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ON 3-DIMENSIONAL QUASI-PARA-SASAKIAN MANIFOLDS AND RICCI

SOLITONS

DODDABHADRAPPLA GOWDA PRAKASHA1, PUNDIKALA VEERESHA2, VENKATESHA VENKATESHA3

AND HUCHCHAPPA ARUNA KUMARA3,4

Abstract. The purpose of this paper is to study 3-dimensional quasi-para-Sasakian manifolds and

Ricci solitons. First, we prove that a 3-dimensional non-paracosymplectic quasi-para-Sasakian man-

ifold is an η-Einstein manifold if and only if the structure function β is constant. Further, it is shown
that a Ricci soliton on a 3-dimensional quasi-para-Sasakian manifold with β=constant is expand-

ing. Moreover, we show that if a 3-dimensional quasi-para-Sasakian manifold admits a Ricci soliton,
then the flow vector field V is Killing, and the quasi-para-Sasakian structure can be obtained by a

homothetic deformation of a para-Sasakian structure. Besides, we study gradient Ricci solitons and

prove that if a 3-dimensional non-paracosymplectic quasi-para-Sasakian manifold with β=constant
admits a gradient Ricci soliton, then the manifold is an Einstein one. Also, a suitable example of a

3-dimensional quasi-para-Sasakian manifold is constructed to verify our results.

1. Introduction

In recent years, the theory of almost contact and almost paracontact geometry is an active branch
of research. Many authors have studied almost contact manifolds and pointed out its importance in
many applied areas such as geometric optics, mechanics, thermodynamics and control theory. The
study of almost paracontact manifolds is also of interest from the standpoint of pseudo-Riemannian
geometry and mathematical physics. S. Kaneyuki and S. F. Williams [21] inititaed the study of almost
paracontact geometry. A systematic study of almost paracontact metric manifolds was carried out
by S. Zamkovoy in paper [39]. Since then, several authors studied these manifolds by emphasizing
the similarities and differences with respect to the most well-known almost contact case. Comparing
with the huge literature in almost contact geometry, it seems that there are necessary new studies
in almost paracontact geometry. Some interesting properties of almost paracontact manifolds were
studied in papers [21,25,32–34,36,37,39] and the references therein.

The notion of normal almost contact metric manifolds of dimension 3 was studied by O. Olszak in
[23]. He derived certain necessary and sufficient conditions for an almost contact metric structure on a
manifold to be normal. Recently, J. Welyczko studied curvature and torsion of Frenet-Legendre curves
in 3-dimensional normal almost paracontact metric manifolds. C. L. Bejan and M. Crasmareann [1]
considered second order parallel tensors and Ricci solitons in a 3-dimensional normal paracontact
geometry. Further, I. K. Erken [12] studied some classes of 3-dimensional normal almost paracontact
metric manifolds.

A quasi-Sasakian manifold, introduced by D. E. Blair [3], is a normal almost contact metric manifold
whose fundamental 2-form Φ is closed. Quasi-Sasakian manifolds unifies Sasakian and cosymplectic
manifolds, and also can be viewed as an odd-dimensional counterpart of Kaehler structures.

An almost paracontact metric manifold (M2n+1, φ, ξ, η, g) is called quasi-para-Sasakian if the struc-
ture is normal and its fundamental 2-form Φ is closed. These manifolds are analogues to the quasi-
Sasakian manifolds and they belong of the class G5 of the classification given in [40]. Basic properties
of quasi-para-Sasakian manifolds and their general curvature identities are investigated systematically
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in papers [13, 14] and [15]. A quasi-para-Sasakian manifold is a paracontact manifold with pseudo-
Riemannian metric, whereas a quasi-Sasakian manifold is a contact manifold with Riemannian metric.
Therefore these two notions are completely different.

