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VARIOUS CONVERGENCES OF MULTIFUNCTIONS

PANKAJ JAIN, CHANDRANI BASU AND VIVEK PANWAR

Abstract. In the present paper, we introduce different types of convergences of nets of multi-

functions from one topological space to another and compare them. Attempt has been made to
formulate sufficient conditions under which these convergences preserve slight B∗-continuity of the

limit multifunction.

1. Introduction

Continuity and its various weaker and stronger forms (see [5–10,13–16]) are the fundamental notions
in the general topology and analysis. Consequently, different types of convergences have been studied
which preserve these generalized continuities. In [12], Kupka and Toma defined the concept of strong
convergence and Domnik [2] proved that strong convergence preserves upper and lower semi continuity.
Ganguly and Mallick [3,4] gave the notion of c-convergence and some sufficient conditions under which
this type of convergence preserves further generalized continuity, namely, ε-continuity.

The present paper aims to introduce the concepts of τ+
cl and τ−cl-pointwise convergence, upper and

lower cl-convergence and nearly-strong convergence. It is proved that, in general, cl-convergence is
stronger than pointwise convergence. Further, we formulate sufficient conditions under which the cl-
convergence preserves upper and lower slight B∗-continuity. We establish some relationship between cl-
convergence and nearly-strong convergence. We have proved that nearly-strong convergence preserves
slight B∗-continuity.

Throughout the paper, X and Y will denote topological spaces, unless specified otherwise. By
F : X → Y, we shall mean that F is a multifunction with domain X and co-domain S(Y ), the power
set of Y excluding the empty set. If F : X → Y is a multifunction then for A ⊂ Y we denote

F+(A) = {x ∈ X : F (x) ⊂ A}
and

F−(A) = {x ∈ X : F (x) ∩A 6= ∅}.
For any open set U ⊂ Y, we denote

U+ = {B ∈ S(Y ) : B ⊂ U} and U− = {B ∈ S(Y ) : B ∩ U 6= ∅}.
By B+ and P−, we denote the collections of all U+ and U− respectively. The collection B+ forms a
base for some topology in S(Y ), called the upper Vietoris topology, usually denoted by τ+. Similarly,
P− forms a subbase for some topology in S(Y ), called lower Vietoris topology, τ−. For these topologies,
one may refer to [2, 15] and references therein.

A set B is said to be a B∗-set if it is not nowhere dense having the property of Baire, [5].
A multifunction F : X → Y is said to be

(a) upper slightly B∗-continuous at a point x, if for every open set U ⊂ X containing x and for
every clopen set V such that F (x) ⊂ V, there exists a B∗-set B containing x such that

B ⊂ F+(V ) ∩ U.
(b) lower slightly B∗-continuous at a point x, if for every open set U ⊂ X containing x and for

every clopen set V such that F (x) ∩ V 6= ∅, there exists a B∗-set B containing x such that

B ⊂ F−(V ) ∩ U.

2020 Mathematics Subject Classification. Primary 54C08; Secondary 54C10, 54D20.

Key words and phrases. τ+cl-pointwise convergence; τ−cl-pointwise convergence; cl-convergence; Nearly-strong

convergernce.



218 P. JAIN, CH. BASU AND V. PANWAR

(c) slightly B∗-continuous if it is both upper and lower slightly B∗-continuous, see [10].

A net {aj : j ∈ J } of elements of Y is said to be convergent to a ∈ Y, if for each neighborhood V
of a, there exists j0 ∈ J such that aj ∈ V for every j ∈ J , j ≥ j0, see, eg., [11].

For a space Y with topology τ, if a net {aj : j ∈ J } converges to a ∈ Y, then we shall be writing
a ∈ τ - lim aj .

2. Pointwise, Nearly-strong and cl-convergence

We begin this section by defining topologies weaker than the Vietoris topologies τ+ and τ−. The
idea is to replace open sets by clopen sets in the construction. Consider a nonempty clopen subset U
of Y, and let

U+
cl := {B ∈ S(Y ) : B ⊂ U},

and

U−cl := {B ∈ S(Y ) : B ∩ U 6= ∅}.
Let us denote by B+

cl and P−cl , the collections of all U+
cl and U−cl , respectively. It is easy to see that B+

cl

forms a base for some topology in S(Y ), to be called upper cl-Vietoris topology and will be denoted by
τ+
cl . Similarly, P−cl forms a subbase for some topology in S(Y ), to be called lower cl-Vietoris topology

and we shall denote it by τ−cl .
Below we define some new convergences:

Definition 2.1. A net {Fj : j ∈ J } of multifunctions Fj : X → Y is said to be τ+
cl-pointwise

(
resp.τ−cl-

pointwise
)
convergent to a multifunction F : X → Y if for every x ∈ X, F (x) ∈ τ+

cl - limFj(x)
(
resp.

