem 2 and Theorem 1 from [3, p. 371], we can write

p
{

max
a≤t≤1−a

ξn(t) > λ
}
−→ 2√

2π(1− 2a)

∞∫
λ

exp
{
− x2

2(1− 2a)
dx

}
, 0 < a <

1

2
, as n→ ∞.

This result makes it possible to construct the goodness-of fit test of the level α for testing hypothesis
H0, according to which

H0 : lim
n→∞

E λ̂n(x) = λ0(x), a ≤ x ≤ 1− a,

when the alternative hypothesis is

H1 :

1−a∫
a

ψ0(x)
(

lim
n→∞

E λ̂n(x)− λ0(x)
)
dx > 0, ψ0(x) = λ

−1/2
0 (x).

Further, we note that the functionals

f1(x( · )) = sup
a≤t≤1−a

|x(t)|, f2(x( · )) =
1−a∫
a

x2(t) dt

are continuous on C[a, 1− a]. Therefore Theorem 2 also implies

f1(ξn( · ))
d−→ f1(W ( · ))

and

f2(ξn( · ))
d−→ f2(W ( · )).

Remark 2. Let ti be the division points of the interval [0, 1] chosen so that

H(tj) =
2j − 1

2n
, j = 1, . . . , n,

where H(x) =
x∫
0

h(u) du, h(u) is some known continuous distribution density on [0, 1]. Then, arguing

analogously to the above, one can obtain a generalization of the results of this paper.
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