On the other hand, the study of Ricci soliton on a pseudo-Riemannian manifold is an interesting
topic of research in modern differential geometry. A Ricci soliton is a natural generalization of an
Einstein metric and this notion was introduced by Hamilton [19]. A pseudo-Riemannian metric g on
a smooth manifold Mn is said to be a Ricci soliton if there exists a real number λ such that its Ricci
tensor S satisfies

£V g + 2S + 2λg = 0, (1)

where V is a vector field on M (called the potential vector field) and £V denotes the Lie differentiation
along the vector field V . The Ricci soliton is said to be shrinking, steady or expanding according as
λ is negative, zero or positive respectively. Also, a Ricci soliton with V zero or Killing is an Einstein
metric. If the vector field V is the gradient of a potential function −f , then g is called a gradient Ricci
soliton. The Ricci flow [18] is an evolution equation for the metrics on a pseudo-Riemannian manifold
defined by ∂

∂tgij(t) = −2Sij . Ricci solitons are self-similar solutions of the Ricci flow, and play an
important role in understanding its singularities. The theoretical physicists have also been looking
into the equation of a Ricci soliton in relation with the string theory. In 1985, Friedan [16] made
an effort in this direction and discussed some aspects of it. Later, the study of Ricci solitons in the
context of contact geometry has initiated by R. Sharma [28] and then continued by several authors in
papers [10, 17, 27, 28, 30, 31, 35]. The problem of studying Ricci solitons in the context of paracontact
metric geometry was initiated by G. Calvaruso and D. Perrone [5]. The case of Ricci solitons in a 3-
dimensional paracontact geometry was studied in papers [1] and [6]. Some properties of Ricci solitons
on almost paracontact metric manifolds have been studied in papers [2, 4, 8, 9, 20, 22, 24, 26] and the
references therein.

Motivated by these circumstances, in this paper we focus our study to quasi-para-Sasakian man-
ifolds of dimension three. The present paper is organized as follows: In Section 2, we give a brief
description about almost paracontact structures. In Section 3, we study 3-dimensional quasi-para-
Sasakian manifolds. In the next section, we study 3-dimensional quasi-para-Sasakian manifolds with
the structure function β is constant admitting a Ricci soliton. Also, we justify our result by providing
a suitable example. The final section is devoted to study the gradient almost Ricci solitons on quasi-
para-Sasakian 3-manifolds. Throughout the paper, several interesting results and their consequences
are discussed.

2. Almost Paracontact Structures

If on a (2n+1)-dimensional smooth manifold M2n+1 there exist a (1, 1)-type tensor field φ, a vector
field ξ and a 1-form η such that

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, η · φ = 0, (2)

where I denotes the identity endomorphism, then we say that the triple (φ, ξ, η) is an almost para-
contact structure on M2n+1. The distribution D : P ∈M → DP ⊂ TPM :

D = Ker η = {X ∈ TPM : η(X) = 0}
is called paracontact distribution generated by η. The tensor field φ induces an almost paracomplex
structure [21] on each fibre of D, that is, the eigen distributions D+, D− of φ corresponding to the
eigenvalues 1 and −1, respectively, have the same dimension n. From (2), we find that the endomor-
phism φ has rank 2n. In general, a smooth manifold M2n+1 endowed with an almost paracontact
structure is called an almost paracontact manifold which is denoted by (M2n+1, φ, ξ, η). An almost
paracontact manifold is called an almost paracontact metric manifold denoted by (M2n+1, φ, ξ, η, g),
if it is additionally endowed with a pseudo-Riemannian metric g of signature (n+ 1, n) such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (3)

or equivalently,
g(X,φY ) = −g(φX, Y ) and g(X, ξ) = η(X), (4)
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for all vector fields X,Y ∈ χ(M). Then the metric g is said to be compatible with the almost
paracontact manifold (M2n+1, φ, ξ, η).

An almost paracontact metric manifold becomes a paracontact metric manifold if g(X,φY ) =
dη(X,Y ) = Φ(X,Y ) for any vector fields X,Y ∈ χ(M). The 1-form η is then a paracontact form. An
almost paracontact manifold is said to be normal if and only if the tensor field Nφ = [φ, φ]− 2dη ⊗ ξ
vanishes identically. The normality condition says that the almost paracomplex structure J defined
on M × R by

J
(
X,λ

d

dt

)
=
(
φX + λξ, η(X)

d

dt

)
is integrable. On a paracontact metric manifold, we define a symmetric, trace-free (1, 1)-type tensor
field h by h = 1

2£ξφ, where £ is the Lie differentiation. It is known that hφ = −φh, hξ = 0,
tr h = tr hφ = 0 and ∇ξ = −φ+φh, where ∇ is the Levi-Civita connection of the pseudo-Riemannian
manifold (M, g).