F (x) ∈ τ−cl - limFj(x)
)
and we write F ∈ τ+

cl - limFj
(
resp. F ∈ τ−cl - limFj

)
.

Definition 2.2. A net {Fj : j ∈ J } of multifunctions Fj : X → Y is said to be upper (lower) cl-
convergent to a multifunction F : X → Y if for every clopen set V in Y with F+(V ) 6= ∅

(
F−(V ) 6= ∅

)
there exists j0 ∈ J such that for every j ∈ J with j > j0

F+(V ) ⊆ F+
j (V )

(
F−(V ) ⊆ F−j (V )

)
.

The net {Fj : j ∈ J } is said to be cl-convergent to F if it is both upper and lower cl-convergent.

Definition 2.3. A net {Fj : j ∈ J } of multifunctions Fj : X → Y is said to be upper (lower)
nearly-strongly convergent to a multifunction F : X → Y if for each clopen cover U of Y there exists
j0 ∈ J such that for every j > j0 and for every x ∈ X,

Fj(x) ⊆ Stcl(F (x),U)
(
F (x) ⊆ Stcl(Fj(x),U)

)
,

where for any A ⊂ Y, the set Stcl(A,U) =
⋃
{B ∈ U : B ∩ A 6= ∅} is called the cl-star of A ⊂ Y with

respect to cover U of Y.
The net {Fj : j ∈ J } is said to be nearly-strongly-convergent to F if it is both upper and lower

nearly-strongly convergent.

In the next two theorems, we prove that both cl-convergence as well as nearly-strong convergence
are stronger than the pointwise convergence.

Theorem 2.4. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y is upper cl-convergent converging
to F : X → Y then F ∈ τ+

cl - limFj .

Proof. Let x ∈ X and V + ∈ B+
cl be such that F (x) ∈ V +. Then V is clopen in (Y, τ), i.e., x ∈ F+(V ).

Since {Fj : j ∈ J } is upper cl-convergent to F and F+(V ) 6= ∅, there exists j0 ∈ J such that for
each j ∈ J with j > j0, F

+(V ) ⊂ F+
j (V ). Hence x ∈ F+

j (V ) for all j ∈ J , j > j0. This implies that

F ∈ τ+
cl - limFj . �

Theorem 2.5. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y is upper nearly-strongly convergent
converging to F : X → Y then F ∈ τ+

cl - limFj .
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Proof. Let x ∈ X and V + ∈ B+
cl such that F (x) ∈ V +. Then V is clopen in (Y, τ), i.e., x ∈ F+(V ).

Since V is clopen, it follows that A = {V, Y \ V } forms a clopen cover of Y. Now, from the upper
nearly-strong convergence of the net {Fj : j ∈ J }, there exists j0 ∈ J such that for each j ∈ J with
j > j0 and x ∈ X, we have,

Fj(x) ⊂ Stcl(F (x),A) = V.

Hence x ∈ F+
j (V ) for all j ∈ J , j > j0, which implies that F ∈ τ+

cl - limFj . �

Results corresponding to Theorems 2.4 and 2.5 for lower convergence can be proved on the similar
lines. We only state them below:

Theorem 2.6. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y is lower cl-convergent to
F : X → Y then F ∈ τ−cl - limFj .

Theorem 2.7. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y is lower nearly-strongly convergent
to F : X → Y then F ∈ τ−cl - limFj .

Comparing cl-convergence and nearly-strong convergence, the following can be proved:

Theorem 2.8. Let Y be a mildly compact space. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y
cl-converges to a multifunction F : X → Y, then {Fj : j ∈ J } converges nearly-strongly to F.

Proof. Let A be a clopen cover of Y. Since Y is mildly compact, A admits a finite subcover, say, U .
Since {Fj : j ∈ J } is lower cl-convergent to F, there exists j0 ∈ J such that for all j > j0 and U ∈ U ,

F−(U) ⊆ F−j (U).

