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A NOTE ON CANCELLATION LAW FOR SUBSETS OF TOPOLGICAL

GROUPS

KINGA KOLCZYŃSKA–PRZYBYCIEŃ1 AND HUBERT PRZYBYCIEŃ2

Abstract. In this note, we generalize a result of R. Urbański from paper [3] which states that for

subsets A,B,C of topological vector space X the implication

A + B ⊂ B + C =⇒ A ⊂ C

holds, provided that B is bounded and C is closed and convex. In Theorem 2.1, we generalize this

result to dyadic convex subsets of a topological group.

1. Introduction

Let (X+, τ) be a topological group, i.e., an algebraical commutative group (X,+) equipped with
topology τ such that the addition + is a continuous mapping. Assume that:

(a) the equation x+ x = 0 has only one solution x = 0,
(b) for every x ∈ X there exists v ∈ X such that x = v + v.

Obviously, for every x ∈ X, the element v which existence is guaranteed by (b) is unique by (a) and
we denote it by 1

2x.

Analogously, we can define 1
2nx as 1

2

(
1

2n−1x
)

for n ∈ N.
Since for every integer m ∈ Z the operation mx is defined as

mx = x+ x+ · · ·+ x︸ ︷︷ ︸
m−times

if m > 0 and
mx = (−x) + (−x) + · · ·+ (−x)︸ ︷︷ ︸

−m−times

if m < 0, therefore we have just defined an element rx for x ∈ X and r ∈ D2, where D2 = {2−nm :
n ∈ N, m ∈ Z}.

Definition 1.1. Let A ⊂ X. We say that A is a dyadic convex set if pA + qA ⊂ A for every 0 < p,
q ∈ D2 such that p+ q = 1.

Definition 1.2. Let A ⊂ X and k ∈ N. We say that A is a k-dyadic convex set if pA + qA ⊂ A for
every 0 < p, q ∈ D2 such that p

1
k + q

1
k = 1.

Definition 1.3. Let A ⊂ X. We say that A is a bounded set if for every open subset V ⊂ X such
that 0 ∈ V there exists j ∈ N such that 2−jA ⊂ V.

Example. The cartesian product Dn
2 = D2 × · · · × D2 is a dyadic convex set and intersection of a

dyadic convex set with a convex set is a dyadic convex set.

Lemma 1.4. Let X be a topological group and let B be any base of neighbourhoods of 0 for the
topology in X. Then

A =
⋂

V ∈B

(A+ V ).

Proof. The proof is easy and we omit it. �
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2. The Main Result

In this section, we prove the following theorem which is the main result of the present paper.

Theorem 2.1. Let X be a topological group such that for every x ∈ X there exists a unique element
v ∈ X such that x = v + v. Assume that A,B,C ⊂ X are subsets such that B is bounded and C is
dyadic convex and closed. Then the following implication

A+B ⊂ B + C =⇒ A ⊂ C
holds true.

Proof. Without loss of generality, we may assume that 0 ∈ B. Let us first observe that

2A+B ⊂ A+ (A+B) ⊂ A+ (B + C) = (A+B) + C ⊂ (B + C) + C = B + 2C.

From the above equality we can easily obtain that

2jA+B ⊂ B + 2jC,

for every j ∈ N. Dividing the last inclusion by 2j , we obtain

A+ 2−jB ⊂ 2−jB + C.

Now, let B be any basis of neighbourhoods of 0 in X and let V ∈ B. Since B is bounded, there exists
j ∈ N such that 2−jB ⊂ V. Therefore we get

A ⊂ A+ 2−jB ⊂ 2−jB + C ⊂ V + C.

Thus

A ⊂
⋂

V ∈B

(V + C) = C = C. �

Theorem 2.2. Let X be a topological group such that for every x ∈ X there exists a unique element
v ∈ X such that x = v + v. Assume that A,B,C ⊂ X are subsets such that B is bounded and C is
k-dyadic convex, closed and satisfying the following condition:

2(k−1)nC ⊂ C,
for every n ∈ N. Then the following implication

A+B ⊂ B + C =⇒ A ⊂ C
holds true.

Proof. Without loss of generality, we may assume that 0 ∈ B. Similarly, as in the proof of Theorem 2.1
we can prove the following inclusion:

2jA+B ⊂ B + 2kjC,

for every j ∈ N.
Hence

A+ 2−jB ⊂ 2−jB + 2(k−1)jC.

Now let B be any base of neighbourhoods of 0 in X and let V ∈ B. Since B is bounded, there exists
j ∈ N such that 2−jB ⊂ V. Therefore we get

A ⊂ A+ 2−jB ⊂ 2−jB + 2(k−1)jC ⊂ V + 2(k−1)jC ⊂ V + C.

Thus

A ⊂
⋂

V ∈B

(V + C) = C = C. �

Remark 2.3. Every dyadic convex set is 1-dyadic convex set, thus Theorem 2.2 generalizes Theo-
rem 2.1.

Remark 2.4. Every convex subset of topological vector space is, obviously, a dyadic convex subset
of the additive group of this space. Thus, Theorem 2.2 generalizes the result obtained by Urbański
in [3].
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Remark 2.5. From Theorem 2.1, it follows that for every topological group X the family U(X) of
dyadic convex closed and bounded subsets of X forms a semigroup with the law of cancellation and
therefore can be embedded algebraically into a group.

References
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2Faculty of Natural Sciences UJK, ul. Uniwersytecka 7, 25-406 Kielce, Poland

E-mail address: kingakolczynska1@o2.pl

E-mail address: hubert.przybycien@ujk.edu.pl