A paracontact structure on M2n+1 naturally gives rise to an almost paracomplex structure on
the product M2n+1 × R. A paracontact metric manifold is called a K-paracontact manifold if its
characteristic vector field ξ is Killing (or equivalently h = 0). A normal almost paracontact metric
manifold will be called para-Sasakian if F = dη [11] and quasi-para-Sasakian if dF = 0. Obviously,
the class of para-Sasakian manifolds is contained in the class of quasi-para-Sasakian manifolds. The
converse does not hold in general. A paracontact metric manifold will be called paracosymplectic if
dF = 0, dη = 0 [7], more generally, α-para-Kenmotsu if dF = 2αη ∧ F , dη = 0, α = const . 6= 0.

For a three-dimensional almost paracontact metric manifold [36] M , the following three conditions
are mutually equivalent:

(a) M is normal,
(b) there exist functions α, β on M such that

(∇Xφ)Y = β(g(X,Y )ξ − η(Y )X) + α(g(φX, Y )ξ − η(Y )φX), (5)

(c) there exist functions α, β on M such that

∇Xξ = α(X − η(X)ξ) + βφX. (6)

Here, ∇ is the Levi-Civita connection of g. The functions α, β appearing in the above equations are
given by

2α = Trace{X → ∇Xξ}, 2β = Trace{X → φ∇Xξ}. (7)

A three-dimensional normal almost para contact metric manifold is said to be
• paracosymplectic if α = β = 0 [7],
• quasi-para Sasakian if and only if α = 0 and β 6= 0 [11,36],
• β-para-Sasakian if and only if α = 0 and β is constant, in particular, para-Sasakian if β = −1 [36,39],
• α-para-Kenmotsu if α is a non-zero constant and β = 0 [29].

3. Three-dimensional Quasi-para-Sasakian Manifolds

An almost paracontact metric manifold (M,φ, ξ, η, g) is called a 3-dimensional quasi-para-Sasakian
[36] if and only if there exists a certain function β on M such that

(∇Xφ)Y = β(g(X,Y )ξ − η(Y )X) (8)

for all vector fields X,Y ∈ χ(M).
From (8), we have

∇Xξ = βφX, (9)

or equivalently,
(∇Xη)(Y ) = βg(φX, Y ) (10)

for any vector fields X,Y ∈ χ(M).
A quasi-para-Sasakian manifold is paracosympletic if and only if β = 0. If β = const and β 6= 0,

then the manifold reduces to a β-para-Sasakian manifold and if, in particular, β = −1, the manifold
becomes a para-Sasakian manifold. Here, we have the following
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Proposition 3.1. In a 3-dimensional non-paracosymplectic quasi-para-Sasakian manifold, the struc-
ture function β satisfies the condition ξβ = 0.

Theorem 3.2. For any 3-dimensional quasi-para-Sasakian manifold (M,φ, ξ, η, g), we have

dr(ξ) = 0.

Proof. The Ricci operator Q of a 3-dimensional quasi-para-Sasakian manifold (M,φ, ξ, η, g) is known
as the following

QY =
(r

2
+ β2

)
Y −

(r
2

+ 3β2
)
η(Y )ξ − η(Y )φ gradβ + dβ(φY )ξ, (11)

where r is the scalar curvature of the manifold M .
Differentiating (11) covariantly with respect to X and using (8) and (9), we get

(∇XQ)Y =
(dr(X)

2
+ 2βdβ(X)

)
Y −

(
8βdβ(X) +

dr(X)

2

)
η(Y )ξ

−β
(

3β2 +
r

2

)
g(φX, Y )ξ − βg(φX, Y )φ gradβ

−η(Y )φ∇X gradβ + g(∇X gradβ, φY )ξ. (12)

For any point p ∈ U ⊂ M , there exists a local orthonormal φ-basis {e1 = φe2, e2 = φe1, e3 = ξ},
where g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1. Replacing X by ei in the equation (12) and taking
summation over i, and then using the following well-known formula for pseudo-Riemannian manifolds

Trace{X → (∇XQ)Y } =
1

2
dr(Y ),

we obtain
1

2
dr(Y ) =g((∇e1Q)Y, e1) + g((∇e2Q)Y, e2) + g((∇e3Q)Y, e3)

=
(dr(e1)

2
+ 2βdβ(e1)

)
g(e1, Y )− βg(φe1, Y )g(φ gradβ, e1)

−g(φ∇e1 gradβ, e1)η(Y ) +
(dr(e2)

2
+ 2βdβ(e2)

)
g(e2, Y )

−βg(φe2, Y )g(φ gradβ, e2)− g(φ∇e2 gradβ, e2)η(Y )

−g(∇ξφ gradβ, ξ)η(Y ) + g(∇ξ gradβ, φY ).