Let x ∈ X, y ∈ F (x) and j ∈ J with j > j0. Then there exists U ∈ U with y ∈ U, so that F (x)∩U 6= ∅.
This gives that

x ∈ F−(U) ⊂ F−j (U),

i.e., for all j > j0,
Fj(x) ∩ U 6= ∅,

which further gives that
U ⊂ Stcl(Fj(x),A).

Thus y ∈ Stcl(Fj(x),A) for every x ∈ X and for every j ∈ J with j > j0, i.e., F (x) ⊂ Stcl(Fj(x),A)
for all j > j0.

We now prove that Fj(x) ⊂ Stcl(F (x),A) for every x ∈ X and every j ∈ J with j > j0. On the

contrary, let Fj′ (x0) * Stcl(F (x0),A) for some x0 ∈ X and for some j
′
> j0. Take

z ∈ Fj′ (x0) such that z /∈ Stcl(F (x0),A).

Then z /∈ Stcl(F (x0),U) for some finite subcover U of A. Let U ′
= Stcl(F (x0),U). Then

F+(U) ⊆ F+
j′

(U) for all U ∈ U
′

and xo /∈ F+
j′ (U ′) for all U ∈ U ′

. So, F (x0) * Stcl(F (x0),U), which is a contradiction and the assertion
follows. �

3. Slight B∗-continuity of the Limit Multifunction

In this section we provide sufficient conditions under which the upper (lower) slight B∗-continuity
for the limit multifunction is preserved. First we give the following definition:

Definition 3.1. A net {Fj : j ∈ J } of multifunctions Fj : X → Y is said to be frequently upper
(lower) slightly B∗-continuous at x ∈ X if for each j ∈ J there exists j0 ∈ J , j0 > j such that Fj0 is
upper (lower) slightly B∗-continuous at x. The net {Fj : j ∈ J } is said to be frequently upper (lower)
slightly B∗-continuous on X if it is so at every point of X.

The net {Fj : j ∈ J } is said to be frequently slightly B∗-continuous if it is both frequently upper
and lower slightly B∗-continuous.

We prove the following:
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Theorem 3.2. Let a net {Fj : j ∈ J } of multifunctions Fj : X → Y be τ+
cl -pointwise as well as

lower cl-convergent to a multifunction F : X → Y and {Fj : j ∈ J } be frequently upper slightly
B∗-continuous. Then F is also upper slightly B∗-continuous.

Proof. Let, if possible, F be not upper slightly B∗-continuous at x0 ∈ X. Then there exists a clopen
set V in Y with F (x0) ⊂ V and an open set U containing x0 such that each B∗-set B with x0 ∈ B ⊂ U
contains a point xB such that

F (xB) ∩ (Y \ V ) 6= ∅.
Put V1 = Y \V. Since F (x0) ∈ τ+

cl - limFj(x0), there exists j1 ∈ J such that Fj(x0) ⊂ V for all j > j1.
Now {Fj : j ∈ J } being lower cl-convergent and F−(V1) 6= ∅, there exists j2 ∈ J such that for all
j > j2

F−(V1) ⊂ F−j (V1),

so that,
Fj(xB) ∩ V1 6= ∅. (3.1)

Since {Fj : j ∈ J } is frequently upper slightly B∗-continuous at x0, there exists j ∈ J with
j > max{j1, j2} such that Fj is upper slightly B∗-continuous at x0. Hence Fj(x0) ⊂ V and there
exists a B∗-set B such that for all b ∈ B,

x0 ∈ B ⊂ U with Fj(b) ⊂ V,
which contradicts (3.1) and the assertion follows. �

Similarly, the following can be proved:

Theorem 3.3. Let a net {Fj : j ∈ J } of multifunctions Fj : X → Y be τ−cl -pointwise as well as
upper cl-convergent to a multifunction F : X → Y and {Fj : j ∈ J } be frequently lower slightly
B∗-continuous. Then F is also lower slightly B∗-continuous.

In view of Theorems 2.4, 2.5, 3.2 and 3.3 we immediately get the following:

Theorem 3.4. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y cl-converges to F : X → Y and
if it is frequently slightly B∗-continuous then F is also slightly B∗-continuous.