Putting Y = ξ in the above equation, we get dr(ξ) = 0. This completes the proof of our theorem. �

Next, we prove the following

Theorem 3.3. A 3-dimensional non-paracosymplectic quasi-para-Sasakian manifold is an η-Einstein
manifold if and only if the structure function β is constant.

Proof. From (11), we write

S(X,Y ) =g(QX,Y )

=−
(r

2
+ β2

)
g(φX, φY ) + φX(β)η(Y ) + φY (β)η(X)− 2β2η(X)η(Y ). (13)

A 3-dimensional quasi-para-Sasakian manifold (M,φ, ξ, η, g) is called η-Einstein, if the Ricci tensor
S satisfies

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) (14)

for all vector fields X,Y ∈ χ(M); here, a, b are smooth scalar functions on M .
Then from (13) and (14), we have

η(X)dβ(φY ) + η(Y )dβ(φX) = (a− r

2
− β2)g(X,Y ) + (b+

r

2
+ 3β2)η(X)η(Y ). (15)

Taking Y = ξ in the last equation, we get

dβ(φX) = (a+ b+ 2β2)η(X). (16)



ON 3-DIMENSIONAL QUASI-PARA-SASAKIAN MANIFOLDS AND RICCI SOLITONS 249

Now, taking φX instead of X in the above equation and using Proposition 3.1, we obtain β is const.
Conversely, from (13), it is clear that if β = const ., then we have

S(X,Y ) =
(r

2
+ β2

)
g(X,Y )−

(r
2

+ 3β2
)
η(X)η(Y ). (17)

That is, M is an η-Einstein manifold. This proves our result. �

The Riemannian curvature tensor of a 3-dimensional quasi-para-Sasakian manifold with β = const
is given by

R(X,Y )Z =
(r

2
+ 2β2

)
(g(Y,Z)X − g(X,Z)Y )−

(r
2

+ 3β2
)

(g(Y,Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ). (18)

We recall the following result for later use.

Theorem 3.4 ([13, Theorem 1, I. K. Erken]). Let (M2n+1, φ, ξ, η, g) be a quasi-para-Sasakian manifold
of constant curvature K. Then K ≤ 0. Furthermore,
• If K = 0, the manifold is paracosymplectic.
• If K < 0, the structure (φ, ξ, η, g) is obtained by a homothetic deformation of a para-Sasakian
structure M2n+1.

4. Ricci Solitons on 3-dimensional Quasi-para-Sasakian Manifolds with β = const

Theorem 4.1. A Ricci soliton on a 3-dimensional quasi-para-Sasakian manifold with β = const is
expanding.

Proof. Let us consider a Ricci soliton on a 3-dimensional quasi-para-Sasakian manifold M with the
constant structure functin β. Then from (1), we have

(£V g)(X,Y ) = −2S(X,Y )− 2λg(X,Y ) (19)

for any vector fields X,Y ∈ χ(M). Using (17) in (19), we deduce that

(£V g)(X,Y ) = −{r + 2(λ+ β2)}g(X,Y ) + (r + 6β2)η(X)η(Y ) (20)

for any vector fields X,Y ∈ χ(M). Taking the covariant differentiation of (20) with respect to Z and
using (9), we obtain

(∇Z£V g)(X,Y ) =− dr(Z){g(X,Y )− η(X)η(Y )}
−(r + 6)β{g(X,φY )η(Z) + g(X,φZ)η(Y )} (21)

for any vector fields X,Y, Z ∈ χ(M). By Yano [38], we have the following commutation formula:

(£V∇Xg −£X∇V g −∇[V,X]g)(Y,Z)