The following theorems show that nearly-strong convergence preserves the upper (lower) slight
B∗-continuity of the limit multifunction.

Theorem 3.5. Let {Fj : j ∈ J }, be a net of multifunctions Fj : X → Y that converges nearly-strongly
to a multifunction F : X → Y. If {Fj} is frequently upper slightly B∗-continuous then F is also upper
slightly B∗-continuous.

Proof. Let x0 ∈ X, V be clopen in Y with F (x0) ⊂ V and U be an open set containing x0. Then
A := {V, Y \ V } is a clopen cover of Y. Since {Fj : j ∈ J } is nearly-strongly convergent to F, there
exists j1 ∈ J such that for all j > j1 and for all x ∈ X,

F (x) ⊆ Stcl(Fj(x),A) and Fj(x) ⊆ Stcl(F (x),A).

Again, since Fj : X → Y is frequently upper slightly B∗-continuous at x0, there exists j2 ∈ J
with j2 > j1 such that Fj2 is upper slightly B∗-continuous at x0. Thus there exists a B∗-set B ⊂ U
containing x0 such that for all b ∈ B

Fj2(b) ⊂ V
which implies that

Stcl(Fj2(b),A) = V.

Now
Fj2(x0) ⊆ Stcl(F (x0),A) = V,

which gives that
Stcl(Fj2(x0),A) = V.

Consequently, we have that for all b ∈ B
F (b2) ⊆ Stcl(Fj2(b),A) = V



VARIOUS CONVERGENCES OF MULTIFUNCTIONS 221

and we are done. �

The following can also be proved on the similar lines:

Theorem 3.6. Let {Fj : j ∈ J } be a net of multifunctions Fj : X → Y converging nearly-strongly to
a multifunction F : X → Y. If {Fj : j ∈ J } is frequently lower slightly B∗-continuous then F is also
lower slightly B∗-continuous.

4. Set of Points of Slight B∗-continuity

For a multifunction F : X → Y, we write,

B+(F ) = {x ∈ X : F is upper slightly B∗-continuous at x}
and

B−(F ) = {x ∈ X : F is lower slightly B∗-continuous at x}.

Theorem 4.1. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y is τ+
cl -pointwise as well as lower

nearly-strongly convergent to a multifunction F : X → Y, then⋂
i∈J

⋃
j≥i

B+(Fj) ⊆ B+(F ).

Proof. Let x0 ∈
⋂
i∈J

⋃
j≥i

B+(Fj), V be clopen in Y with F (x0) ⊆ V and U be an open neighborhood

of x0. Since Fj : X → Y is τ+
cl -pointwise convergent, we have

F (x0) ∈ τ+
cl - limFj(x0)

which implies that V + is an open neighborhood of F (x0) in
(
S(X), τ+

cl

)
and therefore there exists

j1 ∈ J such that for all j ≥ j1
Fj(x0) ∈ V +.

Again, since {Fj : j ∈ J } is lower nearly-strongly convergent converging to F, corresponding to the
clopen cover A = {V, Y \ V } of Y, there exists j2 ∈ J such that for every j ∈ J , j ≥ j2 and x ∈ X,
we have

F (x) ⊂ Stcl
(
Fj(x),A

)
.

Choose j ≥ max{j1, j2} such that x0 ∈ B+(Fj). Then there exists a B∗-set B ⊂ U containing x0 such
that for all x ∈ B

Fj(x) ⊂ V
so that

St(Fj(x),A) = V.

This implies that F (x) ⊆ V for every x ∈ B. Hence x0 ∈ B+(F ) and we are done. �

On the similar lines, we prove the following:

Theorem 4.2. If a net {Fj : j ∈ J } of multifunctions Fj : X → Y is τ−cl -pointwise as well as upper
nearly-strongly convergent to F : X → Y then⋂

i∈J

⋃
j≥i

B−(Fj) ⊆ B−(F ).

Proof. Let x0 ∈
⋂
i∈J

⋃
j≥i

B−(Fj), V be clopen in Y with F (x0) ∩ V 6= ∅ and let U be an open

neighborhood of x0. Since Fj : X → Y is τ−cl -pointwise convergent, we have

F (x0) ∈ τ−cl - limFj(x0)

which implies that V − is an open neighborhood of F (x0) in
(
S(X), τ−cl

)
so that there exists j1 ∈ J

such that for all j ≥ j1,
Fj(x0) ∈ V −.
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Again, since {Fj : j ∈ J } is upper nearly-strongly convergent converging to F, corresponding to the
clopen cover A = {V, Y \ V } of Y, there exists j2 ∈ J such that for every j ∈ J , j ≥ j2 and x ∈ X,
we have

F (x) ⊂ Stcl
(
Fj(x),A

)
.

Choose j ≥ max{j1, j2} such that x0 ∈ B−(Fj .) Then there exists a B∗-set B ⊂ U containing x0 such
that for all x ∈ B

Fj(x) ∩ V 6= ∅.
Suppose that F (x

′
) ∩ V = ∅ for some x ∈ B. Then

F (x
′
) ⊂ Y \ V

which implies that

Stcl(F (x
′
),A) = Y \ V.

But Fj(x
′
) ∩ V 6= ∅ which is a contradiction and we are done. �

The notion of upper (lower) slight continuity [16] is stronger than that of upper (lower) slight B∗-
continuity. In what follows, we provide the conditions under which the limit multifunction becomes
upper (lower) slightly continuous. First we recall the following notion for functions [1]:

A net {fj : j ∈ J } of functions fj : X → Y is called continuously convergent at x0 ∈ X to a
function f : X → Y if for each net {xα : α ∈ A} in X

x0 ∈ lim
A
xα =⇒ f(x0) ∈ lim

J×A
fj(xα).

If the convergence is at each point x0 ∈ X, then the net is said to be continuously convergent on X.
The above notion of convergence of functions has been generalized to multifunctions in [2] which

is as follows:
Let τ denotes a topology on a family S(Y ) of all subsets of Y. A net {Fj : j ∈ J } of multifunctions

Fj : X → Y is said to be τ -continuously convergent to F : X → Y if the net of functions Fj : X →
(S(Y ), τ) is continuously convergent to a function F : X → (S(Y ), τ).

Now, we prove the following:

Theorem 4.3. Let {Fj : j ∈ J } be a net of multifunctions Fj : X → Y. If {Fj : j ∈ J } is lower
nearly-strongly as well as τ+

cl -continuously convergent to a multifunction F : X → Y at the point x0,
then x0 ∈ C+(F ), where, C+(F ) = {x ∈ X : F is upper slightly continuous at x}.

Proof. On the contrary, let if possible, x0 /∈ C+(F ). Then, there exists a clopen set V ⊂ Y such that
F (x0) ⊂ V and for each neighborhood U of X0, there exists a point xU ∈ U with the property

F (xU ) ∩ (Y \ V ) 6= ∅. (4.1)

Let A denote the family of all neighborhoods of x0. We define an ordering ” ≤ ” in A and say that
for U1, U2 ∈ A, U1 ≤ U2 if U2 ⊂ U1. Then (A,≤) is a directed set. Let us denote

Σ = {σ := (U, j) : U ∈ A and j ∈ J }.

For σ1 = (U1, j1) and σ2 = (U2, j2), we write σ1 ≤ σ2 if U2 ⊂ U1 and j1 ≤ j2. We consider

{Fj(xU ) : σ = (U, j) ∈ Σ}.

Since the net {Fj : j ∈ J } is τ+
cl -continuously convergent to F at the point x0, we have

F (x0) ∈ τ+
cl - lim

Σ
Fj(xU ),

i.e, we get σ0 = (U0, j0) such that Fj(xU ) ⊂ V for every σ ≥ σ0, σ = (U, j). Now, for the clopen cover
U = {V, Y \ V } of Y, we get for all σ ≥ σ0,

Stcl(Fj(xU ),U) = V. (4.2)

From (4.1) and (4.2), we have

F (xU ) * V = Stcl
(
Fj(xU ),U

)
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so that the net {Fj : j ∈ J } is not lower strongly convergent to F which is a contradiction and we
are done. �

The following can also be proved on similar lines:

Theorem 4.4. Let {Fj : j ∈ J } be a net of multifunctions Fj : X → Y. If {Fj : j ∈ J } is upper
nearly-strongly as well as τ−cl -continuously convergent to a multifunction F : X → Y at the point x0,
then x0 ∈ C−(F ), where, C−(F ) = {x ∈ X : F is lower slightly continuous at x}.
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