= −g((£V∇)(X,Y ), Z)− g((£V∇)(X,Z), Y )

for any vector fields X,Y, Z ∈ χ(M). Since the pseudo-Riemannian metric g is parallel with respect
to the Levi-Civita connection ∇, the above relation becomes

(∇X£V g)(Y, Z) = g((£V∇)(X,Y ), Z) + g((£V∇)(X,Z), Y )

for any vector fields X,Y, Z ∈ χ(M). As (£V∇)(X,Y ) = (£V∇)(Y,X), it follows from the above
relation that

2g((£V∇)(X,Y ), Z) =(∇X£V g)(Y,Z) + (∇Y £V g)(Z,X)

−(∇Z£V g)(X,Y ) (22)
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for any vector fields X,Y, Z ∈ χ(M). Using (21) in (22), we have

2g((£V∇)(X,Y ), Z) =dr(Z)[g(X,Y )− η(X)η(Y )]

+(r + 6)β[g(φX,Z)η(Y ) + g(φY,Z)η(X)]

−dr(Y )[g(X,Z)− η(X)η(Z)]

−(r + 6)β[g(Y, φZ)η(X) + g(Y, φX)η(Z)]

−dr(X)[g(Y, Z)− η(Y )η(Z)]

−(r + 6)β[g(X,φY )η(Z) + g(X,φZ)η(Y )]. (23)

Making use of the skew-symmetric property of φ in (23) and then removing Z, it follows that

(£V∇)(X,Y ) =
1

2
grad r[g(X,Y )− η(X)η(Y )]− 1

2
dr(Y )[X − η(X)ξ]

−1

2
dr(X)[Y − η(Y )ξ] + (r + 6)β[η(Y )φX + η(X)φY ], (24)

where dr(Z) = g(grad r, Z). Substituting Y = ξ in (24) and making use of Theorem 3.2, we have

(£V∇)(X, ξ) = (r + 6)βφX (25)

for any vector field X ∈ χ(M). Now, taking the covariant differentiation of (25) along an arbitrary
vector field and then making use of the relation (8), we get

(∇X£V∇)(Y, ξ) = dr(X)βφY + (r + 6)β2{g(X,Y )ξ − η(Y )X} (26)

for any vector fields X,Y, Z ∈ χ(M). Using (26) in the following identity (see Yano [38]):

(£VR)(X,Y )Z = (∇X£V∇)(Y,Z)− (∇Y £V∇)(X,Z),

one obtains

(£VR)(X,Y )ξ = dr(X)βφY − dr(Y )βφX + (r + 6)β2{η(X)Y − η(Y )X}. (27)

This yields

(£VR)(X, ξ)ξ = −(r + 6)β2[X − η(X)ξ] (28)

for any vector field X ∈ χ(M). Setting Y = ξ in (20), it follows that

(£V g)(X, ξ) = −2(λ− 2β2)η(X). (29)

Lie-differentiating g(X, ξ) = η(X) along V and then using (29), we obtain

(£V η)(X)− g(£V ξ,X)− 2(λ− 2β2)η(X) = 0 (30)

for any vector field X ∈ χ(M). Further, taking the Lie-differentiation of η(ξ) = 1 along V and then
using (30), one can obtain

η(£V ξ) = 0 and (£V η)(ξ) = 2(λ− 2β2). (31)

Next, Lie-differentiating the equation R(X, ξ)ξ = β2{η(X)ξ − X} along V and taking into account
(31), we obtain

(£VR)(X, ξ)ξ = 2(λ− 2β2)η(X)ξ (32)

for any vector field X ∈ χ(M). Comparing this equation with (28), we get

−2(λ− 2β2)η(X)ξ = (r + 6β2)[X − η(X)ξ]. (33)

Putting X = ξ in the above equation, we have

λ = 2β2. (34)

This means that the Ricci soliton is expanding. This proves our theorem. �

Theorem 4.2. If a 3-dimensional quasi-para-Sasakian manifold with β = const admits a Ricci soliton,
then the flow vector field V is Killing, and the quasi-para-Sasakian structure can be obtained by a
homothetic deformation of a para-Sasakian structure.
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Proof. Taking into account (34) in relation (33), we obtain

r = −6β2, (35)

that is, the scalar curvature of the manifold is constant. Moreover, using λ = 2β2 and r = −6β2 in
(20) yields (£V g)(X,Y ) = 0. Thus, the potential vector field V is Killing. Next, using (35) in (17),
we obtain S = −2β2g. Making use of this relation in equation (18), we conclude that

R(X,Y )Z = −β2{g(Y, Z)X − g(X,Z)Y } (36)

for any vector fields X,Y, Z ∈ χ(M). This means that M is of constant negative curvature −β2.
Hence, using Theorem 3.4, we can say that the quasi-para-Sasakian structure can be obtained by a
homothetic deformation of a para-Sasakian structure. This completes the proof. �

It is known that a 3-dimensional non-paracosymplectic quasi-para-Sasakian manifold with β =
const is locally φ-symmetric if and only if the scalar curvature is constant. So, by the above discussion,
we can also state the following

Corollary 4.3. A 3-dimensional non-paracosymplectic quasi-para-Sasakian manifold with β = const .
admitting a Ricci soliton is locally φ-symmetric.

Theorem 4.4. Let (M, g) be a 3-dimensional quasi-para-Sasakian manifold with β = constant. If
(g, V ) is a Ricci soliton such that a potential vector field V is pointwise collinear with the structure
vector field ξ, then the soliton becomes trivial.

Proof. Let V be a pointwise collinear vector field with the structure vector field ξ, that is, V = γξ,
where γ is a smooth function on M . Then from (1), we obtain

g(∇Xγξ, Y ) + g(∇Y γξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0, (37)

or

γ{g(∇Xξ, Y ) + g(∇Y ξ,X)}+ dγ(X)η(Y ) + dγ(Y )η(X)

+2S(X,Y ) + 2λg(X,Y ) = 0 (38)

for any vector fields X,Y ∈ χ(M). Using (9) in (38), we obtain

dγ(X)η(Y ) + dγ(Y )η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0. (39)

Putting Y = ξ in (39), we get

dγ(X) = [4β2 − 2λ− (ξγ)]η(X). (40)

Again, putting X = ξ in (40), yields dγ(ξ) = 2β2 − λ. Putting this value in (39), we get

dγ(X) = (2β2 − λ)η(X),

or

dγ = (2β2 − λ)η. (41)

Applying d on both sides of (41), we get

(2β2 − λ)dη = 0.

Since dη 6= 0, we have λ = 2β2. Using this value of λ in (41) yields γ is constant. Since ξ is Killing
and γ is constant, the vector field V (= γξ) is also Killing. Hence the soliton becomes trivial and this
completes the proof. �

Now, we construct an example of quasi-para-Sasakian 3-manifold with constant β which admits a
Ricci soliton and verify our results.

Example 4.5. Let L be a 3-dimensional real connected Lie group and g be its Lie algebra with a
basis {e1, e2, e3} such that

[e1, e2] = 6e3, [e1, e3] = 6e2, [e2, e3] = 6e1.
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We define almost paracontact structure (φ, ξ, η) and pseudo-Riemannian metric g on the Lie group
L as follows:

ϕ(e1) = e2, ϕ(e2) = e1, ϕ(e3) = 0,

ξ = e3, η(X) = g(X, ξ),

g(e1, e1) = g(e3, e3) = 1, g(e2, e2) = −1,

g(ei, ej) = 0, i 6= j ∈ {1, 2, 3}.
Hence {e1, e2, e3} is a pseudo-orthonormal basis. From Koszul’s formula, we have

∇e1e1 = 0, ∇e1e2 = 3e3, ∇e1e3 = 3e2,

∇e2e1 = −3e3, ∇e2e2 = 0, ∇e2e3 = 3e1, (42)

∇e3e1 = −3e2, ∇e3e2 = −3e1, ∇e2e3 = 0,

where ∇ is a Levi-Civita connection. Hence the structure is a 3-dimensional quasi-para-Sasakian
structure with β = 3 is constant function. With the aid of (42), we find the following expressions:

R(e1, e2)e1 = 9e2, R(e1, e2)e2 = 9e1, R(e1, e2)e3 = 0,

R(e1, e3)e1 = 9e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −9e1, (43)

R(e2, e3)e1 = 0, R(e2, e3)e2 = −9e3, R(e2, e3)e3 = −9e2.

As a result of (43), it is easy to find the following:

S(e1, e1) = −18, S(e2, e2) = 18, S(e3, e3) = −18.

Then the scalar curvature r =
3∑
i=1

εiS(ei, ei) = −54, where εi = g(ei, ei). Thus, the Ricci tensor

satisfy
S(X,Y ) = −2β2g(X,Y ), (44)

for all X,Y ∈ g. From (43), we can easily show that

R(X,Y )Z = −9{g(Y, Z)X − g(X,Z)Y }, (45)

for any X,Y, Z ∈ g. Now, consider a vector field

V = 3(e1 + e2). (46)

In view of (42), one can easily verify that

(£V g)(X,Y ) = 0, (47)

for any X,Y ∈ g. Unifying (47) and (44), we obtain that g is a Ricci soliton, that is, (1) holds true
with V as in (46) and λ = 18. Further, the relation (45) and Theorem 3.4 shows that quasi-para-
Sasakian structure can be obtained by a homothetic deformation of a para-Sasakian structure and
this verifies Theorem 4.2.

5. Gradient Almost Ricci Solitons on a 3-dimensional Quasi-para-Sasakian Manifolds
with β = const

Theorem 5.1. If 3-dimensional non-paracosymplectic quasi-para-Sasakian manifold M of constant
scalar curvature with β = const . admits a gradient almost Ricci soliton, then either M is Einstein,
or the soliton vector field V is pointwise collinear with the characteristic vector field ξ on an open set
O of M .

Proof. A Ricci soliton is called gradient almost Ricci soliton if the vector field V is the gradient of a
potential function −f and λ is a variable smooth function. If a pseudo-Riemannian metric g on M is
a gradient almost Ricci soliton, then equation (1) assumes the form

∇∇f = S + λg. (48)

Equation (48) can be written as
∇YDf = QY + λY (49)
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for any vector field Y ∈ χ(M), where D is the gradient operator of g and Q is Ricci operator defined
by g(QX,Y ) = S(X,Y ). From (49), it follows that

R(X,Y )Df = (∇XQ)Y − (∇YQ)X +X(λ)Y − Y (λ)X, (50)

for all vector fields X,Y ∈ χ(M). We have

g(R(ξ, Y )Df, ξ) = β2g(ξ(f)ξ −Df, Y ) (51)

for any vector field Y ∈ χ(M). Also, in a 3-dimensional quasi-para-Sasakian manifold, it follows that

g((∇ξQ)Y − (∇YQ)ξ, ξ) = 0. (52)

From (50), (51) and (52), we get

Y (β2f − λ) = ξ(β2f − λ)η(Y ), (53)

which can be written as d(β2f − λ) = ξ(β2f − λ)η. Operating it by d and applying Poincare lemma,
we obtain d(ξ(β2f − λ)) ∧ η + (ξ(β2f − λ))dη = 0. The wedge product of this equation with η gives
(ξ(β2f − λ))dη ∧ η = 0, where we have used η ∧ η = 0. Since dη ∧ η 6= 0, the last equation yields
ξ(β2f − λ) = 0. Thus β2Df = Dλ.
Contracting (50) and then employing Dλ = β2Df , we obtain

QDf = −1

2
Dr − 2β2Df.

Since M is of constant scalar curvature, the above equation implies

QDf = −2β2Df.

Comparing the above equation with (17) shows that(r
2

+ 3β2
)
{Df − ξ(f)ξ} = 0.

If r = −6β2, then it follows from (17) that QX = −2β2X, that is, M is Einstein. Suppose, if r 6= −6β2

on some open set O of M , then we have Df = ξ(f)ξ and this completes the proof. �

Corollary 5.2. If 3-dimensional non-paracosymplectic quasi-para-Sasakian manifold M of constant
scalar curvature with β = const . admits a gradient almost Ricci soliton, then either the quasi-para-
Sasakian structure can be obtained by a homothetic deformation of a para-Sasakian structure, or the
soliton vector field V is pointwise collinear with the characteristic vector field ξ on an open set O
of M .

Proof. From Theorem 5.1, we have M is Einstein, that is, QX = −2β2X. This, together with (18),
show that M is of constant negative curvature −β2. As a result of Theorem 3.4, we conclude that
the quasi-para-Sasakian structure can be obtained by a homothetic deformation of a para-Sasakian
structure. �
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